Log in

Is metformin neuroprotective against diabetes mellitus-induced neurodegeneration? An updated graphical review of molecular basis

  • Review
  • Published:
Pharmacological Reports Aims and scope Submit manuscript

Abstract

Diabetes mellitus (DM) is a metabolic disease that activates several molecular pathways involved in neurodegenerative disorders. Metformin, an anti-hyperglycemic drug used for treating DM, has the potential to exert a significant neuroprotective role against the detrimental effects of DM. This review discusses recent clinical and laboratory studies investigating the neuroprotective properties of metformin against DM-induced neurodegeneration and the roles of various molecular pathways, including mitochondrial dysfunction, oxidative stress, inflammation, apoptosis, and its related cascades. A literature search was conducted from January 2000 to December 2022 using multiple databases including Web of Science, Wiley, Springer, PubMed, Elsevier Science Direct, Google Scholar, the Core Collection, Scopus, and the Cochrane Library to collect and evaluate peer-reviewed literature regarding the neuroprotective role of metformin against DM-induced neurodegenerative events. The literature search supports the conclusion that metformin is neuroprotective against DM-induced neuronal cell degeneration in both peripheral and central nervous systems, and this effect is likely mediated via modulation of oxidative stress, inflammation, and cell death pathways.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data availability

This manuscript is a review article with no unpublished research data included. All references are available upon request to the corresponding author.

Abbreviations

AChE/Ach:

Acetylcholinesterase/acetylcholine

AD:

Alzheimer disease

AGE:

Advanced glycation end products

ALS:

Amyotrophic lateral sclerosis

AMPK:

Adenosine monophosphate-activated protein kinase

AMPK/Tet2:

Adenosine monophosphate-activated protein kinase/Ten-eleven translocation-2

APP:

Amyloid precursor protein

AOPPs:

Advanced oxidation protein products

Bcl-2:

B-cell lymphoma 2

BDNF:

Brain derived neurotropic factor

BiP:

Binding immunoglobulin protein

CAT:

Catalase

CCL 2 and 20:

C–C Motif chemokine ligand 2 and 20

Cdk5:

Cyclin-dependent kinase 5

CHOP:

CCAAT-enhancer-binding protein homologous protein

ChREBP:

Carbohydrate-responsive element-binding protein

CMA:

Chaperone-mediated autophagy

CNS:

Central nervous system

CoA-SH:

Coenzyme A

COX-PG:

Cyclooxygenase-prostaglandin

cPLA2:

Cytosolic phospholipases A2

CREB:

CAMP response element-binding protein

CRP:

C-reactive protein

CXCL 5 or 7 or 12:

C-X-C motif chemokine ligand 5 or 7 or 5

DAP12:

12-Kilodalton DNAX activating protein (also known as TYROBP and KARAP)

DM:

Diabetes mellitus

eIF2α:

Eukaryotic initiation factor-2α

eNOS:

Endothelial nitric oxide synthase

EPM:

Elevated plus maze

ERK:

Extracellular signal-related kinase

EZM:

Elevated zero maze

FAAD:

Fas-associated death domain protein

FRAP:

FKBP-12-rapamycin associated protein (also known as mTOR and RAFT-1)

FST:

Forced swim test

GABAA:

γ-Aminobutyric acid A

GFAP:

Glial fibrillary acidic protein

GIP:

Glucose-dependent insulinotropic polypeptide

GLP-1:

Glucagon-like peptide-1

GM-CSF:

Colony-stimulating factor

GPx:

Glutathione peroxidase

GR:

Glutathione reductase

GRP94:

Glucose-regulated protein of 94 kDa

GSH:

Reduced form of glutathione

GSK3:

Glycogen synthase kinase 3 beta

GSSG:

Oxidized form of glutathione

HD:

Huntington disease

GST:

Glutathione S-transferase

HDL:

High density lipoprotein

HNE:

4-Hydroxynonenal

HPA:

Hypothalamic–pituitary–adrenal

IFN-γ:

Interferon gamma

IGF-1:

Insulin-like growth factor-1

IL:

Interleukin (1,2,3,4,5,6,7,8,9,10,11,12)

iNOS:

Inducible nitric oxide synthase

IRE1α:

Inositol-requiring transmembrane kinase/endoribonuclease 1α

IsoLGs:

Isolevuglandins

JAK/STAT:

Janus kinase (JAK)/signal transducer and activator of transcription (STAT)

LCAT:

Lecithin-cholesterol acyltransferase

LC3:

Microtubule-associated protein 1A/1B-light chain 3

LDL:

Low density lipoprotein

LKB1:

Liver kinase B1

MDA:

Malondialdehyde

MDD:

Major depressive disorder

MiR-141:

MicroRNA 141

MND:

Motor neuron disease

MOMP:

Mitochondrial outer membrane permeabilization

MS:

Multiple sclerosis

MSA:

Multiple system atrophy

mTORC1:

Mammalian target of rapamycin complex 1

MWM:

Morris water maze

NADPH/NAD+ :

Nicotinamide adenine dinucleotide phosphate/nicotinamide adenine dinucleotide

NGF:

Neural growth factor

NF-kb:

Nuclear factor κB

NO:

Nitric oxide

NORT:

Novel object recognition task

NOS-NO:

Nitric oxide synthase-nitric oxide

nNOS:

Neuronal nitric oxide synthase

NRF-1:

Nuclear respiratory factor 1

NSF:

Novelty suppressed feeding

OFT:

Open field test

OGT:

O-linked β-N-acetylglucosamine (O-GlcNAc) transferase

ONE:

4-Oxononenal

OSI:

Oxidative stress index

PARP:

Poly-ADP ribose polymerase

PD:

Parkinson disease

PDIA:

Protein disulfide-isomerase

PERK:

Protein kinase RNA-like endoplasmic reticulum kinase

Pit-1:

Pituitary transcriptional factor-1

PGC1α:

Peroxisome proliferator-activated receptor-gamma coactivator

PNS:

Peripheral nervous system

PON 1:

Serum paraoxonase and arylesterase 1

PP2A:

Protein phosphatase 2

PRD:

Pelvic radiation disease

Preb:

Prolactin regulatory element-binding

PTP:

Permeability transition pore

RAGE:

Receptor for advanced glycation end products

RAM:

Radial arm maze

RNS:

Reactive nitrogen species

ROS:

Reactive oxygen species

SCA:

Spinocerebellar ataxia

SIRT-SirT1:

Silent mating type information regulation 2 homolog

SMAC:

Second mitochondria-derived activator of caspase

SMA:

Spinal muscular atrophy

SOD:

Super oxide dismutase

ST:

Splash test

STZ :

Streptozotocin

TAC:

Total antioxidant capacity

TAS:

Total antioxidant status

TBARS:

Thiobarbituric acid reactive substances

TC:

Total cholesterol

Tfam:

Transcription factor A mitochondrial

TGF-β:

Transforming growth factor beta

TLRs:

Toll-like receptors

TNF-α:

Tumor necrosis factor alpha

TOS:

Total oxidant status

TREM-1:

Triggering receptor expressed on myeloid cells 1

TST:

Tail suspension tests

TRAIL:

Tumor necrosis factor-related apoptosis-inducing ligand

TXNIP:

Thioredoxin-interacting protein

ULK:

Unc-51-like autophagy activating kinase

VEGF:

Vascular endothelial growth factor

VLDL:

Very low density protein

XIAP:

X-linked inhibitor of apoptosis

References

  1. Perneczky R, Kempermann G, Korczyn AD, Matthews FE, Ikram MA, Scarmeas N, et al. Translational research on reserve against neurodegenerative disease: consensus report of the International Conference on Cognitive Reserve in the Dementias and the Alzheimer’s Association Reserve, Resilience and Protective Factors Professional Interest Area working groups. BMC Med. 2019;17:1–15.

    Article  Google Scholar 

  2. Hickman S, Izzy S, Sen P, Morsett L, El Khoury J. Microglia in neurodegeneration. Nat Neurosci. 2018;21:1359–69.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Ransohoff RM. How neuroinflammation contributes to neurodegeneration. Science. 2016;353:777–83.

    Article  CAS  PubMed  Google Scholar 

  4. Gandhi S, Abramov AY. Mechanism of oxidative stress in neurodegeneration. Oxid Med Cell Longev. 2012;2012: 428010.

    Article  PubMed  PubMed Central  Google Scholar 

  5. **ang C, Wang Y, Zhang H, Han F. The role of endoplasmic reticulum stress in neurodegenerative disease. Apoptosis. 2017;22:1–26.

    Article  CAS  PubMed  Google Scholar 

  6. Cai W, Zhang K, Li P, Zhu L, Xu J, Yang B, et al. Dysfunction of the neurovascular unit in ischemic stroke and neurodegenerative diseases: an aging effect. Ageing Res Rev. 2017;34:77–87.

    Article  CAS  PubMed  Google Scholar 

  7. Weis S, Büttner A. Neurotoxicology and drug-related disorders. Handb Clin Neurol. 2017;145:181–92.

    Article  PubMed  Google Scholar 

  8. Qiu C, Fratiglioni L. A major role for cardiovascular burden in age-related cognitive decline. Nat Rev Cardiol. 2015;12:267–77.

    Article  PubMed  Google Scholar 

  9. Pugazhenthi S, Qin L, Reddy PH. Common neurodegenerative pathways in obesity, diabetes, and Alzheimer’s disease. Biochim Biophys Acta Mol Basis Dis. 2017;1863:1037–45.

    Article  CAS  PubMed  Google Scholar 

  10. Ochoa-Sanchez R, Tamnanloo F, Rose CF. Hepatic encephalopathy: from metabolic to neurodegenerative. Neurochem Res. 2021;46:2612–25.

    Article  CAS  PubMed  Google Scholar 

  11. Kelly DM, Rothwell PM. Disentangling the relationship between chronic kidney disease and cognitive disorders. Front Neurol. 2022;13: 830064.

    Article  PubMed  PubMed Central  Google Scholar 

  12. Hou Y, Dan X, Babbar M, Wei Y, Hasselbalch SG, Croteau DL, et al. Ageing as a risk factor for neurodegenerative disease. Nat Rev Neurol. 2019;15:565–81.

    Article  PubMed  Google Scholar 

  13. Dugger BN, Dickson DW. Pathology of neurodegenerative diseases. Cold Spring Harbor Perspect Biol. 2016;9: a028035.

    Article  Google Scholar 

  14. Toth C. Diabetes and neurodegeneration in the brain. Handb Clin Neurol. 2014;126:489–511.

    Article  PubMed  Google Scholar 

  15. Verdile G, Fuller SJ, Martins RN. The role of type 2 diabetes in neurodegeneration. Neurobiol Dis. 2015;84:22–38.

    Article  CAS  PubMed  Google Scholar 

  16. Kozakova M, Morizzo C, Goncalves I, Natali A, Nilsson J, Palombo C. Cardiovascular organ damage in type 2 diabetes mellitus: the role of lipids and inflammation. Cardiovasc Diabetol. 2019;18:1–11.

    Article  Google Scholar 

  17. Li X, Jiao Y, **ng Y, Gao P. Diabetes mellitus and risk of hepatic fibrosis/cirrhosis. BioMed Res Int. 2019;2019:5308308.

    PubMed  PubMed Central  Google Scholar 

  18. Mazzucco G, Bertani T, Fortunato M, Bernardi M, Leutner M, Boldorini R, et al. Different patterns of renal damage in type 2 diabetes mellitus: a multicentric study on 393 biopsies. Am J Kidney Dis. 2002;39:713–20.

    Article  PubMed  Google Scholar 

  19. Visca D, Pignatti P, Spanevello A, Lucini E, La Rocca E. Relationship between diabetes and respiratory diseases—clinical and therapeutic aspects. Pharmacol Res. 2018;137:230–5.

    Article  CAS  PubMed  Google Scholar 

  20. Soni D, Sagar P, Takkar B. Diabetic retinal neurodegeneration as a form of diabetic retinopathy. Int Ophthalmol. 2021;41:3223–48.

    Article  PubMed  Google Scholar 

  21. Smith AG, Singleton JR. Diabetic neuropathy. Continuum (Minneap Minn). 2012;18:60–84.

    PubMed  Google Scholar 

  22. Morsi M, Maher A, Aboelmagd O, Johar D, Bernstein L. A shared comparison of diabetes mellitus and neurodegenerative disorders. J Cell Biochem. 2018;119:1249–56.

    Article  CAS  PubMed  Google Scholar 

  23. Iqbal K, Liu F, Gong C-X. Tau and neurodegenerative disease: the story so far. Nat Rev Neurol. 2016;12:15–27.

    Article  CAS  PubMed  Google Scholar 

  24. Cheng H, Gang X, Liu Y, Wang G, Zhao X, Wang G. Mitochondrial dysfunction plays a key role in the development of neurodegenerative diseases in diabetes. Am J Physiol Endocrinol. 2020;318:E750–64.

    Article  CAS  Google Scholar 

  25. Feldman EL. Oxidative stress and diabetic neuropathy: a new understanding of an old problem. J Clin Invest. 2003;111:431–3.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Mule NK, Singh JN. Diabetes mellitus to neurodegenerative disorders: is oxidative stress fueling the flame? CNS Neurol Disord Drug Targets. 2018;17:644–53.

    Article  CAS  PubMed  Google Scholar 

  27. Buyuktepe TC, Demirel S, Batıoğlu F, Özmert E. The correlation of inflammation and microvascular changes with diabetic retinal neurodegeneration. Curr Eye Res. 2021;46:1559–66.

    Article  CAS  PubMed  Google Scholar 

  28. Farhadi A, Vosough M, Zhang J-S, Tahamtani Y, Shahpasand K. A possible neurodegeneration mechanism triggered by diabetes. Trends Endocrinol Metab. 2019;30:692–700.

    Article  CAS  PubMed  Google Scholar 

  29. Mayeda ER, Whitmer RA, Yaffe K. Diabetes and cognition. Clin Geriatr Med. 2015;31:101–15.

    Article  PubMed  Google Scholar 

  30. Chakraborty A, Chowdhury S, Bhattacharyya M. Effect of metformin on oxidative stress, nitrosative stress and inflammatory biomarkers in type 2 diabetes patients. Diabetes Res Clin Pract. 2011;93:56–62.

    Article  CAS  PubMed  Google Scholar 

  31. Wu Y, Wang F, Fu M, Wang C, Quon MJ, Yang P. Cellular stress, excessive apoptosis, and the effect of metformin in a mouse model of type 2 diabetic embryopathy. Diabetes. 2015;64:2526–36.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Nna VU, Abu Bakar AB, Ahmad A, Eleazu CO, Mohamed M. Oxidative stress, NF-κb-mediated inflammation and apoptosis in the testes of streptozotocin-induced diabetic rats: combined protective effects of Malaysian propolis and metformin. Antioxidants. 2019;8:465.

    Article  PubMed  PubMed Central  Google Scholar 

  33. Oliveira WH, Nunes AK, França MER, Santos LA, Los DB, Rocha SW, et al. Effects of metformin on inflammation and short-term memory in streptozotocin-induced diabetic mice. Brain Res. 2016;1644:149–60.

    Article  PubMed  Google Scholar 

  34. Kim YS, Kim M, Choi MY, Lee DH, Roh GS, Kim HJ, et al. Metformin protects against retinal cell death in diabetic mice. Biochem Biophys Res Commun. 2017;492:397–403.

    Article  CAS  PubMed  Google Scholar 

  35. Flory J, Lipska K. Metformin in 2019. JAMA. 2019;321:1926–7.

    Article  PubMed  PubMed Central  Google Scholar 

  36. Viollet B, Guigas B, Garcia NS, Leclerc J, Foretz M, Andreelli F. Cellular and molecular mechanisms of metformin: an overview. Clin Sci (Lond). 2012;122:253–70.

    Article  CAS  PubMed  Google Scholar 

  37. Khazaei H, Pesce M, Patruno A, Aneva IY, Farzaei MH. Medicinal plants for diabetes associated neurodegenerative diseases: a systematic review of preclinical studies. Phytother Res. 2021;35:1697–718.

    Article  CAS  PubMed  Google Scholar 

  38. Ebokaiwe AP, Okori S, Nwankwo JO, Ejike CE, Osawe SO. Selenium nanoparticles and metformin ameliorate streptozotocin-instigated brain oxidative-inflammatory stress and neurobehavioral alterations in rats. Naunyn-Schmiedeberg’s Arch Pharmacol. 2021;394:591–602.

    Article  CAS  Google Scholar 

  39. Mousavi F, Eidi A, Khalili M, Roghani M. Metformin ameliorates learning and memory deficits in streptozotocin-induced diabetic rats. J Basic Clin Physiol. 2018;6:17–22.

    Google Scholar 

  40. Jiang T, Yu JT, Zhu XC, Wang HF, Tan MS, Cao L, et al. Acute metformin preconditioning confers neuroprotection against focal cerebral ischaemia by pre-activation of AMPK-dependent autophagy. Br J Pharmacol. 2014;171:3146–57.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. El-Mir M-Y, Detaille D, Gloria R, Delgado-Esteban M, Guigas B, Attia S, et al. Neuroprotective role of antidiabetic drug metformin against apoptotic cell death in primary cortical neurons. J Mol Neurosci. 2008;34:77–87.

    Article  CAS  PubMed  Google Scholar 

  42. Bailey CJ. Metformin: historical overview. Diabetologia. 2017;60:1566–76.

    Article  CAS  PubMed  Google Scholar 

  43. Moreira PI. Metformin in the diabetic brain: friend or foe? Ann Transl Med. 2014;2:54.

    PubMed  PubMed Central  Google Scholar 

  44. Mendonça IP, de Paiva IHR, Duarte-Silva EP, de Melo MG, da Silva RS, de Oliveira WH, et al. Metformin and fluoxetine improve depressive-like behavior in a murine model of Parkinson’s disease through the modulation of neuroinflammation, neurogenesis and neuroplasticity. Int Immunopharmacol. 2022;102: 108415.

    Article  PubMed  Google Scholar 

  45. Wang Y-W, He S-J, Feng X, Cheng J, Luo Y-T, Tian L, et al. Metformin: a review of its potential indications. Drug Des Devel Ther. 2017;11:2421.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Holt RI, De Groot M, Golden SH. Diabetes and depression. Curr Diabetes Rep. 2014;14:1–9.

    Article  CAS  Google Scholar 

  47. Grigsby AB, Anderson RJ, Freedland KE, Clouse RE, Lustman PJ. Prevalence of anxiety in adults with diabetes: a systematic review. J Psychosom Res. 2002;53:1053–60.

    Article  PubMed  Google Scholar 

  48. Rebolledo-Solleiro D, Crespo-Ramírez M, Roldán-Roldán G, Hiriart M, de la Mora MP. Role of thirst and visual barriers in the differential behavior displayed by streptozotocin-treated rats in the elevated plus-maze and the open field test. Physiol Behav. 2013;120:130–5.

    Article  CAS  PubMed  Google Scholar 

  49. Sharma AN, Elased KM, Garrett TL, Lucot JB. Neurobehavioral deficits in db/db diabetic mice. Physiol Behav. 2010;101:381–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Walf AA, Frye CA. The use of the elevated plus maze as an assay of anxiety-related behavior in rodents. Nat Protoc. 2007;2:322–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Gould TD, Dao DT, Kovacsics CE. The open field test. In: Gould TD, editor. Mood and anxiety related phenotypes in mice. New Jersey: Humana Press; 2009. p. 1–20.

    Chapter  Google Scholar 

  52. Bogdanova OV, Kanekar S, D’Anci KE, Renshaw PF. Factors influencing behavior in the forced swim test. Physiol Behav. 2013;118:227–39.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Smith KJ, Béland M, Clyde M, Gariépy G, Pagé V, Badawi G, et al. Association of diabetes with anxiety: a systematic review and meta-analysis. J Psychosom Res. 2013;74:89–99.

    Article  PubMed  Google Scholar 

  54. Gupta D, Radhakrishnan M, Kurhe Y. Insulin reverses anxiety-like behavior evoked by streptozotocin-induced diabetes in mice. Metab Brain Dis. 2014;29:737–46.

    Article  CAS  PubMed  Google Scholar 

  55. Gambeta E, de Souza CP, de Morais H, Zanoveli JM. Reestablishment of the hyperglycemia to the normal levels seems not to be essential to the anxiolytic-like effect induced by insulin. Metab Brain Dis. 2016;31:563–71.

    Article  CAS  PubMed  Google Scholar 

  56. Guangpin C, Chuntao L, ** Q, Yue H, **anfang M. Pyrrolidine dithiocarbamate alleviated anxiety in diabetic mice. Indian J Pharm Sci. 2017;79:149–54.

    Article  Google Scholar 

  57. Husain GM, Chatterjee SS, Singh PN, Kumar V. Beneficial effect of Hypericum perforatum on depression and anxiety in a type 2 diabetic rat model. Acta Pol Pharm. 2011;68:913–8.

    PubMed  Google Scholar 

  58. Volchegorskii I, Miroshnichenko IY, Rassokhina L, Faizullin R, Pryakhina K. Anxiolytic and antidepressant effects of emoxipine, reamberin and mexidol in experimental diabetes mellitus. Zh Nevrol Psikhiatr Im S S Korsakova. 2017;117:52–7.

    Article  CAS  PubMed  Google Scholar 

  59. Mersha AG, Tollosa DN, Bagade T, Eftekhari P. A bidirectional relationship between diabetes mellitus and anxiety: a systematic review and meta-analysis. J Psychosom Res. 2022;162:110991.

    Article  PubMed  Google Scholar 

  60. Lin EH, Von Korff M, Consortium WWs. Mental disorders among persons with diabetes—results from the World Mental Health Surveys. J Psychosom Res. 2008;65:571–80.

    Article  PubMed  PubMed Central  Google Scholar 

  61. Engum A. The role of depression and anxiety in onset of diabetes in a large population-based study. J Psychosom Res. 2007;62:31–8.

    Article  PubMed  Google Scholar 

  62. de Ornelas Maia ACC, de Azevedo BA, Brouwers A, Nardi AE, Silva AC. Prevalence of psychiatric disorders in patients with diabetes types 1 and 2. Compr Psychiatry. 2012;53:1169–73.

    Article  Google Scholar 

  63. Maia ACC, Braga AA, Paes F, Machado S, Nardi AE, Silva AC. Psychiatric comorbidity in diabetes type 1: a cross-sectional observational study. Rev Assoc Med Bras. 2014;60:59–62.

    Article  PubMed  Google Scholar 

  64. Kontoangelos K, Raptis AE, Papageorgiou CC, Papadimitriou GN, Rabavilas AD, Dimitriadis G, et al. The association of the metabolic profile in diabetes mellitus type 2 patients with obsessive-compulsive symptomatology and depressive symptomatology: new insights. Int J Psychiatry Clin Pract. 2013;17:48–55.

    Article  CAS  PubMed  Google Scholar 

  65. Grassi G, Figee M, Pozza A, Dell’Osso B. Obsessive-compulsive disorder, insulin signaling and diabetes—a novel form of physical health comorbidity: the sweet compulsive brain. Compr Psychiatry. 2022;117:152329.

    Article  PubMed  Google Scholar 

  66. Ludman E, Katon W, Russo J, Simon G, Von Korff M, Lin E, et al. Panic episodes among patients with diabetes. Gen Hosp Psychiatry. 2006;28:475–81.

    Article  PubMed  Google Scholar 

  67. Pontow I-M, Theil J, Diefenbacher A. Comorbidity of hypoglycaemia anxiety and panic disorder in a patient with type-1 diabetes-Combined treatment with cognitive-behavioral therapy and Continuous Glucose Monitoring (CGM) in a psychosomatic day-treatment center. Dtsch Med Wochenschr. 1946;2020(145):314–7.

    Google Scholar 

  68. Bădescu S, Tătaru C, Kobylinska L, Georgescu E, Zahiu D, Zăgrean A, et al. The association between diabetes mellitus and depression. J Med Life. 2016;9:120.

    PubMed  PubMed Central  Google Scholar 

  69. Campayo A, De Jonge P, Roy JF, Saz P, De la Cámara C, Quintanilla MA, et al. Depressive disorder and incident diabetes mellitus: the effect of characteristics of depression. Am J Psychiatry. 2010;167:580–8.

    Article  PubMed  Google Scholar 

  70. Sartorius N. Depression and diabetes. Dialogues Clin Neurosci. 2018;20:47.

    Article  PubMed  PubMed Central  Google Scholar 

  71. Rustad JK, Musselman DL, Nemeroff CB. The relationship of depression and diabetes: pathophysiological and treatment implications. Psychoneuroendocrinology. 2011;36:1276–86.

    Article  PubMed  Google Scholar 

  72. Rajashree R, Kholkute SD, Goudar SS. Effects of duration of diabetes on behavioural and cognitive parameters in streptozotocin-induced juvenile diabetic rats. Malays J Med Sci MJMS. 2011;18:26.

    PubMed  Google Scholar 

  73. Farzin D, Fathiazad F, Fazellian M. Antidepressant effect of methanolic ginger extract in diabetic mice using forced-swim test. J Mazandaran Univ Med Sci. 2013;23:208–20.

    Google Scholar 

  74. da Silva HA, Sitta A, Barschak AG, Deon M, Barden AT, Schmitt GO, et al. Oxidative stress parameters in diabetic rats submitted to forced swimming test: the clonazepam effect. Brain Res. 2007;1154:137–43.

    Article  Google Scholar 

  75. Wayhs CAY, Manfredini V, Sitta A, Deon M, Ribas G, Vanzin C, et al. Protein and lipid oxidative damage in streptozotocin-induced diabetic rats submitted to forced swimming test: the insulin and clonazepam effect. Metab Brain Dis. 2010;25:297–304.

    Article  CAS  PubMed  Google Scholar 

  76. Bhutada P, Mundhada Y, Bansod K, Bhutada C, Tawari S, Dixit P, et al. Ameliorative effect of quercetin on memory dysfunction in streptozotocin-induced diabetic rats. Neurobiol Learn Mem. 2010;94:293–302.

    Article  CAS  PubMed  Google Scholar 

  77. Katon WJ. The comorbidity of diabetes mellitus and depression. Am J Med. 2008;121:S8–15.

    Article  PubMed  PubMed Central  Google Scholar 

  78. Rotella F, Mannucci E. Diabetes mellitus as a risk factor for depression. A meta-analysis of longitudinal studies. Diabetes Res Clin Pract. 2013;99:98–104.

    Article  CAS  PubMed  Google Scholar 

  79. Mosili P, Mkhize BC, Ngubane P, Sibiya N, Khathi A. The dysregulation of the hypothalamic–pituitary–adrenal axis in diet-induced prediabetic male Sprague Dawley rats. Nutr Metab. 2020;17:1–12.

    Article  Google Scholar 

  80. Tirabassi G, Chelli F, Ciommi M, Lenzi A, Balercia G. Influence of the hypothalamic–pituitary–adrenal axis dysregulation on the metabolic profile of patients affected by diabetes mellitus-associated late onset hypogonadism. Nutr Metab Cardiovasc Dis. 2016;26:53–9.

    Article  CAS  PubMed  Google Scholar 

  81. Tirabassi G, Muscogiuri G, Colao A, Balercia G. Dysregulation of the hypothalamic–pituitary–adrenal axis increases central body fat accumulation in males affected by diabetes mellitus and late-onset hypogonadism. Endocr Pract. 2016;22:427–33.

    Article  PubMed  Google Scholar 

  82. Ho N, Sommers MS, Lucki I. Effects of diabetes on hippocampal neurogenesis: links to cognition and depression. Neurosci Biobehav Rev. 2013;37:1346–62.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Yamato T, Misumi Y, Yamasaki S, Kino M, Aomine M. Diabetes mellitus decreases hippocampal release of neurotransmitters: an in vivo microdialysis study of awake, freely moving rats. Diabetes Nutr Metab. 2004;17:128–36.

    CAS  PubMed  Google Scholar 

  84. Yi SS, Hwang IK, Shin JH, Choi JH, Lee CH, Kim IY, et al. Regulatory mechanism of hypothalamo-pituitary–adrenal (HPA) axis and neuronal changes after adrenalectomy in type 2 diabetes. J Chem Neuroanat. 2010;40:130–9.

    Article  CAS  PubMed  Google Scholar 

  85. Ramasubbu K, Devi RV. Impairment of insulin signaling pathway PI3K/Akt/mTOR and insulin resistance induced AGEs on diabetes mellitus and neurodegenerative diseases: a perspective review. Mol Cell Biochem. 2022;1:1–18.

    Google Scholar 

  86. Shpakov A, Chistyakova O, Derkach K, Bondareva V. Hormonal signaling systems of the brain in diabetes mellitus. In: Chang RC-C, editor. Neurodegenerative diseases—processes, prevention, protection and monitoring. USA: InTech; 2011. p. 349–86.

    Google Scholar 

  87. Saedi E, Gheini MR, Faiz F, Arami MA. Diabetes mellitus and cognitive impairments. World J Diabetes. 2016;7:412.

    Article  PubMed  PubMed Central  Google Scholar 

  88. Kodl CT, Seaquist ER. Cognitive dysfunction and diabetes mellitus. Endocr Rev. 2008;29:494–511.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Ahmadi M, Rajaei Z, Hadjzadeh M, Nemati H, Hosseini M. Crocin improves spatial learning and memory deficits in the Morris water maze via attenuating cortical oxidative damage in diabetic rats. Neurosci Lett. 2017;642:1–6.

    Article  CAS  PubMed  Google Scholar 

  90. Farbood Y, Rashno M, Ghaderi S, Khoshnam SE, Sarkaki A, Rashidi K, et al. Ellagic acid protects against diabetes-associated behavioral deficits in rats: possible involved mechanisms. Life Sci. 2019;225:8–19.

    Article  CAS  PubMed  Google Scholar 

  91. Roberts RO, Geda YE, Knopman DS, Christianson TJ, Pankratz VS, Boeve BF, et al. Association of duration and severity of diabetes mellitus with mild cognitive impairment. Arch Neurol. 2008;65:1066–73.

    Article  PubMed  PubMed Central  Google Scholar 

  92. Ebady S, Arami M, Shafigh M. Investigation on the relationship between diabetes mellitus type 2 and cognitive impairment. Diabetes Res Clin Pract. 2008;82:305–9.

    Article  CAS  PubMed  Google Scholar 

  93. Zilliox LA, Chadrasekaran K, Kwan JY, Russell JW. Diabetes and cognitive impairment. Curr Diabetes Rep. 2016;16:1–11.

    Article  CAS  Google Scholar 

  94. Vijayakumar T, Sirisha G, Farzana Begam M, Dhanaraju M. Mechanism linking cognitive impairment and diabetes mellitus. Eur J Appl Sci. 2012;4:01–5.

    CAS  Google Scholar 

  95. Luchsinger JA. Type 2 diabetes and cognitive impairment: linking mechanisms. J Alzheimer’s Dis. 2012;30:S185–98.

    Article  Google Scholar 

  96. Martins LB, Braga Tibaes JR, Berk M, Teixeira AL. Diabetes and mood disorders: shared mechanisms and therapeutic opportunities. Int J Psychiatry Clin Pract. 2022;26(2):183–95.

    Article  CAS  PubMed  Google Scholar 

  97. McCrimmon RJ, Ryan CM, Frier BM. Diabetes and cognitive dysfunction. Lancet. 2012;379:2291–9.

    Article  PubMed  Google Scholar 

  98. Giacco F, Brownlee M. Oxidative stress and diabetic complications. Circ Res. 2010;107:1058–70.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Kowluru RA, Chan P-S. Oxidative stress and diabetic retinopathy. Exp Diabetes Res. 2007;2007:43603.

    Article  PubMed  PubMed Central  Google Scholar 

  100. Yang H, ** X, Lam CWK, Yan S-K. Oxidative stress and diabetes mellitus. Clin Chem Lab Med. 2011;49:1773–82.

    Article  CAS  PubMed  Google Scholar 

  101. Muriach M, Flores-Bellver M, Romero FJ, Barcia JM. Diabetes and the brain: oxidative stress, inflammation, and autophagy. Oxid Med Cell Longev. 2014;2014: 102158.

    Article  PubMed  PubMed Central  Google Scholar 

  102. Babizhayev MA, Strokov IA, Nosikov VV, Savel’yeva EL, Sitnikov VF, Yegorov YE, et al. The role of oxidative stress in diabetic neuropathy: generation of free radical species in the glycation reaction and gene polymorphisms encoding antioxidant enzymes to genetic susceptibility to diabetic neuropathy in population of type I diabetic patients. Cell Biochem Biophys. 2015;71:1425–43.

    Article  CAS  PubMed  Google Scholar 

  103. Oguntibeju OO. Type 2 diabetes mellitus, oxidative stress and inflammation: examining the links. Int J Physiol Pathophysiol Pharmacol. 2019;11:45.

    CAS  PubMed  PubMed Central  Google Scholar 

  104. Kahya MC, Nazirolu M, Övey İS. Modulation of diabetes-induced oxidative stress, apoptosis, and Ca2+ sup2+ entry through TRPM2 and TRPV1 channels in dorsal root ganglion and hippocampus of diabetic rats by melatonin and selenium. Mol Neurobiol. 2017;54:2345.

    Article  CAS  PubMed  Google Scholar 

  105. Cohen G, Riahi Y, Sunda V, Deplano S, Chatgilialoglu C, Ferreri C, et al. Signaling properties of 4-hydroxyalkenals formed by lipid peroxidation in diabetes. Free Radical Biol Med. 2013;65:978–87.

    Article  CAS  Google Scholar 

  106. Kumawat M, Singh N, Singh S. Status of antioxidant enzymes and lipid peroxidation in type 2 diabetes mellitus with neuropathy. Ann Neurosci. 2010;12:49–52.

    Article  Google Scholar 

  107. Trivedi S, Lal N, Mahdi AA, Mittal M, Singh B, Pandey S. Evaluation of antioxidant enzymes activity and malondialdehyde levels in patients with chronic periodontitis and diabetes mellitus. J Periodontol. 2014;85:713–20.

    Article  CAS  PubMed  Google Scholar 

  108. Vincent AM, Russell JW, Low P, Feldman EL. Oxidative stress in the pathogenesis of diabetic neuropathy. Endocr Rev. 2004;25:612–28.

    Article  CAS  PubMed  Google Scholar 

  109. Calderon G, Juarez O, Hernandez G, Punzo S, De la Cruz Z. Oxidative stress and diabetic retinopathy: development and treatment. Eye. 2017;31:1122–30.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Silva KC, Rosales MA, Biswas SK, Lopes de Faria JB, Lopes de Faria JM. Diabetic retinal neurodegeneration is associated with mitochondrial oxidative stress and is improved by an angiotensin receptor blocker in a model combining hypertension and diabetes. Diabetes. 2009;58:1382–90.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Rosales-Corral S, Tan D-X, Manchester L, Reiter RJ. Diabetes and Alzheimer disease, two overlap** pathologies with the same background: oxidative stress. Oxid Med Cell Longevity. 2015;2015: 985845.

    Article  Google Scholar 

  112. Niedowicz DM, Daleke DL. The role of oxidative stress in diabetic complications. Cell Biochem Biophys. 2005;43:289–330.

    Article  CAS  PubMed  Google Scholar 

  113. Barber AJ. A new view of diabetic retinopathy: a neurodegenerative disease of the eye. Prog Neuro-Psychopharmacol Biol Psychiatry. 2003;27:283–90.

    Article  CAS  Google Scholar 

  114. Asmat U, Abad K, Ismail K. Diabetes mellitus and oxidative stress—a concise review. Saudi Pharm J. 2016;24:547–53.

    Article  PubMed  Google Scholar 

  115. Pop-Busui R, Sima A, Stevens M. Diabetic neuropathy and oxidative stress. Diabetes/Metab Res Rev. 2006;22:257–73.

    Article  CAS  PubMed  Google Scholar 

  116. Hosseini A, Abdollahi M. Diabetic neuropathy and oxidative stress: therapeutic perspectives. Oxid Med Cell Longev. 2013;2013: 168039.

    Article  PubMed  PubMed Central  Google Scholar 

  117. Kasznicki J, Kosmalski M, Sliwinska A, Mrowicka M, Stanczyk M, Majsterek I, et al. Evaluation of oxidative stress markers in pathogenesis of diabetic neuropathy. Mol Biol Rep. 2012;39:8669–78.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Pan H-Z, Zhang H, Chang D, Li H, Sui H. The change of oxidative stress products in diabetes mellitus and diabetic retinopathy. Br J Ophthalmol. 2008;92:548–51.

    Article  PubMed  Google Scholar 

  119. Abcouwer SF, Gardner TW. Diabetic retinopathy: loss of neuroretinal adaptation to the diabetic metabolic environment. Ann N Y Acad Sci. 2014;1311:174–90.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Behl T, Kaur I, Kotwani A. Implication of oxidative stress in progression of diabetic retinopathy. Surv Ophthalmol. 2016;61:187–96.

    Article  PubMed  Google Scholar 

  121. West IC. Radicals and oxidative stress in diabetes. Diabetic Med. 2000;17:171–80.

    Article  CAS  PubMed  Google Scholar 

  122. Turk Z. Glycotoxines, carbonyl stress and relevance to diabetes and its complications. Physiol Res. 2010;59:147–56.

    Article  CAS  PubMed  Google Scholar 

  123. Naudi A, Jove M, Ayala V, Cassanye A, Serrano J, Gonzalo H, et al. Cellular dysfunction in diabetes as maladaptive response to mitochondrial oxidative stress. Exp Diabetes Res. 2012;2012: 696215.

    Article  PubMed  PubMed Central  Google Scholar 

  124. Tiwari BK, Pandey KB, Abidi A, Rizvi SI. Markers of oxidative stress during diabetes mellitus. J Biomark. 2013;2013: 378790.

    Article  PubMed  PubMed Central  Google Scholar 

  125. Pereira RVF, Tronchini EA, Tashima CM, Alves EPB, Lima MM, Zanoni JN. L-glutamine supplementation prevents myenteric neuron loss and has gliatrophic effects in the ileum of diabetic rats. Dig Dis Sci. 2011;56:3507–16.

    Article  CAS  PubMed  Google Scholar 

  126. Xue HY, ** L, ** LJ, Li XY, Zhang P, Ma YS, et al. Aucubin prevents loss of hippocampal neurons and regulates antioxidative activity in diabetic encephalopathy rats. Phytother Res. 2009;23:980–6.

    Article  CAS  PubMed  Google Scholar 

  127. Oyenihi AB, Ayeleso AO, Mukwevho E, Masola B. Antioxidant strategies in the management of diabetic neuropathy. Biomed Res Int. 2015;2015: 515042.

    Article  PubMed  PubMed Central  Google Scholar 

  128. Aruoma OI, Neergheen VS, Bahorun T, Jen L-S. Free radicals, antioxidants and diabetes: embryopathy, retinopathy, neuropathy, nephropathy and cardiovascular complications. Neuroembryol Aging. 2006;4:117–37.

    Article  CAS  Google Scholar 

  129. Hassan A, Kandel RS, Mishra R, Gautam J, Alaref A, Jahan N. Diabetes mellitus and Parkinson’s disease: shared pathophysiological links and possible therapeutic implications. Cureus. 2020;12: e9853.

    PubMed  PubMed Central  Google Scholar 

  130. Domínguez R, Pagano M, Marschoff E, González S, Repetto M, Serra J. Alzheimer disease and cognitive impairment associated with diabetes mellitus type 2: associations and a hypothesis. Neurologia. 2014;29:567–72.

    Article  PubMed  Google Scholar 

  131. Magyari M, Sorensen PS. Comorbidity in multiple sclerosis. Front Neurol. 2020;11:851.

    Article  PubMed  PubMed Central  Google Scholar 

  132. Chen R, Ovbiagele B, Feng W. Diabetes and stroke: epidemiology, pathophysiology, pharmaceuticals and outcomes. Am J Med Sci. 2016;351:380–6.

    Article  PubMed  PubMed Central  Google Scholar 

  133. Luscher TF, Creager MA, Beckman JA, Cosentino F. Diabetes and vascular disease: pathophysiology, clinical consequences, and medical therapy: part II. Circulation. 2003;108:1655–61.

    Article  PubMed  Google Scholar 

  134. Song Y, Ding W, Bei Y, **ao Y, Tong H-D, Wang L-B, et al. Insulin is a potential antioxidant for diabetes-associated cognitive decline via regulating Nrf2 dependent antioxidant enzymes. Biomed Pharmacother. 2018;104:474–84.

    Article  CAS  PubMed  Google Scholar 

  135. Ceretta LB, Réus GZ, Abelaira HM, Ribeiro KF, Zappellini G, Felisbino FF, et al. Increased oxidative stress and imbalance in antioxidant enzymes in the brains of alloxan-induced diabetic rats. Exp Diabetes Res. 2012;2012: 302682.

    Article  PubMed  PubMed Central  Google Scholar 

  136. Zhong Q, Kowluru RA. Epigenetic changes in mitochondrial superoxide dismutase in the retina and the development of diabetic retinopathy. Diabetes. 2011;60:1304–13.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Younus H. Therapeutic potentials of superoxide dismutase. Int J Health Sci. 2018;12:88.

    CAS  Google Scholar 

  138. Iranzo O. Manganese complexes displaying superoxide dismutase activity: a balance between different factors. Bioorg Chem. 2011;39:73–87.

    Article  CAS  PubMed  Google Scholar 

  139. Yorek MA. The role of oxidative stress in diabetic vascular and neural disease. Free Radic Res. 2003;37:471–80.

    Article  CAS  PubMed  Google Scholar 

  140. Schmeichel AM, Schmelzer JD, Low PA. Oxidative injury and apoptosis of dorsal root ganglion neurons in chronic experimental diabetic neuropathy. Diabetes. 2003;52:165–71.

    Article  CAS  PubMed  Google Scholar 

  141. Shanmugam KR, Mallikarjuna K, Kesireddy N, Reddy KS. Neuroprotective effect of ginger on anti-oxidant enzymes in streptozotocin-induced diabetic rats. Food Chem Toxicol. 2011;49:893–7.

    Article  CAS  PubMed  Google Scholar 

  142. Alipour M, Salehi I, Soufi FG. Effect of exercise on diabetes-induced oxidative stress in the rat hippocampus. Iran Red Crescent Med J. 2012;14:222.

    CAS  PubMed  PubMed Central  Google Scholar 

  143. Fernyhough P. Mitochondrial dysfunction in diabetic neuropathy: a series of unfortunate metabolic events. Curr Diab Rep. 2015;15:1–10.

    Article  CAS  Google Scholar 

  144. Sytze van Dam P. Oxidative stress and diabetic neuropathy: pathophysiological mechanisms and treatment perspectives. Diabetes Metab Res Rev. 2002;18:176–84.

    Article  PubMed  Google Scholar 

  145. Obrosova IG. Update on the pathogenesis of diabetic neuropathy. Curr Diab Rep. 2003;3:439–45.

    Article  PubMed  Google Scholar 

  146. Ola M, Alhomida A. Neurodegeneration in diabetic retina and its potential drug targets. Curr Neuropharmacol. 2014;12:380–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  147. Simó R, Hernández C. Neurodegeneration in the diabetic eye: new insights and therapeutic perspectives. Trends Endocrinol Metab. 2014;25:23–33.

    Article  PubMed  Google Scholar 

  148. Clausen A, Doctrow S, Baudry M. Prevention of cognitive deficits and brain oxidative stress with superoxide dismutase/catalase mimetics in aged mice. Neurobiol Aging. 2010;31:425–33.

    Article  CAS  PubMed  Google Scholar 

  149. Infante-Garcia C, Garcia-Alloza M. Review of the effect of natural compounds and extracts on neurodegeneration in animal models of diabetes mellitus. Int J Mol Sci. 2019;20:2533.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  150. Sofic E, Salkovic-Petrisic M, Tahirovic I, Sapcanin A, Mandel S, Youdim M, et al. Brain catalase in the streptozotocin-rat model of sporadic Alzheimer’s disease treated with the iron chelator–monoamine oxidase inhibitor, M30. J Neural Transm. 2015;122:559–64.

    Article  CAS  PubMed  Google Scholar 

  151. Giordano CR, Roberts R, Krentz KA, Bissig D, Talreja D, Kumar A, et al. Catalase therapy corrects oxidative stress-induced pathophysiology in incipient diabetic retinopathy. Invest Ophthalmol Visual Sci. 2015;56:3095–102.

    Article  CAS  Google Scholar 

  152. Kwong-Han K, Zunaina E, Hanizasurana H, Che-Badariah AA, Che-Maraina CH. Comparison of catalase, glutathione peroxidase and malondialdehyde levels in tears among diabetic patients with and without diabetic retinopathy. J Diabetes Metab Disord. 2022;21:681–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  153. Djordjević GM, Djurić SS, Djordjević VB, Apostolski S, Zivkovic M. The role of oxidative stress in pathogenesis of diabetic neuropathy: erythrocyte superoxide dismutase, catalase and glutathione peroxidase level in relation to peripheral nerve conduction in diabetic neuropathy patients. In: Croniger C, editor. Role of the adipocyte in development of type 2 diabetes, vol. 2. USA: Intech; 2011. p. 153–72.

    Google Scholar 

  154. Piotrowski P, Wierzbicka K, Smialek M. Neuronal death in the rat hippocampus in experimental diabetes and cerebral ischaemia treated with antioxidants. Folia Neuropathol. 2001;39:147–54.

    CAS  PubMed  Google Scholar 

  155. Figueroa-Romero C, Sadidi M, Feldman EL. Mechanisms of disease: the oxidative stress theory of diabetic neuropathy. Rev Endocr Metab Disord. 2008;9:301–14.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  156. Sims-Robinson C, Kim B, Rosko A, Feldman EL. How does diabetes accelerate Alzheimer disease pathology? Nat Rev Neurol. 2010;6:551–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  157. Chowdhury SKR, Smith DR, Fernyhough P. The role of aberrant mitochondrial bioenergetics in diabetic neuropathy. Neurobiol Dis. 2013;51:56–65.

    Article  CAS  PubMed  Google Scholar 

  158. Srinivasan S, Stevens M, Wiley JW. Diabetic peripheral neuropathy: evidence for apoptosis and associated mitochondrial dysfunction. Diabetes. 2000;49:1932–8.

    Article  CAS  PubMed  Google Scholar 

  159. Montgomery MK. Mitochondrial dysfunction and diabetes: is mitochondrial transfer a friend or foe? Biology (Basel). 2019;8:33.

    CAS  PubMed  Google Scholar 

  160. Kempuraj D, Thangavel R, Natteru P, Selvakumar G, Saeed D, Zahoor H, et al. Neuroinflammation induces neurodegeneration. J Neurosurg Spine. 2016;1:1003.

    Google Scholar 

  161. Srodulski S, Sharma S, Bachstetter AB, Brelsfoard JM, Pascual C, **e XS, et al. Neuroinflammation and neurologic deficits in diabetes linked to brain accumulation of amylin. Mol Neurodegener. 2014;9:1–12.

    Article  Google Scholar 

  162. Sandireddy R, Yerra VG, Areti A, Komirishetty P, Kumar A. Neuroinflammation and oxidative stress in diabetic neuropathy: futuristic strategies based on these targets. Int J Endocrinol. 2014;2014: 674987.

    Article  PubMed  PubMed Central  Google Scholar 

  163. Fletcher EL, Phipps JA, Ward MM, Puthussery T, Wilkinson-Berka JL. Neuronal and glial cell abnormality as predictors of progression of diabetic retinopathy. Curr Pharm Des. 2007;13:2699–712.

    Article  CAS  PubMed  Google Scholar 

  164. Nagayach A, Patro N, Patro I. Experimentally induced diabetes causes glial activation, glutamate toxicity and cellular damage leading to changes in motor function. Front Cell Neurosci. 2014;8:355.

    Article  PubMed  PubMed Central  Google Scholar 

  165. Zeng H-Y, Green WR, Tso MO. Microglial activation in human diabetic retinopathy. Arch Ophthalmol. 2008;126:227–32.

    Article  PubMed  Google Scholar 

  166. Zhang T-T, Xue R, Fan S-Y, Fan Q-Y, An L, Li J, et al. Ammoxetine attenuates diabetic neuropathic pain through inhibiting microglial activation and neuroinflammation in the spinal cord. J Neuroinflammation. 2018;15:1–13.

    Article  Google Scholar 

  167. Krady JK, Basu A, Allen CM, Xu Y, LaNoue KF, Gardner TW, et al. Minocycline reduces proinflammatory cytokine expression, microglial activation, and caspase-3 activation in a rodent model of diabetic retinopathy. Diabetes. 2005;54:1559–65.

    Article  CAS  PubMed  Google Scholar 

  168. Skundric DS, Lisak RP. Role of neuropoietic cytokines in development and progression of diabetic polyneuropathy: from glucose metabolism to neurodegeneration. Exp Diabetes Res. 2003;4:303–12.

    Article  Google Scholar 

  169. Cheung CMG, Vania M, Ang M, Chee SP, Li J. Comparison of aqueous humor cytokine and chemokine levels in diabetic patients with and without retinopathy. Mol Vis. 2012;18:830.

    CAS  PubMed  PubMed Central  Google Scholar 

  170. Chatzigeorgiou A, Harokopos V, Mylona-Karagianni C, Tsouvalas E, Aidinis V, Kamper E. The pattern of inflammatory/anti-inflammatory cytokines and chemokines in type 1 diabetic patients over time. Ann Med. 2010;42:426–38.

    Article  CAS  PubMed  Google Scholar 

  171. King GL. The role of inflammatory cytokines in diabetes and its complications. J Periodontol. 2008;79:1527–34.

    Article  CAS  PubMed  Google Scholar 

  172. Saleh A, Smith DR, Balakrishnan S, Dunn L, Martens C, Tweed CW, et al. Tumor necrosis factor-α elevates neurite outgrowth through an NF-κB-dependent pathway in cultured adult sensory neurons: Diminished expression in diabetes may contribute to sensory neuropathy. Brain Res. 2011;1423:87–95.

    Article  CAS  PubMed  Google Scholar 

  173. Purwata TE. High TNF-alpha plasma levels and macrophages iNOS and TNF-alpha expression as risk factors for painful diabetic neuropathy. J Pain Res. 2011;4:169.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  174. Mendiola AS, Cardona AE. The IL-1β phenomena in neuroinflammatory diseases. J Neural Transm. 2018;125:781–95.

    Article  CAS  PubMed  Google Scholar 

  175. Andriambeloson E, Baillet C, Vitte PA, Garotta G, Dreano M, Callizot N. Interleukin-6 attenuates the development of experimental diabetes-related neuropathy. Neuropathol. 2006;26:32–42.

    Article  Google Scholar 

  176. Herder C, Carstensen M, Ouwens D. Anti-inflammatory cytokines and risk of type 2 diabetes. Diabetes Obes Metab. 2013;15:39–50.

    Article  CAS  PubMed  Google Scholar 

  177. Zhang W, Liu H, Rojas M, Caldwell RW, Caldwell RB. Anti-inflammatory therapy for diabetic retinopathy. Immunotherapy. 2011;3:609–28.

    Article  CAS  PubMed  Google Scholar 

  178. Carbonetto P, Stephens M. Integrated enrichment analysis of variants and pathways in genome-wide association studies indicates central role for IL-2 signaling genes in type 1 diabetes, and cytokine signaling genes in Crohn’s disease. PLoS Genet. 2013;9: e1003770.

    Article  PubMed  PubMed Central  Google Scholar 

  179. Creusot RJ, Chang P, Healey DG, Tcherepanova IY, Nicolette CA, Fathman CG. A short pulse of IL-4 delivered by DCs electroporated with modified mRNA can both prevent and treat autoimmune diabetes in NOD mice. Mol Ther. 2010;18:2112–20.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  180. Akbari M, Hassan-Zadeh V. IL-6 signalling pathways and the development of type 2 diabetes. Inflammopharmacology. 2018;26:685–98.

    Article  CAS  PubMed  Google Scholar 

  181. Rodrigues KF, Pietrani NT, Bosco AA, Campos FMF, Sandrim VC, Gomes KB. IL-6, TNF-α, and IL-10 levels/polymorphisms and their association with type 2 diabetes mellitus and obesity in Brazilian individuals. Arch Endocrinol Metab. 2017;61(5):438–46.

    Article  PubMed  Google Scholar 

  182. Hanifi-Moghaddam P, Kappler S, Seissler J, Müller-Scholze S, Martin S, Roep B, et al. Altered chemokine levels in individuals at risk of type 1 diabetes mellitus. Diabetic Med. 2006;23:156–63.

    Article  CAS  PubMed  Google Scholar 

  183. Herder C, Haastert B, Müller-Scholze S, Koenig W, Thorand B, Holle R, et al. Association of systemic chemokine concentrations with impaired glucose tolerance and type 2 diabetes: results from the Cooperative Health Research in the Region of Augsburg Survey S4 (KORA S4). Diabetes. 2005;54(Suppl 2):S11–7.

    Article  CAS  PubMed  Google Scholar 

  184. Lontchi-Yimagou E, Sobngwi E, Matsha TE, Kengne AP. Diabetes mellitus and inflammation. Curr Diab Rep. 2013;13:435–44.

    Article  CAS  PubMed  Google Scholar 

  185. Laaksonen D, Niskanen L, Nyyssönen K, Punnonen K, Tuomainen T-P, Valkonen V-P, et al. C-reactive protein and the development of the metabolic syndrome and diabetes in middle-aged men. Diabetologia. 2004;47:1403–10.

    Article  CAS  PubMed  Google Scholar 

  186. Chase HP, Cooper S, Osberg I, Stene LC, Barriga K, Norris J, et al. Elevated C-reactive protein levels in the development of type 1 diabetes. Diabetes. 2004;53:2569–73.

    Article  CAS  PubMed  Google Scholar 

  187. De Felice FG, Ferreira ST. Inflammation, defective insulin signaling, and mitochondrial dysfunction as common molecular denominators connecting type 2 diabetes to Alzheimer disease. Diabetes. 2014;63:2262–72.

    Article  PubMed  Google Scholar 

  188. Rübsam A, Parikh S, Fort PE. Role of inflammation in diabetic retinopathy. Int J Mol Sci. 2018;19:942.

    Article  PubMed  PubMed Central  Google Scholar 

  189. Yu Y, Chen H, Su SB. Neuroinflammatory responses in diabetic retinopathy. J Neuroinflammation. 2015;12:1–15.

    Article  Google Scholar 

  190. Debnath M, Agrawal S. Diabetic neuropathy: oxidative stress and neuroinflammation. Med Res. 2016;3:237–41.

    Google Scholar 

  191. Madonna R, Giovannelli G, Confalone P, Renna FV, Geng Y-J, De Caterina R. High glucose-induced hyperosmolarity contributes to COX-2 expression and angiogenesis: implications for diabetic retinopathy. Cardiovasc Diabetol. 2016;15:1–14.

    Article  Google Scholar 

  192. Wong WT, Tian XY, Huang Y. Endothelial dysfunction in diabetes and hypertension: cross talk in RAS, BMP4, and ROS-dependent COX-2–derived prostanoids. J Cardiovasc Pharmacol. 2013;61:204–14.

    Article  CAS  PubMed  Google Scholar 

  193. Mastrocola R, Restivo F, Vercellinatto I, Danni O, Brignardello E, Aragno M, et al. Oxidative and nitrosative stress in brain mitochondria of diabetic rats. J Endocrinol. 2005;187:37–44.

    Article  CAS  PubMed  Google Scholar 

  194. Costagliola C, Romano V, De Tollis M, Aceto F, Romano MR, Pedicino C, et al. TNF-alpha levels in tears: a novel biomarker to assess the degree of diabetic retinopathy. Mediators Inflamm. 2013;2013: 629529.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  195. Serasanambati M, Chilakapati SR. Function of nuclear factor kappa B (NF-kB) in human diseases—a review. South Indian J Biol Sci. 2016;2:368–87.

    Article  Google Scholar 

  196. Najafi R, Hosseini A, Ghaznavi H, Mehrzadi S, Sharifi AM. Neuroprotective effect of cerium oxide nanoparticles in a rat model of experimental diabetic neuropathy. Brain Res Bull. 2017;131:117–22.

    Article  CAS  PubMed  Google Scholar 

  197. Patel S, Santani D. Role of NF-κB in the pathogenesis of diabetes and its associated complications. Pharmacol Rep. 2009;61:595–603.

    Article  CAS  PubMed  Google Scholar 

  198. Li J, Tang Y, Cai D. IKKβ/NF-κB disrupts adult hypothalamic neural stem cells to mediate a neurodegenerative mechanism of dietary obesity and pre-diabetes. Nat Cell Biol. 2012;14:999–1012.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  199. Granic I, Dolga AM, Nijholt IM, van Dijk G, Eisel UL. Inflammation and NF-κB in Alzheimer’s disease and diabetes. J Alzheimer’s Dis. 2009;16:809–21.

    Article  Google Scholar 

  200. Yun JH, Lee DH, Jeong HS, Kim HS, Ye SK, Cho CH. STAT3 activation in microglia exacerbates hippocampal neuronal apoptosis in diabetic brains. J Cell Physiol. 2021;236:7058–70.

    Article  CAS  PubMed  Google Scholar 

  201. Chowdhury SR, Saleh A, Akude E, Smith DR, Morrow D, Tessler L, et al. Ciliary neurotrophic factor reverses aberrant mitochondrial bioenergetics through the JAK/STAT pathway in cultured sensory neurons derived from streptozotocin-induced diabetic rodents. Cell Mol Neurobiol. 2014;34:643–9.

    Article  CAS  PubMed  Google Scholar 

  202. Cho C-H, Roh K-H, Lim N-Y, Park SJ, Park S, Kim HW. Role of the JAK/STAT pathway in a streptozotocin-induced diabetic retinopathy mouse model. Graefes Arch Clin Exp Ophthalmol. 2022;260:3553–63.

    Article  CAS  PubMed  Google Scholar 

  203. Abdul Y, Abdelsaid M, Li W, Webb RC, Sullivan JC, Dong G, et al. Inhibition of toll-like receptor-4 (TLR-4) improves neurobehavioral outcomes after acute ischemic stroke in diabetic rats: possible role of vascular endothelial TLR-4. Mol Neurobiol. 2019;56:1607–17.

    Article  CAS  PubMed  Google Scholar 

  204. Dasu MR, Ramirez S, Isseroff RR. Toll-like receptors and diabetes: a therapeutic perspective. Clin Sci. 2012;122:203–14.

    Article  CAS  Google Scholar 

  205. Wong FS, Wen L. Toll-like receptors and diabetes. Ann N Y Acad Sci. 2008;1150:123–32.

    Article  CAS  PubMed  Google Scholar 

  206. Vincent AM, Brownlee M, Russell JW. Oxidative stress and programmed cell death in diabetic neuropathy. Ann N Y Acad Sci. 2002;959:368–83.

    Article  CAS  PubMed  Google Scholar 

  207. Muranyi M, Fujioka M, He Q, Han A, Yong G, Csiszar K, et al. Diabetes activates cell death pathway after transient focal cerebral ischemia. Diabetes. 2003;52:481–6.

    Article  CAS  PubMed  Google Scholar 

  208. Martin PM, Roon P, Van Ells TK, Ganapathy V, Smith SB. Death of retinal neurons in streptozotocin-induced diabetic mice. Invest Ophthalmol Vis Sci. 2004;45:3330–6.

    Article  PubMed  Google Scholar 

  209. Li Z-G, Zhang W, Grunberger G, Sima AA. Hippocampal neuronal apoptosis in type 1 diabetes. Brain Res. 2002;946:221–31.

    Article  CAS  PubMed  Google Scholar 

  210. Barber AJ, Gardner TW, Abcouwer SF. The significance of vascular and neural apoptosis to the pathology of diabetic retinopathy. Invest Ophthalmol Visual Sci. 2011;52:1156–63.

    Article  CAS  Google Scholar 

  211. Sadeghi A, Hami J, Razavi S, Esfandiary E, Hejazi Z. The effect of diabetes mellitus on apoptosis in hippocampus: cellular and molecular aspects. Int J Prev Med. 2016;7:57.

    Article  PubMed  PubMed Central  Google Scholar 

  212. Adamiec-Mroczek J, Zajac-Pytrus H, Misiuk-Hojlo M. Caspase-dependent apoptosis of retinal ganglion cells during the development of diabetic retinopathy. Adv Clin Exp Med. 2015;24:531–5.

    Article  PubMed  Google Scholar 

  213. Soufi FG, Mohammad-Nejad D, Ahmadieh H. Resveratrol improves diabetic retinopathy possibly through oxidative stress—nuclear factor κb—apoptosis pathway. Pharmacol Rep. 2012;64:1505–14.

    Article  CAS  PubMed  Google Scholar 

  214. Hengartner MO. The biochemistry of apoptosis. Nature. 2000;407:770–6.

    Article  CAS  PubMed  Google Scholar 

  215. Lavrik IN. Systems biology of apoptosis signaling networks. Curr Opin Biotechnol. 2010;21:551–5.

    Article  CAS  PubMed  Google Scholar 

  216. Kong F-J, Ma L-L, Guo J-J, Xu L-H, Li Y, Qu S. Endoplasmic reticulum stress/autophagy pathway is involved in diabetes-induced neuronal apoptosis and cognitive decline in mice. Clin Sci. 2018;132:111–25.

    Article  CAS  Google Scholar 

  217. Liu Y-P, Shao S-J, Guo H-D. Schwann cells apoptosis is induced by high glucose in diabetic peripheral neuropathy. Life Sci. 2020;248:117459.

    Article  CAS  PubMed  Google Scholar 

  218. Liu J, Liu L, Han YS, Yi J, Guo C, Zhao HQ, et al. The molecular mechanism underlying mitophagy-mediated hippocampal neuron apoptosis in diabetes-related depression. J Cell Mol Med. 2021;25:7342–53.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  219. Zhang X, Xu L, He D, Ling S. Endoplasmic reticulum stress-mediated hippocampal neuron apoptosis involved in diabetic cognitive impairment. Biomed Res Int. 2013;2013: 924327.

    PubMed  PubMed Central  Google Scholar 

  220. Nazarnezhad S, Rahmati M, Shayannia A, Abbasi Z, Salehi M, Khaksari M. Nesfatin-1 protects PC12 cells against high glucose-induced cytotoxicity via inhibiting oxidative stress, autophagy and apoptosis. Neurotoxicology. 2019;74:196–202.

    Article  CAS  PubMed  Google Scholar 

  221. Bhattacharya D, Mukhopadhyay M, Bhattacharyya M, Karmakar P. Is autophagy associated with diabetes mellitus and its complications? A review? EXCLI J. 2018;17:709.

    PubMed  PubMed Central  Google Scholar 

  222. Wang X, Zhang B, **a R, Jia Q. Inflammation, apoptosis and autophagy as critical players in vascular dementia. Eur Rev Med Pharmacol Sci. 2020;24:9601–14.

    PubMed  Google Scholar 

  223. Schubert M, Gautam D, Surjo D, Ueki K, Baudler S, Schubert D, et al. Role for neuronal insulin resistance in neurodegenerative diseases. Proc Natl Acad Sci U S A. 2004;101:3100–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  224. Yu P, Zhang X, Liu N, Tang L, Peng C, Chen X. Pyroptosis: Mechanisms and diseases. Signal Transduction Targeted Ther. 2021;6:1–21.

    Article  Google Scholar 

  225. Bergsbaken T, Fink SL, Cookson BT. Pyroptosis: host cell death and inflammation. Nat Rev Microbiol. 2009;7:99–109.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  226. Zhang X, Wang N, Barile GR, Bao S, Gillies M. Diabetic retinopathy: neuron protection as a therapeutic target. Int J Biochem Cell Biol. 2013;45:1525–9.

    Article  CAS  PubMed  Google Scholar 

  227. Chen X, Famurewa AC, Tang J, Olatunde OO, Olatunji OJ. Hyperoside attenuates neuroinflammation, cognitive impairment and oxidative stress via suppressing TNF-α/NF-κB/caspase-3 signaling in type 2 diabetes rats. Nutr Neurosci. 2022;25:1774–84.

    Article  CAS  PubMed  Google Scholar 

  228. Park S-H, Park J-W, Park S-J, Kim K-Y, Chung J-W, Chun M-H, et al. Apoptotic death of photoreceptors in the streptozotocin-induced diabetic rat retina. Diabetologia. 2003;46:1260–8.

    Article  PubMed  Google Scholar 

  229. Shamsaei N, Abdi H, Shamsi M. The effect of a continuous training on necrosis and apoptosis changes in the hippocampus of diabetic rats. J Ilam Univ Med Sci. 2017;25:1–11.

    Google Scholar 

  230. Yang J-S, Lu C-C, Kuo S-C, Hsu Y-M, Tsai S-C, Chen S-Y, et al. Autophagy and its link to type II diabetes mellitus. Biomedicine (Taipei). 2017;7:8.

    Article  PubMed  Google Scholar 

  231. Zemdegs J, Martin H, Pintana H, Bullich S, Manta S, Marqués MA, et al. Metformin promotes anxiolytic and antidepressant-like responses in insulin-resistant mice by decreasing circulating branched-chain amino acids. J Neurosci. 2019;39:5935–48.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  232. Fatemi I, Khaluoi A, Kaeidi A, Shamsizadeh A, Heydari S. Protective effect of metformin on D-galactose-induced aging model in mice. Iran J Basic Med Sci. 2018;21:19.

    PubMed  PubMed Central  Google Scholar 

  233. Fatemi I, Heydari S, Kaeidi A, Shamsizadeh A, Hakimizadeh E, Khaluoi A, et al. Metformin ameliorates the age-related changes of d-galactose administration in ovariectomized mice. Fundam Clin Pharmacol. 2018;32:392–9.

    Article  CAS  PubMed  Google Scholar 

  234. Fan J, Li D, Chen HS, Huang JG, Xu JF, Zhu WW, et al. Metformin produces anxiolytic-like effects in rats by facilitating GABAA receptor trafficking to membrane. Br J Pharmacol. 2019;176:297–316.

    Article  CAS  PubMed  Google Scholar 

  235. Ji S, Wang L, Li L. Effect of metformin on short-term high-fat diet-induced weight gain and anxiety-like behavior and the gut microbiota. Front Endocrinol. 2019;10:704.

    Article  Google Scholar 

  236. Chen F, Wei G, Wang Y, Liu T, Huang T, Wei Q, et al. Risk factors for depression in elderly diabetic patients and the effect of metformin on the condition. BMC Public Health. 2019;19:1–9.

    Article  Google Scholar 

  237. Li W, Chaudhari K, Shetty R, Winters A, Gao X, Hu Z, et al. Metformin alters locomotor and cognitive function and brain metabolism in normoglycemic mice. Aging Dis. 2019;10:949.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  238. Baptista LC, Machado-Rodrigues AM, Martins RA. Exercise but not metformin improves health-related quality of life and mood states in older adults with type 2 diabetes. Eur J Sport Sci. 2017;17:794–804.

    Article  PubMed  Google Scholar 

  239. Chen J-L, Luo C, Pu D, Zhang G-Q, Zhao Y-X, Sun Y, et al. Metformin attenuates diabetes-induced tau hyperphosphorylation in vitro and in vivo by enhancing autophagic clearance. Exp Neurol. 2019;311:44–56.

    Article  CAS  PubMed  Google Scholar 

  240. Turan I, Özaçmak HS, Erdem S, Ergenc M, Ozacmak VH. Protective effect of metformin against ovariectomy induced depressive-and anxiety-like behaviours in rats: role of oxidative stress. NeuroReport. 2021;32:666–71.

    Article  CAS  PubMed  Google Scholar 

  241. Pak HM, Hassanipour M, Kaeidi A, Saeed AP, Fatemi I, Rahmani MR, et al. Effect of metformin on some cognitive functions in old rats. J Shahid Sadoughi Univ Med Sci. 2020;28:2479–89.

    Google Scholar 

  242. Thangthaeng N, Rutledge M, Wong JM, Vann PH, Forster MJ, Sumien N. Metformin impairs spatial memory and visual acuity in old male mice. Aging Dis. 2017;8:17.

    Article  PubMed  PubMed Central  Google Scholar 

  243. Nguyena HD, Hoanga NMH, Joa WH, Hamb JR, Leeb M-K, Kima MS. Associations among the TREM-1 pathway, tau hyperphosphorylation, prolactin expression, and metformin in diabetes mice. NeuroImmunoModulation. 2022;29:359–68.

    Article  Google Scholar 

  244. Wang Y, Liu B, Yang Y, Wang Y, Zhao Z, Miao Z, et al. Metformin exerts antidepressant effects by regulated DNA hydroxymethylation. Epigenomics. 2019;11:655–67.

    Article  CAS  PubMed  Google Scholar 

  245. Wang Y, Zhao J, Guo F-L, Gao X, **e X, Liu S, et al. Metformin ameliorates synaptic defects in a mouse model of AD by inhibiting Cdk5 activity. Front Cell Neurosci. 2020;14:170.

    Article  PubMed  PubMed Central  Google Scholar 

  246. Alhowail A, Chigurupati S, Sajid S, Mani V. Ameliorative effect of metformin on cyclophosphamide-induced memory impairment in mice. Eur Rev Med Pharmacol Sci. 2019;23:9660–6.

    CAS  PubMed  Google Scholar 

  247. Qin Z, Zhou C, **ao X, Guo C. Metformin attenuates sepsis-induced neuronal injury and cognitive impairment. BMC Neurosci. 2021;22:1–10.

    Article  Google Scholar 

  248. Chen J, Zhou T, Guo A-M, Chen W-B, Lin D, Liu Z-Y, et al. Metformin ameliorates lipopolysaccharide-induced depressive-like behaviors and abnormal glutamatergic transmission. Biology. 2020;9:359.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  249. Yang S, Chen X, Xu Y, Hao Y, Meng X. Effects of metformin on lipopolysaccharide-induced depressive-like behavior in mice and its mechanisms. NeuroReport. 2020;31:305–10.

    Article  CAS  PubMed  Google Scholar 

  250. Fang W, Zhang J, Hong L, Huang W, Dai X, Ye Q, et al. Metformin ameliorates stress-induced depression-like behaviors via enhancing the expression of BDNF by activating AMPK/CREB-mediated histone acetylation. J Affect Disord. 2020;260:302–13.

    Article  CAS  PubMed  Google Scholar 

  251. Shivavedi N, Kumar M, Tej GNVC, Nayak PK. Metformin and ascorbic acid combination therapy ameliorates type 2 diabetes mellitus and comorbid depression in rats. Brain Res. 2017;1674:1–9.

    Article  CAS  PubMed  Google Scholar 

  252. Keshavarzi S, Kermanshahi S, Karami L, Motaghinejad M, Motevalian M, Sadr S. Protective role of metformin against methamphetamine induced anxiety, depression, cognition impairment and neurodegeneration in rat: the role of CREB/BDNF and Akt/GSK3 signaling pathways. Neurotoxicology. 2019;72:74–84.

    Article  CAS  PubMed  Google Scholar 

  253. Hammad AM, Ibrahim YA, Khdair SI, Hall FS, Alfaraj M, Jarrar Y, et al. Metformin reduces oxandrolone-induced depression-like behavior in rats via modulating the expression of IL-1β, IL-6, IL-10 and TNF-α. Behav Brain Res. 2021;414: 113475.

    Article  CAS  PubMed  Google Scholar 

  254. Kotagale N, Rahangdale S, Borkar A, Singh K, Ikhar A, Takale N, et al. Possible involvement of agmatine in neuropharmacological actions of metformin in diabetic mice. Eur J Pharmacol. 2021;907: 174255.

    Article  CAS  PubMed  Google Scholar 

  255. Delanogare E, Bullich S, Barbosa LAS, Barros WM, Braga SP, Kraus SI, et al. Metformin improves neurobehavioral impairments of streptozotocin-treated and western diet-fed mice: beyond glucose-lowering effects. Fundam Clin Pharmacol. 2022. https://doi.org/10.1111/fcp.12825.

    Article  PubMed  Google Scholar 

  256. Li G-F, Zhao M, Zhao T, Cheng X, Fan M, Zhu L-L. Effects of metformin on depressive behavior in chronic stress rats. Zhongguo Ying Yong Sheng Li Xue Za Zhi Chinese J Appl Physiol. 2019;35:245–9.

    Google Scholar 

  257. Oliveira WH, Braga CF, Lós DB, Araújo SMR, França MR, Duarte-Silva E, et al. Metformin prevents p-tau and amyloid plaque deposition and memory impairment in diabetic mice. Exp Brain Res. 2021;239:2821–39.

    Article  CAS  PubMed  Google Scholar 

  258. Chen Y, Zhao S, Fan Z, Li Z, Zhu Y, Shen T, et al. Metformin attenuates plaque-associated tau pathology and reduces amyloid-β burden in APP/PS1 mice. Alzheimer’s Res Ther. 2021;13:1–13.

    Google Scholar 

  259. Ng TP, Feng L, Yap KB, Lee TS, Tan CH, Winblad B. Long-term metformin usage and cognitive function among older adults with diabetes. J Alzheimer’s Dis. 2014;41:61–8.

    Article  CAS  Google Scholar 

  260. Moore EM, Mander AG, Ames D, Kotowicz MA, Carne RP, Brodaty H, et al. Increased risk of cognitive impairment in patients with diabetes is associated with metformin. Diabetes Care. 2013;36:2981–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  261. Son SM, Shin H-J, Byun J, Kook SY, Moon M, Chang YJ, et al. Metformin facilitates amyloid-β generation by β-and γ-secretases via autophagy activation. J Alzheimer’s Dis. 2016;51:1197–208.

    Article  CAS  Google Scholar 

  262. Xu X, Sun Y, Cen X, Shan B, Zhao Q, **e T, et al. Metformin activates chaperone-mediated autophagy and improves disease pathologies in an Alzheimer disease mouse model. Protein Cell. 2021;12:769–87.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  263. Picone P, Vilasi S, Librizzi F, Contardi M, Nuzzo D, Caruana L, et al. Biological and biophysics aspects of metformin-induced effects: cortex mitochondrial dysfunction and promotion of toxic amyloid pre-fibrillar aggregates. Aging (Albany NY). 2016;8:1718.

    Article  CAS  PubMed  Google Scholar 

  264. Guo M, Mi J, Jiang QM, Xu JM, Tang YY, Tian G, et al. Metformin may produce antidepressant effects through improvement of cognitive function among depressed patients with diabetes mellitus. Clin Exp Pharmacol Physiol. 2014;41:650–6.

    CAS  PubMed  Google Scholar 

  265. Samaras K, Makkar S, Crawford JD, Kochan NA, Wen W, Draper B, et al. Metformin use is associated with slowed cognitive decline and reduced incident dementia in older adults with type 2 diabetes: the Sydney Memory and Ageing Study. Diabetes Care. 2020;43:2691–701.

    Article  CAS  PubMed  Google Scholar 

  266. Hofmann P. Treatment of patients with comorbid depression and diabetes with metformin and milnacipran. Neuropsychiatr Dis Treat. 2010;6:9.

    CAS  PubMed Central  Google Scholar 

  267. Soldevila-Domenech N, Cuenca-Royo A, Babio N, Forcano L, Nishi S, Vintró-Alcaraz C, et al. Metformin use and cognitive function in older adults with type 2 diabetes following a Mediterranean diet intervention. Front Nutr. 2021;8: 742586.

    Article  PubMed  PubMed Central  Google Scholar 

  268. Koo BK, Kim LK, Lee JY, Moon MK. Taking metformin and cognitive function change in older patients with diabetes. Geriatr Gerontol Int. 2019;19:755–61.

    Article  PubMed  Google Scholar 

  269. Campbell JM, Stephenson MD, De Courten B, Chapman I, Bellman SM, Aromataris E. Metformin use associated with reduced risk of dementia in patients with diabetes: a systematic review and meta-analysis. J Alzheimer’s Dis. 2018;65:1225–36.

    Article  Google Scholar 

  270. Ying M, Maruschak N, Mansur R, Carvalho A, Cha D, McIntyre R. Metformin: repurposing opportunities for cognitive and mood dysfunction. CNS Neurol Disord Drug Targets. 2014;13:1836–45.

    Article  PubMed  Google Scholar 

  271. Rezano A, Khairinnisa A, Ekawardhani S. Metformin as an antidepressant in type 2 diabetes mellitus patients. Depression. 2020;1101:11–2.

    Google Scholar 

  272. Ha J, Choi D-W, Kim KJ, Cho SY, Kim H, Kim KY, et al. Association of metformin use with Alzheimer’s disease in patients with newly diagnosed type 2 diabetes: a population-based nested case–control study. Sci Rep. 2021;11:1–9.

    Article  Google Scholar 

  273. Markowicz-Piasecka M, Sikora J, Szydłowska A, Skupień A, Mikiciuk-Olasik E, Huttunen KM. Metformin—a future therapy for neurodegenerative diseases. Pharm Res. 2017;34:2614–27.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  274. Bhutada P, Mundhada Y, Bansod K, Tawari S, Patil S, Dixit P, et al. Protection of cholinergic and antioxidant system contributes to the effect of berberine ameliorating memory dysfunction in rat model of streptozotocin-induced diabetes. Behav Brain Res. 2011;220:30–41.

    Article  CAS  PubMed  Google Scholar 

  275. Saliu JA, Oboh G, Omojokun OS, Rocha JB, Schetinger MR, Guterries J, et al. Effect of dietary supplementation of Padauk (Pterocarpus soyauxii) leaf on high fat diet/streptozotocin induced diabetes in rats’ brain and platelets. Biomed Pharmacother. 2016;84:1194–201.

    Article  CAS  PubMed  Google Scholar 

  276. Arafa NM, Marie M-AS, Al Azimi SAM. Effect of canagliflozin and metformin on cortical neurotransmitters in a diabetic rat model. Chem Biol Interact. 2016;258:79–88.

    Article  CAS  PubMed  Google Scholar 

  277. Mostafa DK, Ismail CA, Ghareeb DA. Differential metformin dose-dependent effects on cognition in rats: role of Akt. Psychopharmacology. 2016;233:2513–24.

    Article  CAS  PubMed  Google Scholar 

  278. Pilipenko V, Narbute K, Pupure J, Langrate IK, Muceniece R, Kluša V. Neuroprotective potential of antihyperglycemic drug metformin in streptozocin-induced rat model of sporadic Alzheimer’s disease. Eur J Pharmacol. 2020;881: 173290.

    Article  CAS  PubMed  Google Scholar 

  279. Sridhar GR, Lakshmi G, Nagamani G. Emerging links between type 2 diabetes and Alzheimer’s disease. World J Diabetes. 2015;6:744–51.

    Article  PubMed  PubMed Central  Google Scholar 

  280. Sciannimanico S, Grimaldi F, Vescini F, De Pergola G, Iacoviello M, Licchelli B, et al. Metformin: up to date. Endocr Metab Immune Disord Drug Targets. 2020;20:172–81.

    Article  CAS  PubMed  Google Scholar 

  281. Ma J, Yu H, Liu J, Chen Y, Wang Q, **ang L. Metformin attenuates hyperalgesia and allodynia in rats with painful diabetic neuropathy induced by streptozotocin. Eur J Pharmacol. 2015;764:599–606.

    Article  CAS  PubMed  Google Scholar 

  282. Alhaider AA, Korashy HM, Sayed-Ahmed MM, Mobark M, Kfoury H, Mansour MA. Metformin attenuates streptozotocin-induced diabetic nephropathy in rats through modulation of oxidative stress genes expression. Chem Biol Interact. 2011;192:233–42.

    Article  CAS  PubMed  Google Scholar 

  283. Mehta V, Verma P, Sharma N, Sharma A, Thakur A, Malairaman U. Quercetin, ascorbic acid, caffeine and ellagic acid are more efficient than rosiglitazone, metformin and glimepiride in interfering with pathways leading to the development of neurological complications associated with diabetes: a comparative in-vitro study. Bull Fac Pharm Cairo Univ. 2017;55:115–21.

    Google Scholar 

  284. Correia S, Carvalho C, Santos MS, Proença T, Nunes E, Duarte AI, et al. Metformin protects the brain against the oxidative imbalance promoted by type 2 diabetes. Med Chem. 2008;4:358–64.

    Article  CAS  PubMed  Google Scholar 

  285. Peña-Bautista C, Vento M, Baquero M, Chafer-Pericas C. Lipid peroxidation in neurodegeneration. Clin Chim Acta. 2019;497:178–88.

    Article  PubMed  Google Scholar 

  286. Hall ED. The contributing role of lipid peroxidation and protein oxidation in the course of CNS injury neurodegeneration and neuroprotection. In: Brain neurotrauma: molecular, neuropsychological, and rehabilitation aspects. 2015.

  287. Aoyama K, Nakaki T. Impaired glutathione synthesis in neurodegeneration. Int J Mol Sci. 2013;14:21021–44.

    Article  PubMed  PubMed Central  Google Scholar 

  288. Delkhosh-Kasmaie F, Farshid AA, Tamaddonfard E, Imani M. The effects of safranal, a constitute of saffron, and metformin on spatial learning and memory impairments in type-1 diabetic rats: behavioral and hippocampal histopathological and biochemical evaluations. Biomed Pharmacother. 2018;107:203–11.

    Article  CAS  PubMed  Google Scholar 

  289. Sangi SMA, Al Jalaud NA. Prevention and treatment of brain damage in streptozotocin induced diabetic rats with metformin, Nigella sativa, Zingiber officinale, and Punica granatum. Biomed Res Ther. 2019;6:3274–85.

    Article  Google Scholar 

  290. Mousavi SM, Niazmand S, Hosseini M, Hassanzadeh Z, Sadeghnia HR, Vafaee F, et al. Beneficial effects of Teucrium polium and metformin on diabetes-induced memory impairments and brain tissue oxidative damage in rats. Int J Alzheimers Dis. 2015;2015: 493729.

    PubMed  PubMed Central  Google Scholar 

  291. Shiming Z, Mak K-K, Balijepalli MK, Chakravarthi S, Pichika MR. Swietenine potentiates the antihyperglycemic and antioxidant activity of metformin in Streptozotocin induced diabetic rats. Biomed Pharmacother. 2021;139: 111576.

    Article  CAS  PubMed  Google Scholar 

  292. Salman ZK, Refaat R, Selima E, El Sarha A, Ismail MA. The combined effect of metformin and L-cysteine on inflammation, oxidative stress and insulin resistance in streptozotocin-induced type 2 diabetes in rats. Eur J Pharmacol. 2013;714:448–55.

    Article  CAS  PubMed  Google Scholar 

  293. Chukwunonso Obi B, Chinwuba Okoye T, Okpashi VE, NonyeIgwe C, Olisah AE. Comparative study of the antioxidant effects of metformin, glibenclamide, and repaglinide in alloxan-induced diabetic rats. J Diabetes Res. 2016;2016:1635361.

    Article  PubMed  Google Scholar 

  294. Kashyap H, Gupta S. Analysis of metformin on endogenous antioxidants and oxidative stress in mice brain tissue of alloxan-induced diabetes. Int J Pharm Sci Res. 2019;11:727–37.

    Google Scholar 

  295. Esteghamati A, Eskandari D, Mirmiranpour H, Noshad S, Mousavizadeh M, Hedayati M, et al. Effects of metformin on markers of oxidative stress and antioxidant reserve in patients with newly diagnosed type 2 diabetes: a randomized clinical trial. Clin Nutr. 2013;32:179–85.

    Article  CAS  PubMed  Google Scholar 

  296. Abdulkadir AA, Thanoon IA. Comparative effects of glibenclamide and metformin on C-reactive protein and oxidant/antioxidant status in patients with type II diabetes mellitus. Sultan Qaboos Univ Med J. 2012;12:55.

    Article  PubMed  PubMed Central  Google Scholar 

  297. Signorini AM, Fondelli C, Renzoni E, Puccetti C, Gragnoli G, Giorgi G. Antioxidant effects of gliclazide, glibenclamide, and metformin in patients with type 2 diabetes mellitus. Curr Ther Res. 2002;63:411–20.

    Article  CAS  Google Scholar 

  298. Abdul-Hadi MH, Naji MT, Shams HA, Sami OM, Al-Harchan NA-A, Al-Kuraishy HM, et al. Oxidative stress injury and glucolipotoxicity in type 2 diabetes mellitus: the potential role of metformin and sitagliptin. Biomed Biotechnol Res J. 2020;4:166.

    Google Scholar 

  299. Memişoğullari R, Tuerkeli M, Bakan E, Akcay F. Effect of metformin or gliclazide on lipid peroxidation and antioxidant levels in patients with diabetes mellitus. Turk J Med Sci. 2008;38:545–8.

    Google Scholar 

  300. Los DB, de Oliveira WH, Duarte-Silva E, Sougey WWD, de Freitas ESR, de Oliveira AGV, et al. Preventive role of metformin on peripheral neuropathy induced by diabetes. Int Immunopharmacol. 2019;74:105672.

    Article  CAS  PubMed  Google Scholar 

  301. Min HK, Kim SH, Choi JH, Choi K, Kim H-R, Lee S-H. Impacts of statin and metformin on neuropathy in patients with type 2 diabetes mellitus: Korean health insurance data. World J Clin Cases. 2021;9:10198.

    Article  PubMed  PubMed Central  Google Scholar 

  302. Ravindran S, Kuruvilla V, Wilbur K, Munusamy S. Nephroprotective effects of metformin in diabetic nephropathy. J Cell Physiol. 2017;232:731–42.

    Article  CAS  PubMed  Google Scholar 

  303. Davì G, Falco A, Patrono C. Lipid peroxidation in diabetes mellitus. Antioxid Redox Signal. 2005;7:256–68.

    Article  PubMed  Google Scholar 

  304. Garimella S, Seshayamma V, Rao HJ, Kumar S, Kumar U, Saheb SH. Effect of metformin on lipid profile of type II diabetes. Int J Intg Med Sci. 2016;3:449–53.

    Google Scholar 

  305. Waisundara VY, Hsu A, Huang D, Tan BK-H. Scutellaria baicalensis enhances the anti-diabetic activity of metformin in streptozotocin-induced diabetic Wistar rats. Am J Chinese Med. 2008;36:517–40.

    Article  CAS  Google Scholar 

  306. Zhang S, Xu H, Yu X, Wu Y, Sui D. Metformin ameliorates diabetic nephropathy in a rat model of low-dose streptozotocin-induced diabetes. Exp Ther Med. 2017;14:383–90.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  307. Demaré S, Kothari A, Calcutt NA, Fernyhough P. Metformin as a potential therapeutic for neurological disease: mobilizing AMPK to repair the nervous system. Expert Rev Neurother. 2021;21:45–63.

    Article  PubMed  Google Scholar 

  308. Vial G, Detaille D, Guigas B. Role of mitochondria in the mechanism (s) of action of metformin. Front Endocrinol. 2019;10:294.

    Article  Google Scholar 

  309. Andrzejewski S, Gravel S-P, Pollak M, St-Pierre J. Metformin directly acts on mitochondria to alter cellular bioenergetics. Cancer Metab. 2014;2:1–14.

    Article  Google Scholar 

  310. Crook M. Type 2 diabetes mellitus: a disease of the innate immune system? An update. Diabetic Med. 2004;21:203–7.

    Article  CAS  PubMed  Google Scholar 

  311. Szablewski L. Role of immune system in type 1 diabetes mellitus pathogenesis. Int Immunopharmacol. 2014;22:182–91.

    Article  CAS  PubMed  Google Scholar 

  312. Docrat TF, Nagiah S, Chuturgoon AA. Metformin protects against neuroinflammation through integrated mechanisms of miR-141 and the NF-ĸB-mediated inflammasome pathway in a diabetic mouse model. Eur J Pharmacol. 2021;903: 174146.

    Article  CAS  PubMed  Google Scholar 

  313. Vuong B, Odero G, Rozbacher S, Stevenson M, Kereliuk SM, Pereira TJ, et al. Exposure to gestational diabetes mellitus induces neuroinflammation, derangement of hippocampal neurons, and cognitive changes in rat offspring. J Neuroinflammation. 2017;14:1–13.

    Article  Google Scholar 

  314. Mudgal J, Nampoothiri M, Basu Mallik S, Kinra M, Hall S, Grant G, et al. Possible involvement of metformin in downregulation of neuroinflammation and associated behavioural changes in mice. Inflammopharmacology. 2019;27:941–8.

    Article  CAS  PubMed  Google Scholar 

  315. Saffari PM, Alijanpour S, Takzaree N, Sahebgharani M, Etemad-Moghadam S, Noorbakhsh F, et al. Metformin loaded phosphatidylserine nanoliposomes improve memory deficit and reduce neuroinflammation in streptozotocin-induced Alzheimer’s disease model. Life Sci. 2020;255: 117861.

    Article  CAS  PubMed  Google Scholar 

  316. Tanokashira D, Kurata E, Fukuokaya W, Kawabe K, Kashiwada M, Takeuchi H, et al. Metformin treatment ameliorates diabetes-associated decline in hippocampal neurogenesis and memory via phosphorylation of insulin receptor substrate 1. FEBS Open Bio. 2018;8:1104–18.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  317. Li Y, Gappy S, Liu X, Sassalos T, Zhou T, Hsu A, et al. Metformin suppresses pro-inflammatory cytokines in vitreous of diabetes patients and human retinal vascular endothelium. PLoS ONE. 2022;17: e0268451.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  318. Dehkordi AH, Abbaszadeh A, Mir S, Hasanvand A. Metformin and its anti-inflammatory and anti-oxidative effects; new concepts. J renal inj prev. 2018;8:54–61.

    Article  Google Scholar 

  319. Zhang Y, Zhang Y, Shi X, Han J, Lin B, Peng W, et al. Metformin and the risk of neurodegenerative diseases in patients with diabetes: a meta-analysis of population-based cohort studies. Diabetic Med. 2022;39: e14821.

    Article  CAS  PubMed  Google Scholar 

  320. Zhang W, Zhao L, Zhang J, Li P, Lv Z. Metformin improves cognitive impairment in diabetic mice induced by a combination of streptozotocin and isoflurane anesthesia. Bioengineered. 2021;12:10982–93.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  321. Jiang L-L, Liu L. Effect of metformin on stem cells: molecular mechanism and clinical prospect. World J Stem Cells. 2020;12:1455.

    Article  PubMed  PubMed Central  Google Scholar 

  322. Sartoretto JL, Melo GA, Carvalho MH, Nigro D, Passaglia RT, Scavone C, et al. Metformin treatment restores the altered microvascular reactivity in neonatal streptozotocin-induced diabetic rats increasing NOS activity, but not NOS expression. Life Sci. 2005;77:2676–89.

    Article  CAS  PubMed  Google Scholar 

  323. Liu Y, Huang C, Ceng C, Zhan H, Zheng D, Han W. Metformin enhances nitric oxide production and diminishes Rho kinase activity in rats with hyperlipidemia. Lipids Health Dis. 2014;13:1–7.

    Article  PubMed  PubMed Central  Google Scholar 

  324. HasanpourDehkordi A, Abbaszadeh A, Mir S, Hasanvand A. Metformin and its anti-inflammatory and anti-oxidative effects; new concepts. J Renal Inj Prev. 2019;8:54–61.

    Google Scholar 

  325. Khezri MR, Yousefi K, Mahboubi N, Hodaei D, Ghasemnejad-Berenji M. Metformin in Alzheimer’s disease: an overview of potential mechanisms, preclinical and clinical findings. Biochem Pharmacol. 2022;197:114945.

    Article  CAS  PubMed  Google Scholar 

  326. Alomar SY, Barakat BM, Eldosoky M, Atef H, Mohamed AS, Elhawary R, et al. Protective effect of metformin on rat diabetic retinopathy involves suppression of toll-like receptor 4/nuclear factor-k B expression and glutamate excitotoxicity. Int Immunopharmacol. 2021;90: 107193.

    Article  CAS  PubMed  Google Scholar 

  327. Zhang Q-Q, Li W-S, Liu Z, Zhang H-L, Ba Y-G, Zhang R-X. Metformin therapy and cognitive dysfunction in patients with type 2 diabetes: a meta-analysis and systematic review. Medicine (Baltimore). 2020;99: e19378.

    Article  PubMed  Google Scholar 

  328. Wang Y, An H, Liu T, Qin C, Sesaki H, Guo S, et al. Metformin improves mitochondrial respiratory activity through activation of AMPK. Cell Rep. 2019;29(1511–23): e5.

    Google Scholar 

  329. Apostolova N, Iannantuoni F, Gruevska A, Muntane J, Rocha M, Victor VM. Mechanisms of action of metformin in type 2 diabetes: effects on mitochondria and leukocyte–endothelium interactions. Redox Biol. 2020;34:101517.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  330. Belosludtsev KN, Belosludtseva NV, Dubinin MV. Diabetes mellitus, mitochondrial dysfunction and Ca2+-dependent permeability transition pore. Int J Mol Sci. 2020;21:6559.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  331. El-Mir M-Y, Detaille D, Delgado-Esteban M, Guigas B, Attia S, Fontaine E, et al. Neuroprotective role of antidiabetic drug metformin against apoptotic cell death in primary cortical neurons. J Mol Neurosci. 2008;34:77–87.

    Article  CAS  PubMed  Google Scholar 

  332. Zhao M, Li XW, Chen DZ, Hao F, Tao SX, Yu HY, et al. Neuro-protective role of metformin in patients with acute stroke and type 2 diabetes mellitus via AMPK/mammalian target of rapamycin (mTOR) signaling pathway and oxidative stress. Med Sci Monit. 2019;25:2186.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  333. Zhao X, Zeng Z, Gaur U, Fang J, Peng T, Li S, et al. Metformin protects PC12 cells and hippocampal neurons from H2O2-induced oxidative damage through activation of AMPK pathway. J Cell Physiol. 2019;234:16619–29.

    Article  CAS  PubMed  Google Scholar 

  334. Gorgich EAC, Parsaie H, Yarmand S, Baharvand F, Sarbishegi M. Long-term administration of metformin ameliorates age-dependent oxidative stress and cognitive function in rats. Behav Brain Res. 2021;410: 113343.

    Article  CAS  PubMed  Google Scholar 

  335. Mohamed MAE, Abdel-Rahman RF, Mahmoud SS, Khattab MM, Safar MM. Metformin and trimetazidine ameliorate diabetes-induced cognitive impediment in status epileptic rats. Epilepsy Behav. 2020;104: 106893.

    Article  PubMed  Google Scholar 

  336. Kim SH, Park TS, ** HY. Metformin preserves peripheral nerve damage with comparable effects to alpha lipoic acid in streptozotocin/high-fat diet induced diabetic rats. Diabetes Metab J. 2020;44:842–53.

    Article  PubMed  PubMed Central  Google Scholar 

  337. Nahar N, Mohamed S, Mustapha NM, Lau S, Ishak NIM, Umran NS. Metformin attenuated histopathological ocular deteriorations in a streptozotocin-induced hyperglycemic rat model. Naunyn Schmiedebergs Arch Pharmacol. 2021;394:457–67.

    Article  CAS  PubMed  Google Scholar 

  338. Sanati M, Aminyavari S, Afshari AR, Sahebkar A. Mechanistic insight into the role of metformin in Alzheimer’s disease. Life Sci. 2022;291:120299.

    Article  CAS  PubMed  Google Scholar 

  339. Paudel YN, Angelopoulou E, Piperi C, Shaikh MF, Othman I. Emerging neuroprotective effect of metformin in Parkinson’s disease: a molecular crosstalk. Pharmacol Res. 2020;152: 104593.

    Article  CAS  PubMed  Google Scholar 

  340. Nandini H, Paudel YN, Krishna K. Envisioning the neuroprotective effect of metformin in experimental epilepsy: a portrait of molecular crosstalk. Life Sci. 2019;233: 116686.

    Article  Google Scholar 

  341. Chiang M-C, Cheng Y-C, Chen S-J, Yen C-H, Huang R-N. Metformin activation of AMPK-dependent pathways is neuroprotective in human neural stem cells against Amyloid-beta-induced mitochondrial dysfunction. Exp Cell Res. 2016;347:322–31.

    Article  CAS  PubMed  Google Scholar 

  342. Sharma S, Nozohouri S, Vaidya B, Abbruscato T. Repurposing metformin to treat age-related neurodegenerative disorders and ischemic stroke. Life Sci. 2021;274: 119343.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  343. Tang BL. Could metformin be therapeutically useful in Huntington’s disease? Rev Neurosci. 2020;31:297–317.

    Article  CAS  PubMed  Google Scholar 

  344. Cai D. Neuroinflammation and neurodegeneration in overnutrition-induced diseases. Trends Endocrinol Metab. 2013;24:40–7.

    Article  CAS  PubMed  Google Scholar 

  345. Malaguarnera L, Zorena K. Neurodegeneration and neuroinflammation in diabetic retinopathy: potential approaches to delay neuronal loss. Curr Neuropharmacol. 2016;14:831–9.

    Article  PubMed  PubMed Central  Google Scholar 

  346. Akinola O, Gabriel M, Suleiman A-A, Olorunsogbon F. Treatment of alloxan-induced diabetic rats with metformin or glitazones is associated with amelioration of hyperglycaemia and neuroprotection. Open Diabetes J. 2012;5:8–12.

    Article  CAS  Google Scholar 

Download references

Funding

None.

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization: MM. Data curation: FK, HJ and MSZ. Formal analysis: AWH and NC-F. Funding acquisition: None declared. Investigation and methodology: MG and MD. Project administration: MM and HJ. Resources and software: MG. Design of figures: MG. Preparation of tables: MS. Supervision: MM. Validation, visualization, writing, review, and editing: MM, AWH, and NC-F.

Corresponding author

Correspondence to Majid Motaghinejad.

Ethics declarations

Conflict of interest

None declared.

Ethical approval

The manuscript is a narrative review article and does not require ethical approval. No unpublished studies involving animals or humans were included in the review.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Karami, F., Jamaati, H., Coleman-Fuller, N. et al. Is metformin neuroprotective against diabetes mellitus-induced neurodegeneration? An updated graphical review of molecular basis. Pharmacol. Rep 75, 511–543 (2023). https://doi.org/10.1007/s43440-023-00469-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s43440-023-00469-1

Keywords

Navigation