Log in

Biostimulants: an eco-friendly regulator of plant stress tolerance and sustainable solution to future agriculture

  • Review Article
  • Published:
Proceedings of the Indian National Science Academy Aims and scope Submit manuscript

Abstract

Biostimulants mediated direct or indirect regulation of plant response to environmental cues including drought have been extensively studied in various crop plants for several decades. However, there is scarce information available on the mechanism that regulates plant development and yield under different stressors such as drought, salinity, elevated temperature, radiation, heavy metal toxicity, and pathogens. Thus, biostimulants could open great opportunities for the researcher to develop climate resilience and sustainable agriculture technology for crop growers and small stakeholders. Plant biostimulants are organisms or their products or organic or inorganic compounds that improve the plant's health or agronomic performance (yield stability and productivity) by providing a nutrient-rich environment and protection from adverse environmental factors. This review article accentuates information about biostimulants that enhance plant morphological, physiological, biochemical, and molecular intrinsic development signals, and ameliorate plant's stress tolerance. Therefore, this review might provide tangible outcomes for biostimulants mediated balancing of agronomic traits and yield in crop plants.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Ahmad, P., Latef, A.A.A., Hashem, A., Abd_Allah, E.F., Gucel, S., Tran, L.S.P.: Nitric oxide mitigates salt stress by regulating levels of osmolytes and antioxidant enzymes in chickpea. Front. Plant Sci. 7, 347 (2016)

    Article  PubMed  PubMed Central  Google Scholar 

  • Ansari, M., Devi, B.M., Sarkar, A., Chattopadhyay, A., Satnami, L., Balu, P., Choudhary, M., Shahid, M.A., Jailani, A.A.: Microbial exudates as biostimulants: role in plant growth promotion and stress mitigation. J. Xenobiot. 13, 572–603 (2023)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Arif, M., Kareem, S.H.S., Ahmad, N.S., Hussain, N., Yasmeen, A., Anwar, A., Ansar, M.: Exogenously applied bio-stimulant and synthetic fertilizers to improve the growth, yield and fiber quality of cotton. Sustainability 11, 2171 (2019)

    Article  CAS  Google Scholar 

  • Bagh, A.S., Deepika, V., Singh, S., Mishra, S., Ekka, S.K., Kujur, R., Lakra, J.: Foliar application of seaweed extract and micronutrients on plant growth and yield of strawberry (Fragaria X Ananassa Duch) CV. Winter Dawn: a review. Asian J Biol 20, 25–31 (2014)

    Article  Google Scholar 

  • Baltazar, M., Correia, S., Guinan, K.J., Sujeeth, N., Bragança, R., Gonçalves, B.: Recent advances in the molecular effects of biostimulants in plants: an overview. Biomolecules 11, 1096 (2021)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bhardwaj, S., Verma, T., Thakur, M., Kumar, R., Kapoor, D.: Polyamines metabolism and their regulatory mechanism in plant development and in abiotic stress tolerance. Plant Ionomics (2023). https://doi.org/10.1002/9781119803041.ch4

    Article  Google Scholar 

  • Brown, P., Saa, S.: Biostimulants in agriculture. Front. Plant Sci. 6, 671 (2015)

    Article  PubMed  PubMed Central  Google Scholar 

  • Bulgari, R., Cocetta, G., Trivellini, A., Vernieri, P., Ferrante, A.: Biostimulants and crop responses: a review. Biol. Agric. Hortic. 31, 1–17 (2015)

    Article  Google Scholar 

  • Bulgari, R., Franzoni, G., Ferrante, A.: Biostimulants application in horticultural crops under abiotic stress conditions. Agronomy 9, 306 (2019)

    Article  CAS  Google Scholar 

  • Calvo, P., Nelson, L., Kloepper, J.W.: Agricultural uses of plant biostimulants. Plant Soil 383, 3–41 (2014)

    Article  CAS  Google Scholar 

  • Caputo, A., Nylander, J.A.A., Foster, R.A.: The genetic diversity and evolution of diatom-diazotroph associations highlights traits favoring symbiont integration. FEMS Microbiol. Lett. 366, fny297 (2019)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cardarelli, M., El Chami, A., Rouphael, Y., Bonini, P., Basile, B., Corrado, G., Colla, G.: Plant biostimulants as natural alternatives to synthetic auxins in strawberry production: physiological and metabolic insights. Front. Plant Sci. 14, 1337926 (2024)

    Article  PubMed  PubMed Central  Google Scholar 

  • Carillo, P., Ciarmiello, L.F., Woodrow, P., Corrado, G., Chiaiese, P., Rouphael, Y.: Enhancing sustainability by improving plant salt tolerance through macro-and micro-algal biostimulants. Biology 9, 253 (2020)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chabili, A., Minaoui, F., Hakkoum, Z., Douma, M., Meddich, A., Loudiki, M.: A comprehensive review of microalgae and cyanobacteria-based biostimulants for agriculture uses. Plants 13, 159 (2024)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chandimali, N., Park, E.H., Bak, S.G., Lim, H.J., Won, Y.S., Lee, S.J.: Seaweed callus culture: a comprehensive review of current circumstances and future perspectives. Algal Res. 29, 103376 (2023)

    Google Scholar 

  • Chen, Q., Arnao, M.B.: Phytomelatonin: an emerging new hormone in plants. J. Exp. Bot. 73, 5773–5778 (2022)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chiaiese, P., Corrado, G., Colla, G., Kyriacou, M.C., Rouphael, Y.: Renewable sources of plant biostimulation: microalgae as a sustainable means to improve crop performance. Front. Plant Sci. 9, 1782 (2018)

    Article  PubMed  PubMed Central  Google Scholar 

  • Chojnacka, K., Michalak, I., Dmytryk, A., Wilk, R., Górecki, H.: Innovative natural plant growth biostimulants. In: Shishir, S., Pant, K.K. (eds.) Advances in fertilizer technology II Biofertilizer, pp. 451–489. Studium Press LLC, Houston (2015)

    Google Scholar 

  • Cirillo, C., Arena, C., Rouphael, Y., Caputo, R., Amitrano, C., Petracca, F., De Francesco, S., Vitale, E., Erbaggio, A., Bonfante, A., De Micco, V.: Counteracting the negative effects of copper limitations through the biostimulatory action of a tropical plant extract in grapevine under pedo-climatic constraints. Front. Environ. Sci. 9, 76 (2021)

    Article  Google Scholar 

  • Colla, G., Rouphael, Y.: Biostimulants in horticulture. Sci. Hortic. 196, 1–134 (2015)

    Article  Google Scholar 

  • Colla, G., Rouphael, Y.: Microalgae: new source of plant biostimulants. Agronomy 10, 1240 (2020)

    Article  Google Scholar 

  • Craigie, J.S.: Seaweed extract stimuli in plant science and agriculture. J. Appl. Phycol. 23, 371–393 (2011)

    Article  CAS  Google Scholar 

  • Dai, L., Li, J., Harmens, H., Zheng, X., Zhang, C.: Melatonin enhances drought resistance by regulating leaf stomatal behaviour, root growth and catalase activity in two contrasting rapeseed (Brassica napus L.) genotypes. Plant Physiol. Biochem. 149, 86–95 (2020)

    Article  CAS  PubMed  Google Scholar 

  • Długosz, J., Piotrowska-Długosz, A., Kotwica, K., Przybyszewska, E.: Application of multi-component conditioner with clinoptilolite and Ascophyllum nodosum extract for improving soil properties and Zea mays L. growth and yield. Agronomy 10, 2005 (2020)

    Article  Google Scholar 

  • Drobek, M., Frąc, M., Cybulska, J.: Plant biostimulants: importance of the quality and yield of horticultural crops and the improvement of plant tolerance to abiotic stress—a review. Agronomy 9, 335 (2019)

    Article  CAS  Google Scholar 

  • El-Naggar, N.E.A., Hussein, M.H., Shaaban-Dessuuki, S.A., Dalal, S.R.: Production, extraction and characterization of Chlorella vulgaris soluble polysaccharides and their applications in AgNPs biosynthesis and biostimulation of plant growth. Sci. Rep. 10, 1–19 (2020)

    Article  Google Scholar 

  • Falcão, E.L., da Silva, F.S.: Arbuscular mycorrhizal fungi acting as biostimulants of proanthocyanidins accumulation—what is there to know? Rhizosphere 28, 100762 (2023)

    Article  Google Scholar 

  • Farooq, M., Rizwan, M., Nawaz, A., Rehman, A., Ahmad, R.: Application of natural plant extracts improves the tolerance against combined terminal heat and drought stresses in bread wheat. J. Agron. Crop Sci. 203, 528–538 (2017)

    Article  CAS  Google Scholar 

  • Ferreira, A., Bastos, C.R., Marques-dos-Santos, C., Acién-Fernandez, F.G., Gouveia, L.: Algaeculture for agriculture: from past to future. Front Agron 5, 1064041 (2023)

    Article  Google Scholar 

  • Francesca, S., Arena, C., Hay Mele, B., Schettini, C., Ambrosino, P., Barone, A., Rigano, M.M.: The use of a plant-based biostimulant improves plant performances and fruit quality in tomato plants grown at elevated temperatures. Agronomy 10, 363 (2020)

    Article  CAS  Google Scholar 

  • Gautam, K., Tripathi, J.K., Pareek, A., Sharma, D.K.: Growth and secretome analysis of possible synergistic interaction between green algae and cyanobacteria. J. Biosci. Bioeng. 127, 213–221 (2019)

    Article  CAS  PubMed  Google Scholar 

  • Gharib, F.A., Osama, K., Sattar, A.M., Ahmed, E.Z.: Impact of Chlorella vulgaris, Nannochloropsis salina, and Arthrospira platensis as bio-stimulants on common bean plant growth, yield and antioxidant capacity. Sci. Rep. 14, 1398 (2024)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • González-Morales, S., Solís-Gaona, S., Valdés-Caballero, M.V., Juárez-Maldonado, A., Loredo-Treviño, A., Benavides-Mendoza, A.: Transcriptomics of biostimulation of plants under abiotic stress. Front. Genet. 12, 583888 (2021)

    Article  PubMed  PubMed Central  Google Scholar 

  • Hamid, B., Zaman, M., Farooq, S., Fatima, S., Sayyed, R.Z., Baba, Z.A., Sheikh, T.A., Reddy, M.S., El Enshasy, H., Gafur, A., Suriani, N.L.: Bacterial plant biostimulants: a sustainable way towards improving growth, productivity, and health of crops. Sustainability 13, 2856 (2021)

    Article  CAS  Google Scholar 

  • Hassanisaadi, M., Barani, M., Rahdar, A., Heidary, M., Thysiadou, A., Kyzas, G.Z.: Role of agrochemical-based nanomaterials in plants: biotic and abiotic stress with germination improvement of seeds. J. Plant Growth Regul. 97, 375–418 (2022)

    Article  CAS  Google Scholar 

  • Hong, D.D., Hien, H.M., Son, P.N.: Seaweeds from Vietnam used for functional food, medicine and biofertilizer. J. Appl. Phycol. 19, 817–826 (2007)

    Article  Google Scholar 

  • Johnson, R., Joel, J.M., Puthur, J.T.: Biostimulants: the futuristic sustainable approach for alleviating crop productivity and abiotic stress tolerance. J. Plant Growth Regul. 43(3), 659–674 (2023)

    Article  Google Scholar 

  • Kar, S., Mishra, S.K., Misra, S., Agarwal, R., Kumar, S., Chauhan, P.S.: Endophytic alkalotolerant plant growth-promoting bacteria render maize (Zea mays L.) growth under alkaline stress. Curr. Microbiol. 81, 43 (2024)

    Article  CAS  Google Scholar 

  • Kauffman, G.L., Kneivel, D.P., Watschke, T.L.: Effects of a biostimulant on the heat tolerance associated with photosynthetic capacity, membrane thermostability, and polyphenol production of perennial ryegrass. Crop. Sci. 47, 261–267 (2007)

    Article  CAS  Google Scholar 

  • Kaushal, P., Ali, N., Saini, S., Pati, P.K., Pati, A.M.: Physiological and molecular insight of microbial biostimulants for sustainable agriculture. Front. Plant Sci. 14, 1041413 (2023)

    Article  PubMed  PubMed Central  Google Scholar 

  • Khan, W., Rayirath, U.P., Subramanian, S., Jithesh, M.N., Rayorath, P., Hodges, D.M., Critchley, A.T., Craigie, J.S., Norrie, J., Prithiviraj, B.: Seaweed extracts as biostimulants of plant growth and development. J. Plant Growth Regul. 28, 386–399 (2009)

    Article  CAS  Google Scholar 

  • Khan, M.N., Zhang, J., Luo, T., Liu, J., Rizwan, M., Fahad, S., Xu, Z., Hu, L.: Seed priming with melatonin co** drought stress in rapeseed by regulating reactive oxygen species detoxification: antioxidant defense system, osmotic adjustment, stomatal traits and chloroplast ultrastructure perseveration. Ind. Crops Prod. 140, 111597 (2019)

    Article  CAS  Google Scholar 

  • Latef, A., Hamed, A.A., Abu Alhmad, M., Ahmad, S.: Foliar application of fresh moringa leaf extract overcomes salt stress in fenugreek (Trigonella foenum-graecum) plants. Egypt. J. Bot. 57, 157–179 (2017)

    Google Scholar 

  • Latif, H.H., Mohamed, H.I.: Exogenous applications of moringa leaf extract effect on retrotransposon, ultrastructural and biochemical contents of common bean plants under environmental stresses. S. Afr. J. Bot. 106, 221–231 (2016)

    Article  CAS  Google Scholar 

  • Li, C., Tan, D.X., Liang, D., Chang, C., Jia, D., Ma, F.: Melatonin mediates the regulation of ABA metabolism, free-radical scavenging, and stomatal behaviour in two Malus species under drought stress. J. Exp. Bot. 66, 669–680 (2015a)

    Article  CAS  PubMed  Google Scholar 

  • Li, Z., Zhou, H., Peng, Y., Zhang, X., Ma, X., Huang, L., Yan, Y.: Exogenously applied spermidine improves drought tolerance in cree** bentgrass associated with changes in antioxidant defense, endogenous polyamines and phytohormones. Plant Growth Regul. 76, 71–82 (2015b)

    Article  CAS  Google Scholar 

  • Li, L., Gu, W., Li, C., Li, W., Li, C., Li, J., Wei, S.: Exogenous spermidine improves drought tolerance in maize by enhancing the antioxidant defence system and regulating endogenous polyamine metabolism. Crop Pasture Sci. 69, 1076–1091 (2018a)

    Article  CAS  Google Scholar 

  • Li, L., Gu, W., Li, J., Li, C., **e, T., Qu, D., Meng, Y., Li, C., Wei, S.: Exogenously applied spermidine alleviates photosynthetic inhibition under drought stress in maize (Zea mays L.) seedlings associated with changes in endogenous polyamines and phytohormones. Plant Physiol. Biochem. 129, 35–55 (2018b)

    Article  CAS  PubMed  Google Scholar 

  • Li, G., Liang, Z., Li, Y., Liao, Y., Liu, Y.: Exogenous spermidine regulates starch synthesis and the antioxidant system to promote wheat grain filling under drought stress. Acta Physiol. Plant. 42, 1–14 (2020)

    Article  Google Scholar 

  • Liu, J.H., Wang, W., Wu, H., Gong, X., Moriguchi, T.: Polyamines function in stress tolerance: from synthesis to regulation. Front. Plant Sci. 6, 827 (2015)

    Article  PubMed  PubMed Central  Google Scholar 

  • Llamas, A., Leon-miranda, E., Tejada-jimenez, M.: Microalgal and nitrogen-fixing bacterial consortia: from interaction to biotechnological potential. Plants 12, 2476 (2023)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Malekzadeh, P.: Influence of exogenous application of glycinebetaine on antioxidative system and growth of salt-stressed soybean seedlings (Glycine max L.). Physiol. Mol. Biol. Plants 21, 225–232 (2015)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mansoor, S., Chung, Y.S.: Functional phenoty**: understanding the dynamic response of plants to drought stress. Curr. Plant Biol. 38, 100331 (2024)

    Article  CAS  Google Scholar 

  • Matsumoto, H., Fan, X., Wang, Y., Kusstatscher, P., Duan, J., Wu, S., Chen, S., Qiao, K., Wang, Y., Ma, B., Zhu, G.: Bacterial seed endophyte shapes disease resistance in rice. Nat Plants 7, 60–72 (2021)

    Article  CAS  PubMed  Google Scholar 

  • Mishra, S.K., Khan, M.H., Misra, S., Dixit, V.K., Gupta, S., Tiwari, S., Gupta, S.C., Chauhan, P.S.: Drought tolerant Ochrobactrum sp. inoculation performs multiple roles in maintaining the homeostasis in Zea mays L. subjected to deficit water stress. Plant Physiol. Biochem. 150, 1–14 (2020)

    Article  CAS  PubMed  Google Scholar 

  • Mishra, S.K., Misra, S., Dixit, V.K., Kar, S., Chauhan, P.S.: Ochrobactrum sp. NBRISH6 inoculation enhances Zea mays productivity, mitigating soil alkalinity and plant immune response. Curr. Microbiol. 80, 328 (2023)

    Article  CAS  PubMed  Google Scholar 

  • Misra, S., Chauhan, P.S.: ACC deaminase-producing rhizosphere competent Bacillus spp. mitigate salt stress and promote Zea mays growth by modulating ethylene metabolism. 3 Biotech 10, 119. (2020)

    Article  PubMed  PubMed Central  Google Scholar 

  • Misra, S., Dixit, V.K., Mishra, S.K., Chauhan, P.S.: Demonstrating the potential of abiotic stress-tolerant Jeotgalicoccus huakuii NBRI 13E for plant growth promotion and salt stress amelioration. Ann. Microbiol. 69, 419–434 (2019)

    Article  CAS  Google Scholar 

  • Misra, S., Semwal, P., Pandey, D.D., Mishra, S.K., Chauhan, P.S.: Siderophore-producing Spinacia oleracea bacterial endophytes enhance nutrient status and vegetative growth under iron-deficit conditions. J. Plant Growth Regul. 43, 1–14 (2023)

    Google Scholar 

  • Ortiz-Moreno, M.L., Sandoval-Parra, K.X., Solarte-Murillo, L.V.: Chlorella, um potencial biofertilizante? Orinoquia 23, 71–78 (2019)

    Article  Google Scholar 

  • Pieruschka, R., Schurr, U.: Plant phenoty**: past, present, and future. Plant Phenomics 2019, 7507131 (2019)

    Article  PubMed  PubMed Central  Google Scholar 

  • Rady, M.M., Mohamed, G.F.: Modulation of salt stress effects on the growth, physio-chemical attributes and yields of Phaseolus vulgaris L. plants by the combined application of salicylic acid and Moringa oleifera leaf extract. Sci. Hortic. 193, 105–113 (2015)

    Article  CAS  Google Scholar 

  • Ramasamy, K., Karuppasami, K.M., Alagarswamy, S., Shanmugam, K.P., Rathinavelu, S., Vellingiri, G., Muniyappan, U., Kanthan, T., Kuppusamy, A., Rajendran, M., Kathirvel, A.: Role of melatonin in directing plant physiology. Agronomy 13, 2405 (2023)

    Article  CAS  Google Scholar 

  • Rana, V.S., Sharma, V., Sharma, S., Rana, N., Kumar, V., Sharma, U., Almutairi, K.F., Avila-Quezada, G.D., Abd_Allah, E.F., Gudeta, K.: Seaweed extract as a biostimulant agent to enhance the fruit growth, yield, and quality of Kiwifruit. Horticulturae 9, 432 (2023)

    Article  Google Scholar 

  • Raza, S., Aown, M., Saleem, M.F., Ashraf, M.Y., Ali, A., Asghar, H.N.: Glycinebetaine applied under drought improved the physiological efficiency of wheat (Triticum aestivum L.) plant. Soil Environ 31, 67–71 (2012)

    CAS  Google Scholar 

  • Reddy, K.S., Wakchaure, G., Khapte, P., Changan, S.: Plant bio-stimulants for mitigating abiotic stresses in agriculture. Indian J. Fertil. 19, 788–800 (2023)

    Google Scholar 

  • Rouphael, Y., Colla, G.: Synergistic biostimulatory action: designing the next generation of plant biostimulants for sustainable agriculture. Front. Plant Sci. 9, 1655 (2018)

    Article  PubMed  PubMed Central  Google Scholar 

  • Rouphael, Y., Colla, G.: Biostimulants in agriculture. Front. Plant Sci. 11, 40 (2020)

    Article  PubMed  PubMed Central  Google Scholar 

  • Rouphael, Y., Spíchal, L., Panzarová, K., Casa, R., Colla, G.: High-throughput plant phenoty** for develo** novel biostimulants: from lab to field or from field to lab? Front. Plant Sci. 9, 1197 (2018a)

    Article  PubMed  PubMed Central  Google Scholar 

  • Rouphael, Y., Giordano, M., Cardarelli, M., Cozzolino, E., Mori, M., Kyriacou, M., Colla, G.: Plant-and seaweed-based extracts increase yield but differentially modulate nutritional quality of greenhouse spinach through biostimulant action. Agronomy 8, 126 (2018b)

    Article  CAS  Google Scholar 

  • Sangiorgio, D., Cellini, A., Donati, I., Pastore, C., Onofrietti, C., Spinelli, F.: Facing climate change: application of microbial biostimulants to mitigate stress in horticultural crops. Agronomy 10, 794 (2020)

    Article  CAS  Google Scholar 

  • Schäfer, M., Brütting, C., Meza-Canales, I.D., Großkinsky, D.K., Vankova, R., Baldwin, I.T., Meldau, S.: The role of cis-zeatin-type cytokinins in plant growth regulation and mediating responses to environmental interactions. J. Exp. Bot. 66, 4873–4884 (2015)

    Article  PubMed  Google Scholar 

  • Semwal, P., Misra, S., Misra, A., Kar, S., Majhi, B., Mishra, S.K., Srivastava, S., Chauhan, P.S.: Endophytic Bacillus strains enhance biomass and bioactive metabolites of Gloriosa superba. Ind. Crop Prod. 204, 117296 (2023)

    Article  CAS  Google Scholar 

  • Sharif, R., **e, C., Zhang, H., Arnao, M.B., Ali, M., Ali, Q., Li, Y.: Melatonin and its effects on plant systems. Molecules 23, 2352 (2018)

    Article  PubMed  PubMed Central  Google Scholar 

  • Singh, A., Parmar, N., Kuhad, R.C., Ward, O.P.: Bioaugmentation, biostimulation, and biocontrol in soil biology. In: Singh, A., Parmar, N., Kuhad, R. (eds.) Bioaugmentation, biostimulation and biocontrol. Soil biology, pp. 1–23. Springer, Berlin (2011)

    Chapter  Google Scholar 

  • Singh, R., Kaur, S., Bhullar, S.S., Singh, H., Sharma, L.K.: Bacterial biostimulants for climate smart agriculture practices: mode of action, effect on plant growth and roadmap for commercial products. J. Sustain. Agric. Environ. 3, e12085 (2024)

    Article  Google Scholar 

  • Stirk WA, van Staden JO (2006) Seaweed products as biostimulants in agriculture. World seaweed resources [DVD-ROM]: ETI Information Services Lts, Univ. Amesterdam. ISBN, 9075000, 80-4

  • Sun, Y., Pri-Tal, O., Michaeli, D., Mosquna, A.: Evolution of abscisic acid signaling module and its perception. Front. Plant Sci. 11, 934 (2020)

    Article  PubMed  PubMed Central  Google Scholar 

  • Szczałba, M., Kopta, T., Gąstoł, M., Sękara, A.: Comprehensive insight into arbuscular mycorrhizal fungi, Trichoderma spp. and plant multilevel interactions with emphasis on biostimulation of horticultural crops. J. Appl. Microbiol. 127, 630–647 (2019)

    Article  PubMed  Google Scholar 

  • Tan, D.X., Hardeland, R., Manchester, L.C., Korkmaz, A., Ma, S., Rosales-Corral, S., Reiter, R.J.: Functional roles of melatonin in plants, and perspectives in nutritional and agricultural science. J. Exp. Bot. 63, 577–597 (2012)

    Article  CAS  PubMed  Google Scholar 

  • Tiryaki, I., Keles, H.: Reversal of the inhibitory effect of light and high temperature on germination of Phacelia tanacetifolia seeds by melatonin. J. Pineal Res. 52, 332–339 (2012)

    Article  CAS  PubMed  Google Scholar 

  • Torabian, S., Shakiba, M.R., Nasab, A.D.M., Toorchi, M.: Leaf gas exchange and grain yield of common bean exposed to spermidine under water stress. Photosynthetica 56, 1387–1397 (2018)

    Article  CAS  Google Scholar 

  • Van Oosten, M.J., Pepe, O., De Pascale, S., Silletti, S., Maggio, A.: The role of biostimulants and bioeffectors as alleviators of abiotic stress in crop plants. Chem Biol Technol Agric 4, 1–12 (2017)

    Google Scholar 

  • Vargas-Hernandez, M., Macias-Bobadilla, I., Guevara-Gonzalez, R.G., Romero-Gomez, S.D.J., Rico-Garcia, E., Ocampo-Velazquez, R.V., Alvarez-Arquieta, L.D.L., Torres-Pacheco, I.: Plant hormesis management with biostimulants of biotic origin in agriculture. Front. Plant Sci. 8, 1762 (2017)

    Article  PubMed  PubMed Central  Google Scholar 

  • Wijffels, R.H., Kruse, O., Hellingwerf, K.J.: Potential of industrial biotechnology with cyanobacteria and eukaryotic microalgae. Curr. Opin. Biotechnol. 24, 405–413 (2013)

    Article  CAS  PubMed  Google Scholar 

  • Yakhin, O.I., Lubyanov, A.A., Yakhin, I.A., Brown, P.H.: Biostimulants in plant science: a global perspective. Front. Plant Sci. 7, 2049 (2017)

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the School of Life and Basic Sciences, Jaipur National University, Jaipur, Rajasthan and Institute of Biosciences and Technology, Shri Ramswaroop Memorial University, Barabanki.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sankalp Misra.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dubey, R., Misra, S. Biostimulants: an eco-friendly regulator of plant stress tolerance and sustainable solution to future agriculture. Proc.Indian Natl. Sci. Acad. (2024). https://doi.org/10.1007/s43538-024-00328-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s43538-024-00328-4

Keywords

Navigation