Log in

Carbon dots doped with heteroatoms for fluorescent bioimaging: a review

  • Review Article
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

Carbon dots (CDs) possess superior fluorescent properties in that they do not blink, are biocompatible, chemically inert, have small size and well tunable photoluminescence (PL), can be easily functionalized with biomolecules, and can be multi-photon excited to give up-converted PL. This review (with 141 refs.) summarizes recent progress in the field of imaging using carbon dots doped with heteroatoms (X-CDs). Following an introduction, we discuss top-down and bottom-up strategies for synthesis and methods for surface modification. We also compare the differences in synthesis for undoped CDs and X-CDs. Specifically, CDs doped with heteroelemets nitrogen, phosphorus, sulfur, selenium, boron and silicium are treated. We then discuss method for determination of the properties (particle size, ZP), how do** affects fluorescence (spectra, quantum yields, decay times), and how dopants affect upconversion (UC, anti-Stokes luminescence). We finally review the progress made in fluorescent imaging of cells tissue, and other biomatter. This review also gives new hints on how to use synthetic methods for tuning the structure of X-CDs, how do** affects properties, and how to achieve new bioimaging applications.

Carbon dots doped with heteroatoms (X-CDs) are a kind of fluorescent nanomaterials that display bright fluorescence, high quantum yield, photostability, biocompatibility and low toxicity. Hence, they possess large potential for both in-vitro and in-vivo bioimaging.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Thailand)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26
Fig. 27

Similar content being viewed by others

References

  1. Zhu SJ, Meng QN, Wang L, Zhang JH, Song YB, ** H, Zhang K, Sun HC, Wang HY, Yang B (2013) Highly photoluminescent carbon dots for multicolor patterning, sensors, and bioimaging. Angew Chem 52(14):3953–3957

    Article  CAS  Google Scholar 

  2. Wang GY, Shi GF, Chen XF, Yao RX, Chen FW (2015) A glassy carbon electrode modified with graphene quantum dots and silver nanoparticles for simultaneous determination of guanine and adenine. Microchim Acta 182(1):315–322

    Article  CAS  Google Scholar 

  3. Bhaisare ML, Talib A, Khan MS, Pandey S, Wu HF (2015) Synthesis of fluorescent carbon dots via microwave carbonization of citric acid in presence of tetraoctylammonium ion, and their application to cellular bioimaging. Microchim Acta 182(13):2173–2181

    Article  CAS  Google Scholar 

  4. Wang B, Chen YF, Wu YY, Weng B, Liu YS, Li CM (2016) Synthesis of nitrogen- and iron-containing carbon dots, and their application to colorimetric and fluorometric determination of dopamine. Microchim Acta 183(9):2491–2500

    Article  CAS  Google Scholar 

  5. Liu BB, Han SQ (2016) Determination of trace hydrogen sulfide by using the permanganate induced chemiluminescence of carbon dots. Microchim Acta. doi:10.1007/s00604-016-1957-6

    Google Scholar 

  6. Xu XY, Ray R, Gu YL, Ploehn HJ, Gearheart L, Raker K, Scrivens WA (2004) Electrophoretic analysis and purification of fluorescent single-walled carbon nanotube fragments. J Am Chem Soc 126(40):12736–12737

    Article  CAS  Google Scholar 

  7. Song YB, Zhu SJ, Yang B (2014) Bioimaging based on fluorescent carbon dots. RSC Adv 4(52):27184–27200

    Article  CAS  Google Scholar 

  8. Zhou J, Shan XY, Ma JJ, Gu YM, Qian ZS, Chen JR, Feng H (2014) Facile synthesis of P-doped carbon quantum dots with highly efficient photoluminescence. RSC Adv 4(11):5465–5468

    Article  CAS  Google Scholar 

  9. Chen H, Wang ZY, Zong SF, Chen P, Zhu D, Wu L, Cui YP (2015) A graphene quantum dot-based FRET system for nuclear-targeted and real-time monitoring of drug delivery. Nanoscale 7(37):15477–15486

    Article  CAS  Google Scholar 

  10. Martindale BCM, Hutton GAM, Caputo CA, Reisner E (2015) Solar hydrogen production using carbon quantum dots and a molecular nickel catalyst. J Am Chem Soc 137(18):6018–6025

    Article  CAS  Google Scholar 

  11. Guo CX, Yang HB, Sheng ZM, Lu ZS, Song QL, Li CM (2010) Layered graphene/quantum dots for photovoltaic devices. Angew Chem Int Ed 49(17):3014–3017

    Article  CAS  Google Scholar 

  12. Ji LJ, Chen L, Wu P, Gervasio DF, Cai CX (2016) Highly selective fluorescence determination of the hematin level in human erythrocytes with no need for separation from bulk hemoglobin. Anal Chem 88(7):3935–3944

    Article  CAS  Google Scholar 

  13. Li N, Than A, Wang XW, Xu SH, Sun L, Duan HW, Xu CJ, Chen P (2016) Ultrasensitive profiling of metabolites using tyramine-functionalized graphene quantum dots. ACS Nano 10(3):3622–3629

    Article  CAS  Google Scholar 

  14. Wang YF, Hu AG (2014) Carbon quantum dots: synthesis, properties and applications. J Mater Chem C 2(34):6921–6939

    Article  CAS  Google Scholar 

  15. Chen W, Liu CR, Peng B, Zhao Y, Pacheco A, **an M (2013) New fluorescent probes for sulfane sulfurs and the application in bioimaging. Chem Sci 4(7):2892–2896

    Article  CAS  Google Scholar 

  16. Chen W, Rosser EW, Matsunaga T, Pacheco A, Akaike T, **an M (2015) The development of fluorescent probes for visualizing intracellular hydrogen polysulfides. Angew Chem Int Ed 54(47):13961–13965

    Article  CAS  Google Scholar 

  17. Chen W, Rosser EW, Zhang D, Shi W, Li YL, Dong WJ, Ma HM, Hu DH, **an M (2015) A specific nucleophilic ring-opening reaction of aziridines as a unique platform for the construction of hydrogen polysulfides sensors. Org Lett 17(11):2776–2779

    Article  CAS  Google Scholar 

  18. Chen W, Pacheco A, Takano Y, Day JJ, Hanaoka K, **an M (2016) A single fluorescent probe to visualize hydrogen sulfide and hydrogen polysulfides with different fluorescence signals. Angew Chem Int Ed 55(34):9993–9996

  19. Zheng XT, Ananthanarayanan A, Luo KQ, Chen P (2015) Glowing graphene quantum dots and carbon dots: properties, syntheses, and biological applications. Small 11(14):1620–1636

    Article  CAS  Google Scholar 

  20. Zuo PL, Lu XH, Sun ZG, Guo YH, He H (2016) A review on syntheses, properties, characterization and bioanalytical applications of fluorescent carbon dots. Microchim Acta 183(2):519–542

    Article  CAS  Google Scholar 

  21. Fan ZT, Li SH, Yuan FL, Fan LZ (2015) Fluorescent graphene quantum dots for biosensing and bioimaging. RSC Adv 5(25):19773–19789

    Article  CAS  Google Scholar 

  22. Du Y, Guo SJ (2016) Chemically doped fluorescent carbon and graphene quantum dots for bioimaging, sensor, catalytic and photoelectronic applications. Nanoscale 8(5):2532–2543

    Article  CAS  Google Scholar 

  23. Wang AJ, Li H, Huang H, Qian ZS, Feng JJ (2016) Fluorescent graphene-like carbon nitrides: synthesis, properties and applications. J Mater Chem C 4(35):8146–8160

    Article  CAS  Google Scholar 

  24. Zhu SJ, Song YB, Zhao XH, Shao JR, Zhang JH, Yang B (2015) The photoluminescence mechanism in carbon dots (graphene quantum dots, carbon nanodots, and polymer dots): current state and future perspective. Nano Res 8(2):355–381

    Article  CAS  Google Scholar 

  25. Wang ZF, Zeng HD, Sun LY (2015) Graphene quantum dots: versatile photoluminescence for energy, biomedical, and environmental applications. J Mater Chem C 3(6):1157–1165

    Article  CAS  Google Scholar 

  26. Lin LP, Rong MC, Luo F, Chen D, Wang YR, Chen X (2014) Luminescent graphene quantum dots as new fluorescent materials for environmental and biological applications. Trends Anal Chem 54:83–102

    Article  CAS  Google Scholar 

  27. Luo PG, Yang F, Yang ST, Sonkar SK, Yang LJ, Broglie JJ, Liu Y, Sun YP (2014) Carbon-based quantum dots for fluorescence imaging of cells and tissues. RSC Adv 4(21):10791–10807

    Article  CAS  Google Scholar 

  28. Wolfbeis OS (2015) An overview of nanoparticles commonly used in fluorescent bioimaging. Chem Soc Rev 44(14):4743–4768

    Article  CAS  Google Scholar 

  29. Wang QL, Zheng HZ, Long YJ, Zhang LY, Gao M, Bai WJ (2011) Microwave–hydrothermal synthesis of fluorescent carbon dots from graphite oxide. Carbon 49(9):3134–3140

    Article  CAS  Google Scholar 

  30. Tao H, Yang K, Ma Z, Wan J, Zhang Y, Kang Z, Liu Z (2012) In vivo NIR fluorescence imaging, biodistribution, and toxicology of photoluminescent carbon dots produced from carbon nanotubes and graphite. Small 8(2):281–290

    Article  CAS  Google Scholar 

  31. Peng J, Gao W, Gupta BK, Liu Z, Romero-Aburto R, Ge L, Song L, Alemany LB, Zhan X, Gao G, Vithayathil SA, Kaipparettu BA, Marti AA, Hayashi T, Zhu JJ, Ajayan PM (2012) Graphene quantum dots derived from carbon fibers. Nano Lett 12(2):844–849

    Article  CAS  Google Scholar 

  32. Dong YQ, Chen CQ, Zheng XT, Gao LL, Cui ZM, Yang HB, Guo CX, Chi YW, Li CM (2012) One-step and high yield simultaneous preparation of single- and multi-layergraphene quantum dots from CX-72 carbon black. J Mater Chem 22(18):8764–8766

    Article  CAS  Google Scholar 

  33. Qiao ZA, Wang YF, Gao Y, Li HW, Dai TY, Liu YL, Huo QS (2010) Commercially activated carbon as the source for producing multicolor photoluminescent carbon dots by chemical oxidation. Chem Commun 46(46):8812–8814

    Article  CAS  Google Scholar 

  34. Qian ZS, Zhou J, Chen JR, Wang C, Chen CC, Feng H (2011) Nanosized N-doped graphene oxide with visible fluorescence in water for metal ion sensing. J Mater Chem 21(44):17635–17637

    Article  CAS  Google Scholar 

  35. Rong MC, Song XH, Zhao TT, Yao QH, Wang YR, Chen X (2015) Synthesis of highly fluorescent P,O-g-C3N4 nanodots for the label-free synthesis of highly fluorescent P,O-g-C3N4 nanodots for the label-free detection of Cu2+ and acetylcholinesterase activity. J Mater Chem C 3(41):10916–10924

    Article  CAS  Google Scholar 

  36. Zhu SJ, Zhang JH, Qiao CY, Tang SJ, Li YF, Yuan WJ, Li B, Tian L, Liu F, Hu R, Gao HN, Wei HT, Zhang H, Sun HC, Yang B (2011) Strongly green-photoluminescent graphene quantum dots for bioimaging applications. Chem Commun 47(24):6858–6860

    Article  CAS  Google Scholar 

  37. Hu CF, Liu YL, Yang YH, Cui JH, Huang ZR, Wang YL, Yang LF, Wang HB, **ao Y, Rong JH (2013) One-step preparation of nitrogen-doped graphene quantum dots from oxidized debris of graphene oxide. J Mater Chem B 1(1):39–42

    Article  CAS  Google Scholar 

  38. Lu J, Yang JX, Wang JZ, Lim AL, Wang SA, Loh KP (2009) One-pot synthesis of fluorescent carbon nanoribbons, nanoparticles, and graphene by the exfoliation of graphite in ionic liquids. ACS Nano 3(8):2367–2375

    Article  CAS  Google Scholar 

  39. Li Y, Zhao Y, Cheng HH, Hu Y, Shi GQ, Dai LM, Qu LT (2012) Nitrogen-doped graphene quantum dots with oxygen-rich functional groups. J Am Chem Soc 134(1):15–18

    Article  CAS  Google Scholar 

  40. Ananthanarayanan A, Wang X, Routh P, Sana B, Lim S, Kim DH, Lim KH, Li J, Chen P (2014) Facile synthesis of graphene quantum dots from 3D graphene and their application for Fe3+ sensing. Adv Funct Mater 24(20):3021–3026

    Article  CAS  Google Scholar 

  41. Fan ZT, Li YC, Li XH, Fan LZ, Zhou SX, Fang DC, Yang SH (2014) Surrounding media sensitive photoluminescence of boron-doped graphene quantum dots for highly fluorescent dyed crystals, chemical sensing and bioimaging. Carbon 70:149–156

    Article  CAS  Google Scholar 

  42. Li SH, Li YC, Cao J, Zhu J, Fan LZ, Li XH (2014) Sulfur-doped graphene quantum dots as a novel fluorescent probe for highly selective and sensitive detection of Fe3+. Anal Chem 86(20):10201–10207

    Article  CAS  Google Scholar 

  43. Sun YP, Zhou B, Lin Y, Wang WJ, Fernando KAS, Pathak P, Meziani MJ, Harruff BA, Wang X, Wang H, Luo PJG, Yang H, Kose ME, Chen B, Veca LM, **e SY (2006) Quantum-sized carbon dots for bright and colorful colorful photoluminescence. J Am Chem Soc 128(24):7756–7757

    Article  CAS  Google Scholar 

  44. Li LL, Ji J, Fei R, Wang CZ, Lu Q, Zhang JR, Jiang LP, Zhu JJ (2012) A facile microwave avenue to electrochemiluminescent two-color graphene quantum dots. Adv Funct Mater 22(14):2971–2979

    Article  CAS  Google Scholar 

  45. Zhuo SJ, Shao MW, Lee ST (2012) Upconversion and downconversion fluorescent graphene quantum dots: ultrasonic preparation and photocatalysis. ACS Nano 6(2):1059–1064

    Article  CAS  Google Scholar 

  46. Tian J, Liu Q, Asiri AM, Al-Youbi AO, Sun X (2013) Ultrathin graphitic carbon nitride nanosheet: a highly efficient fluorosensor for rapid, ultrasensitive detection of Cu2+. Anal Chem 85(11):5595–5599

    Article  CAS  Google Scholar 

  47. Wang WP, Lu YC, Huang H, Feng JJ, Chen JR, Wang AJ (2014) Facile synthesis of water-soluble and biocompatible fluorescent nitrogen-doped carbon dots for cell imaging. Analyst 139(7):1692–1696

    Article  CAS  Google Scholar 

  48. Pan LL, Sun S, Zhang AD, Jiang K, Zhang L, Dong CQ, Huang Q, Wu AG, Lin HW (2015) Truly fluorescent excitation-dependent carbon dots and their applications in multicolor cellular imaging and multidimensional sensing. Adv Mater 27(47):7782–7787

    Article  CAS  Google Scholar 

  49. Jiang K, Sun S, Zhang L, Lu Y, Wu AG, Cai CZ, Lin HW (2015) Red, green, and blue luminescence by carbon dots: full-color emission tuning and multicolor cellular imaging. Angew Chem Int Ed 54(18):5360–5363

    Article  CAS  Google Scholar 

  50. Guan WW, Gu W, Ye L, Guo CY, Su S, Xu PX, Xue M (2014) Microwave-assisted polyol synthesis of carbon nitride dots from folic acid for cell imaging. Int J Nanomedicine 9:5071–5078

    Google Scholar 

  51. Wang W, Li YM, Cheng L, Cao ZQ, Liu WG (2014) Watersoluble and phosphorus-containing carbon dots with strong green fluorescence for cell labeling. J Mater Chem B 2(1):46–48

    Article  CAS  Google Scholar 

  52. Li H, Shao FQ, Huang H, Feng JJ, Wang AJ (2016) Eco-friendly and rapid microwave synthesis of green fluorescent graphitic carbon nitride quantum dots for vitro bioimaging. Sensors Actuators B Chem 226:506–511

    Article  CAS  Google Scholar 

  53. Liao B, Long P, He BQ, Yi SJ, Ou BL, Shen SH, Chen J (2013) Reversible fluorescence modulation of spiropyran-functionalized carbon nanoparticles. J Mater Chem C 1(23):3716–3721

    Article  CAS  Google Scholar 

  54. Zheng M, Liu S, Li J, Qu D, Zhao HF, Guan XG, Hu XL, **e ZG, **g XB, Sun ZC (2014) Integrating oxaliplatin with highly luminescent carbon dots: an unprecedented theranostic agent for personalized medicine. Adv Mater 26(21):3554–3560

    Article  CAS  Google Scholar 

  55. Wang J, Zhang ZH, Zha S, Zhu YY, Wu PY, Ehrenberg B, Chen JY (2014) Carbon nanodots featuring efficient FRET for two-photon photodynamic cancer therapy with a low fs laser power density. Biomaterials 35(34):9372–9381

    Article  CAS  Google Scholar 

  56. Liu XJ, Zhang N, Bing T, Shangguan DH (2014) Carbon dots based dual-emission silica nanoparticles as a ratiometric nanosensor for Cu2+. Anal Chem 86(5):2289–2296

    Article  CAS  Google Scholar 

  57. Jiang F, Chen DQ, Li RM, Wang YC, Zhang GQ, Li SM, Zheng JP, Huang NY, Gu Y, Wang CR, Shu CY (2013) Eco-friendly synthesis of size-controllable aminefunctionalized graphene quantum dots with antimycoplasma properties. Nanoscale 5(3):1137–1142

    Article  CAS  Google Scholar 

  58. Dong YQ, Wang RX, Li H, Shao JW, Chi YW, Lin XM, Chen GN (2012) Polyamine-functionalized carbon quantum dots for chemical sensing. Carbon 50(8):2810–2815

    Article  CAS  Google Scholar 

  59. Sk MA, Ananthanarayanan A, Huang L, Lim KH, Chen P (2014) Revealing the tunable photoluminescence properties of graphene quantum dots. J Mater Chem C 2(34):6954–6960

    Article  CAS  Google Scholar 

  60. Qian ZS, Zhou J, Ma JJ, Shan XY, Chen CC, Chen JR, Feng H (2013) The visible photoluminescence mechanism of oxidized multi-walled carbon nanotubes: an experimental and theoretical investigation. J Mater Chem C 1(2):307–314

    Article  CAS  Google Scholar 

  61. Choi Y, Kim S, Choi MH, Ryoo SR, Park J, Min DH, Kim BS (2014) Highly biocompatible carbon nanodots for simultaneous bioimaging and targeted photodynamic therapy in vitro and in vivo. Adv Funct Mater 24(37):5781–5789

    Article  CAS  Google Scholar 

  62. Shao TL, Wang GD, An XT, Zhuo SJ, **a YS, Zhu CQ (2014) A reformative oxidation strategy using high concentration nitric acid for enhancing the emission performance of graphene quantum dots. RSC Adv 4(89):47977–47981

    Article  CAS  Google Scholar 

  63. Liu Q, Guo B, Rao Z, Zhang B, Gong JR (2013) Strong two-photon-induced fluorescence from photostable, biocompatible nitrogen-doped graphene quantum dots for cellular and deep-tissue imaging. Nano Lett 13(6):2436–2441

    Article  CAS  Google Scholar 

  64. Wang L, Wang YL, Xu T, Liao HB, Yao CJ, Liu Y, Li Z, Chen ZW, Pan DY, Sun LT, Wu MH (2014) Gram-scale synthesis of single-crystalline graphene quantum dots with superior optical properties. Nat Commun 5:5357–5365

    Article  CAS  Google Scholar 

  65. Sternschulte H, Thonke K, Sauer R, Koizumi S (1999) Optical evidence for 630-meV phosphorus donor in synthetic diamond. Phys Rev B: Condens Matter Mater Phys 59(20):12924–12927

    Article  CAS  Google Scholar 

  66. Sarkar S, Das K, Ghosh M, Das PK (2015) Amino acid functionalized blue and phosphorousdoped green fluorescent carbon dots as bioimaging probe. RSC Adv 5(81):65913–65921

    Article  CAS  Google Scholar 

  67. Macdonald F, Lide DR (2003) CRC handbook of chemistry and physics, 84th edn. CRC Press, Boca Raton

    Google Scholar 

  68. Gao H, Liu Z, Song L, Guo W, Gao W, Ci L, Rao A, Quan W, Vajtai R, Ajayan PM (2012) Synthesis of S-doped graphene by liquid precursor. Nanotechnology 23:275605

    Article  CAS  Google Scholar 

  69. Chandra S, Patra P, Pathan SH, Roy S, Mitra S, Layek A, Bhar R, Pramanik P, Goswami A (2013) Luminescent S-doped carbon dots: an emergent architecture for multimodal applications. J Mater Chem B 1(18):2375–2382

    Article  CAS  Google Scholar 

  70. Ge JC, Jia QY, Liu WM, Guo L, Liu QY, Lan MH, Zhang HY, Meng XM, Wang PF (2015) Red-emissive carbon dots for fluorescent, photoacoustic, and thermal theranostics in living mice. Adv Mater 27(28):4169–4177

    Article  CAS  Google Scholar 

  71. Park CH, Yang H, Lee J, Cho HH, Kim D, Lee DC, Kim BJ (2015) Multicolor emitting block copolymer-integrated graphene quantum dots for dolorimetric, simultaneous sensing of temperature, pH, and metal ions. Chem Mater 27(15):5288–5294

    Article  CAS  Google Scholar 

  72. Yu FB, Li P, Li GY, Zhao GJ, Chu TS, Han KL (2011) A near-IR reversible fluorescent probe modulated by selenium for monitoring peroxynitrite and imaging in living cells. J Am Chem Soc 133(29):11030–11033

    Article  CAS  Google Scholar 

  73. Xu KH, Qiang MM, Gao W, Su RX, Li N, Gao Y, **e YX, Kong FP, Tang B (2013) A near-infrared reversible fluorescent probe for real-time imaging of redox status changes in vivo. Chem Sci 4(3):1079–1086

    Article  CAS  Google Scholar 

  74. Zhang W, Liu W, Li P, Kang JQ, Wang JY, Wang H, Tang B (2015) Reversible two-photon fluorescent probe for imaging of hypochlorous acid in live cells and in vivo. Chem Commun 51(50):10150–10153

    Article  CAS  Google Scholar 

  75. Yang SW, Sun J, He P, Deng XX, Wang ZY, Hu CY, Ding GQ, **e XM (2015) Selenium doped graphene quantum dots as an ultrasensitive redox fluorescent switch. Chem Mater 27(6):2004–2011

    Article  CAS  Google Scholar 

  76. Qian ZS, Shan XY, Chai LJ, Ma JJ, Chen JR, Feng H (2014) Si-doped carbon quantum dots: a facile and general preparation strategy, bioimaging application, and multifunctional sensor. ACS Appl Mater Interfaces 6(9):6797–6805

    Article  CAS  Google Scholar 

  77. Wang F, **e Z, Zhang H, Liu CY, Zhang YG (2011) Highly luminescent organosilane-functionalized carbon dots. Adv Funct Mater 21(6):1027–1031

    Article  CAS  Google Scholar 

  78. Tang Q, Zhou Z, Chen ZF (2013) Graphene-related nanomaterials: tuning properties by functionalization. Nanoscale 5(11):4541–4583

    Article  CAS  Google Scholar 

  79. Zhang L, Zhang ZY, Liang RP, Li YH, Qiu JD (2014) Boron-doped graphene quantum dots for selective glucose sensing based on the “abnormal” aggregation-induced photoluminescence enhancement. Anal Chem 86(9):4423–4430

    Article  CAS  Google Scholar 

  80. Hai X, Mao QX, Wang WJ, Wang XF, Chen XW, Wang JH (2015) An acid-free microwave approach to prepare highly luminescent boron-doped graphene quantum dots for cell imaging. J Mater Chem B 3(47):9109–9114

    Article  CAS  Google Scholar 

  81. Shan XY, Chai LJ, Ma JJ, Qian ZS, Chen JR, Feng H (2014) B-doped carbon quantum dots as a sensitive fluorescence probe for hydrogen peroxide and glucose detection. Analyst 139(10):2322–2325

    Article  CAS  Google Scholar 

  82. Bourlinos AB, Trivizas G, Karakassides MA, Baikousi M, Kouloumpis A, Gournis D, Bakandritsos A, Hola K, Kozak O, Zboril R, Papagiannouli I, Aloukos P, Couris S (2015) Green and simple route toward boron doped carbon dots with significantly enhanced non-linear optical properties. Carbon 83:173–179

    Article  CAS  Google Scholar 

  83. Tasis D, Tagmatarchis N, Bianco A, Prato M (2006) Chemistry of carbon nanotubes. Chem Rev 106(3):1105–1136

    Article  CAS  Google Scholar 

  84. Johns JE, Hersam MC (2013) Atomic covalent functionalizaiton of graphene. Acc Chem Res 46(1):77–86

    Article  CAS  Google Scholar 

  85. Zhou J, Lin P, Ma JJ, Shan XY, Feng H, Chen CC, Chen JR, Qian ZS (2013) Facile synthesis of halogenated carbon quantum dots as an important intermediate for surface modification. RSC Adv 3(25):9625–9628

    Article  CAS  Google Scholar 

  86. Sun HJ, Ji HW, Ju EG, Guan YJ, Ren JS, Qu XG (2015) Synthesis of fluorinated and nonfluorinated graphene quantum dots through a new top-down strategy for long-time cellular imaging. Chem Eur J 21(9):3791–3797

    Article  CAS  Google Scholar 

  87. Qu D, Zheng M, Du P, Zhou Y, Zhang LG, Li D, Tan HQ, Zhao Z, **e ZG, Sun ZC (2013) Highly luminescent S, N co-doped graphene quantum dots with broad visible absorption bands for visible light photocatalysts. Nanoscale 5(24):12272–12277

    Article  CAS  Google Scholar 

  88. Lu YC, Chen J, Wang AJ, Bao N, Feng JJ, Wang WP, Shao LX (2015) Facile synthesis of oxygen and sulfur co-doped graphitic carbon nitride fluorescent quantum dots and their application for mercury (II) detection and bioimaging. J Mater Chem C 3(1):73–78

    Article  CAS  Google Scholar 

  89. Huang H, Lu YC, Wang AJ, Liu JH, Chen JR, Feng JJ (2014) A facile, green, and solvent-free route to nitrogen-sulfur-codoped fluorescent carbon nanoparticles for cellular imaging. RSC Adv 4(23):11872–11875

    Article  CAS  Google Scholar 

  90. Zhang BX, Gao H, Li XL (2014) Synthesis and optical properties of nitrogen and sulfur co-doped graphene quantum dots. New J Chem 38(9):4615–4621

    Article  CAS  Google Scholar 

  91. Prasad KS, Pallela R, Kim DM, Shim YB (2013) Microwave-assisted one-pot synthesis of metal-free nitrogen and phosphorus dual-doped nanocarbon for electrocatalysis and cell imaging. Part Part Syst Charact 30(6):557–564

    Article  CAS  Google Scholar 

  92. Ananthanarayanan A, Wang Y, Routh P, Sk MA, Than A, Lin M, Zhang J, Chen J, Sun HD, Chen P (2015) Nitrogen and phosphorus co-doped graphene quantum dots: synthesis from adenosine triphosphate, optical properties, and cellular imaging. Nanoscale 7(17):8159–8165

    Article  CAS  Google Scholar 

  93. Liu SY, Zhao N, Cheng Z, Liu HG (2015) Amino-functionalized green fluorescent carbon dots as surface energy transfer biosensors for hyaluronidase. Nanoscale 7(15):6836–6842

    Article  CAS  Google Scholar 

  94. Hou JY, Dong GJ, Tian ZB, Lu JT, Wang QQ, Ai SY, Wang ML (2016) A sensitive fluorescent sensor for selective determination of dichlorvos based on the recovered fluorescence of carbon dots-Cu(II) system. Food Chem 202(1):81–87

    Article  CAS  Google Scholar 

  95. Qu D, Zheng M, Li J, **e ZG, Sun ZC (2015) Tailoring color emissions from N-doped graphene quantum dots for bioimaging applications. Light Sci Appl 4:e364

    Article  CAS  Google Scholar 

  96. Wu ML, Wang D, Wan LJ (2016) Directed block copolymer self-assembly implemented viasurface embedded electrets. Nat Commun 7:10752

    Article  CAS  Google Scholar 

  97. Xu HB, Zhou SH, **ao LL, Wang HH, Lia SZ, Yuan QH (2015) Fabrication of a nitrogen-doped graphene quantum dot from MOF-derived porous carbon and its application for highly selective fluorescence detection of Fe3+. J Mater Chem C 3(2):291–297

    Article  CAS  Google Scholar 

  98. Stan CS, Albu C, Coroaba A, Popa M, Sutiman D (2015) One step synthesis of fluorescent carbon dots through pyrolysis of N-hydroxysuccinimide. J Mater Chem C 3(4):789–795

    Article  CAS  Google Scholar 

  99. Xue Q, Zhang HJ, Zhu MS, Wang ZF, Pei ZX, Huang Y, Huang Y, Song XF, Zeng HB, Zhi CY (2016) Hydrothermal synthesis of blue-fluorescent monolayer BN and BCNO quantum dots for bio-imaging probes. RSC Adv 6(82):79090–79094

    Article  CAS  Google Scholar 

  100. Kavitha T, Kim JO, Jang S, Kim DP, Kang IK, Park SY (2016) Multifaceted thermoresponsive poly(N-vinylcaprolactam) coupled with carbon dots for biomedical applications. Mat Sci Eng C-Mater 61:492–498

    Article  CAS  Google Scholar 

  101. Zhang L, Peng D, Liang RP, Qiu JD (2015) Nitrogen-doped graphene quantum dots as a new catalyst accelerating the coordination reaction between cadmium(II) and 5,10,15,20-tetrakis(1-methyl-4-pyridinio) porphyrin for cadmium(II) sensing. Anal Chem 87(21):10894–10901

    Article  CAS  Google Scholar 

  102. Schlichting I, Miao J (2012) Emerging opportunities in structural biology with X-ray free-electron lasers. Curr Opin Struct Biol 22(5):613–626

    Article  CAS  Google Scholar 

  103. Wu ZL, Gao MX, Wang TT, Wan XY, Zheng LL, Huang CZ (2014) A general quantitative pH sensor developed with dicyandiamide N-doped high quantum yield graphene quantum dots. Nanoscale 6(7):3868–3874

    Article  CAS  Google Scholar 

  104. Gokhale R, Singh P (2014) Blue luminescent graphene quantum dots by photochemical stitching of small aromatic molecules: fluorescent nanoprobes in cellular imaging. Part Part Syst Charact 31(4):433–438

    Article  CAS  Google Scholar 

  105. Guo RH, Zhou SX, Li YC, Li XH, Fan LZ, Voelcker NH (2015) Rhodamine-functionalized graphene quantum dots for detection of Fe3+ in cancer stem cells. ACS Appl Mater Interfaces 7(43):23958–23966

    Article  CAS  Google Scholar 

  106. Zhang CF, Cui YY, Song L, Liu XF, Hu ZB (2016) Microwave assisted one-pot synthesis of graphene quantum dots as highly sensitive fluorescent probes for detection of iron ions and pH value. Talanta 150(1):54–60

    Article  CAS  Google Scholar 

  107. Qian ZS, Ma JJ, Shan XY, Feng H, Shao LX, Chen JR (2014) Highly luminescent N-doped carbon quantum dots as an effective multifunctional fluorescence sensing platform. Chem Eur J 20(8):2254–2263

    Article  CAS  Google Scholar 

  108. Campos BB, Abellan C, Zougagh M, Jimenez-Jimenez J, Rodriguez-Castellon E, Esteves da Silva JCG, Rios A, Algarra M (2015) Fluorescent chemosensor for pyridine based on N-doped carbon dots. J Colloid Interface Sci 458:209–216

    Article  CAS  Google Scholar 

  109. Zuo PL, **ao DL, Gao MM, Peng J, Pan RF, **a Y, He H (2014) Single-step preparation of fluorescent carbon nanoparticles, and their application as a fluorometric probe for quercetin. Microchim Acta 181(11):1309–1316

    Article  CAS  Google Scholar 

  110. Mao Y, Bao Y, Han DX, Li FH, Niu L (2012) Efficient one-pot synthesis of molecularly imprinted silica nanospheres embedded carbon dots for fluorescent dopamine optosensing. Biosens Bioelectron 38(1):55–60

    Article  CAS  Google Scholar 

  111. Crist BV (1999) Handbook of the elements and native oxides. XPS International Inc, Mountain View

    Google Scholar 

  112. Li LB, Li L, Wang C, Liu KY, Zhu RH, Qiang H, Lin YQ (2015) Synthesis of nitrogen-doped and amino acid-functionalized graphene quantum dots from glycine, and their application to the fluorometric determination of ferric ion. Microchim Acta 182(3):763–770

    Article  CAS  Google Scholar 

  113. Guo Y, Yang LL, Li WW, Wang XF, Shang YH, Li BX (2016) Carbon dots doped with nitrogen and sulfur and loaded with copper(II) as a “turn-on” fluorescent probe for cystein, glutathione and homocysteine. Microchim Acta 183(4):1409–1416

    Article  CAS  Google Scholar 

  114. Li H, Shao FQ, Zou SY, Yang QJ, Huang H, Feng JJ, Wang AJ (2016) Microwave-assisted synthesis of N,P-doped carbon dots for fluorescent cell imaging. Microchim Acta 183(2):821–826

    Article  CAS  Google Scholar 

  115. Nie H, Li MJ, Li QS, Liang SJ, Tan YY, Sheng L, Shi W, Zhang SXA (2014) Carbon dots with continuously tunable full-color emission and their application in ratiometric pH sensing. Chem Mater 26(10):3104–3112

    Article  CAS  Google Scholar 

  116. Wang L, Zhou HS (2014) Green synthesis of luminescent nitrogen-doped carbon dots from milk and its imaging application. Anal Chem 86(18):8902–8905

    Article  CAS  Google Scholar 

  117. Bhunia SK, Saha A, Maity AR, Ray SC, Jana NR (2013) Carbon nanoparticle-based fluorescent bioimaging probes. Sci Rep 3:1473

    Article  CAS  Google Scholar 

  118. Ke CC, Yang YC, Tseng WL (2016) Synthesis of blue-, green-, yellow-, and red-emitting graphene-quantum-dot-based nanomaterials with excitation-independent emission. Part Part Syst Charact 33(3):132–139

    Article  CAS  Google Scholar 

  119. Qian ZS, Ma JJ, Shan XY, Shao LX, Zhou J, Chen JR, Feng H (2013) Surface functionalization of graphene quantum dots with small organic molecules from photoluminescence modulation to bioimaging applications: an experimental and theoretical investigation. RSC Adv 3(34):14571–14579

    Article  CAS  Google Scholar 

  120. Liu JJ, Zhang XL, Cong ZX, Chen ZT, Yang HH, Chen GN (2013) Glutathione-functionalized graphene quantum dots as selective fluorescent probes for phosphate-containing metabolites. Nanoscale 5(5):1810–1815

    Article  CAS  Google Scholar 

  121. Liu MP, Liu T, Li Y, Xu H, Zheng BZ, Wang DM, Du J, **ao D (2015) A FRET chemsensor based on graphene quantum dots for detecting and intracellular imaging of Hg2+. Talanta 143:442–449

    Article  CAS  Google Scholar 

  122. Zhou B, Shi BY, ** DY, Liu XG (2015) Controlling anocrystals for emerging applications. Nat Nanotechnol 10:924–936

    Article  CAS  Google Scholar 

  123. Cui YY, Hu ZB, Zhang CF, Liu XF (2014) Simultaneously enhancing up-conversion fluorescence and red-shifting down-conversion luminescence of carbon dots by a simple hydrothermal process. J Mater Chem B 2(40):6947–6952

    Article  CAS  Google Scholar 

  124. Zhang YQ, Ma DK, Zhuang Y, Zhang X, Chen W, Hong LL, Yan QX, Yu K, Huang SM (2012) One-pot synthesis of N-doped carbon dots with tunable luminescence properties. J Mater Chem 22(33):16714–16718

    Article  CAS  Google Scholar 

  125. Pan DY, Zhang JC, Li Z, Wu MH (2010) Hydrothermal route for cutting graphene sheets into blue-luminescent graphene quantum dots. Adv Mater 22(6):734–738

    Article  CAS  Google Scholar 

  126. Zhu SJ, Zhang JH, Tang SJ, Qiao CY, Wang L, Wang HY, Liu X, Li B, Li YF, Yu WL, Wang XF, Sun HC, Yang B (2012) Surface chemistry routes to modulate the photoluminescence of graphene quantum dots: from fluorescence mechanism to up-conversion bioimaging applications. Adv Funct Mater 22(22):4732–4740

    Article  CAS  Google Scholar 

  127. Kumar VB, Sheinberger Y, Porat Z, Shav-Tal Y, Gedanken A (2016) A hydrothermal reaction of an aqueous solution of BSA yields highly fluorescent N doped C-dots used for imaging of live mammalian cells. J Mater Chem B 4(17):2913–2920

    Article  CAS  Google Scholar 

  128. Huang H, Lv JJ, Zhou DL, Bao N, Xu Y, Wang AJ, Feng JJ (2013) One-pot green synthesis of nitrogen-doped carbon nanoparticles as fluorescent probes for mercury ions. RSC Adv 3(44):21691–21696

    Article  CAS  Google Scholar 

  129. Huang H, Xu Y, Tang CJ, Chen JR, Wang AJ, Feng JJ (2014) Facile and green synthesis of photoluminescent carbon nanoparticles for cellular imaging. New J Chem 38(2):784–789

    Article  CAS  Google Scholar 

  130. Zheng XT, Than A, Ananthanaraya A, Kim DH, Chen P (2013) Graphene quantum dots as universal fluorophores and their use in revealing regulated trafficking of insulin receptors in adipocytes. ACS Nano 7(7):6278–6286

    Article  CAS  Google Scholar 

  131. Yang ST, Cao L, Luo PG, Lu FS, Wang X, Wang HF, Meziani MJ, Liu YF, Qi G, Sun YP (2009) Carbon dots for optical imaging in vivo. J Am Chem Soc 131(32):11308–11309

    Article  CAS  Google Scholar 

  132. Huang X, Zhang F, Zhu L, Choi KY, Guo N, Guo J, Tackett KN, Anilkumar P, Liu G, Quan Q, Choi HS, Niu G, Sun YP, Lee S, Chen X (2013) Effect of injection routes on the biodistribution, clearance, and tumor uptake of carbon dots. ACS Nano 7(7):5684–5693

    Article  CAS  Google Scholar 

  133. Li Z, He XY, Wang Z, Yang RH, Shi W, Ma HM (2015) In vivo imaging and detection of nitroreductase in zebrafish by a new near-infrared fluorescence off–on probe. Biosens Bioelectron 63:112–116

    Article  CAS  Google Scholar 

  134. Zhang YY, Shi W, Feng D, Ma HM, Liang Y, Zuo JR (2011) Application of rhodamine B thiolactone to fluorescence imaging of Hg2+ in Arabidopsis thaliana. Sensor Actuat B-Chem 153(1):261–265

    Article  CAS  Google Scholar 

  135. Li LH, Li Z, Shi W, Li XH, Ma HM (2014) Sensitive and selective near-infrared fluorescent off − on probe and its application to imaging different levels of β-lactamase in Staphylococcus aureus. Anal Chem 86(12):6115–6120

    Article  CAS  Google Scholar 

  136. Li Z, Gao XH, Shi W, Li XH, Ma HM (2013) 7-((5-Nitrothiophen-2-yl)methoxy)-3H-phenoxazin-3-one as a spectroscopic off-on probe for highly sensitive and selective detection of nitroreductase. Chem Commun 49(52):5859–5861

    Article  CAS  Google Scholar 

  137. Guo LE, Zhang JF, Liu XY, Zhang LM, Zhang HL, Chen JH, **e XG, Zhou Y, Luo K, Yoon J (2015) Phosphate ion targeted colorimetric and fluorescent probe and its use to monitor endogeneous phosphate ion in a hemichannel-closed cell. Anal Chem 87(2):1196–1201

    Article  CAS  Google Scholar 

  138. Saxena M, Sonkar SK, Sarkar S (2013) Water soluble nano carbons arrest the growth of mosquito. RSC Adv 3(44):22504–22508

    Article  CAS  Google Scholar 

  139. Zhai YL, Zhu ZJ, Zhu CZ, Ren JT, Wang EK, Dong SJ (2014) Multifunctional water-soluble luminescent carbon dots for imaging and Hg2+ sensing. J Mater Chem B 2(40):6995–6999

    Article  CAS  Google Scholar 

  140. Ju J, Zhang RZ, He SJ, Chen W (2014) Nitrogen-doped graphene quantum dots-based fluorescent probe for the sensitive turn-on detection of glutathione and its cellular imaging. RSC Adv 4(94):52583–52589

    Article  CAS  Google Scholar 

  141. Zhang M, Bai LL, Shang WH, **e WJ, Ma H, Fu YY, Fang DC, Sun H, Fan LZ, Han M, Liu CM, Yang SH (2012) Facile synthesis of water-soluble, highly fluorescent graphene quantum dots as a robust biological label for stem cells. J Mater Chem 22(15):7461–7467

Download references

Acknowledgments

This project was supported by grants from National Natural Science Foundation of China (81274093), Shandong Province Natural Science Foundation (ZR2015HL128), Health Department of Shandong province (2014WS0478). We thank co-workers for help and constructive suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to ** Zhou.

Ethics declarations

The author(s) declare that they have no competing interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhou, J., Zhou, H., Tang, J. et al. Carbon dots doped with heteroatoms for fluorescent bioimaging: a review. Microchim Acta 184, 343–368 (2017). https://doi.org/10.1007/s00604-016-2043-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00604-016-2043-9

Keywords

Navigation