Log in

Hepatic Encephalopathy: From Metabolic to Neurodegenerative

  • Original Paper
  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

Hepatic encephalopathy (HE) is a neuropsychiatric syndrome of both acute and chronic liver disease. As a metabolic disorder, HE is considered to be reversible and therefore is expected to resolve following the replacement of the diseased liver with a healthy liver. However, persisting neurological complications are observed in up to 47% of transplanted patients. Several retrospective studies have shown that patients with a history of HE, particularly overt-HE, had persistent neurological complications even after liver transplantation (LT). These enduring neurological conditions significantly affect patient's quality of life and continue to add to the economic burden of chronic liver disease on health care systems. This review discusses the journey of the brain through the progression of liver disease, entering the invasive surgical procedure of LT and the conditions associated with the post-transplant period. In particular, it will discuss the vulnerability of the HE brain to peri-operative factors and post-LT conditions which may explain non-resolved neurological impairment following LT. In addition, the review will provide evidence; (i) supporting overt-HE impacts on neurological complications post-LT; (ii) that overt-HE leads to permanent neuronal injury and (iii) the pathophysiological role of ammonia toxicity on astrocyte and neuronal injury/damage. Together, these findings will provide new insights on the underlying mechanisms leading to neurological complications post-LT.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Thailand)

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Abbreviations

AT2A:

Alzheimer type II astrocytes

BBB:

Blood–brain barrier

BDL:

Bile-duct ligation

BDNF:

Brain-derived neurotrophic factor

CCl4 :

Carbon tetrachloride

cGMP:

Cyclic guanosine monophosphate

CLD:

Chronic liver disease

CNS:

Central nervous system

EEG:

Electroencephalogram

GS:

Glutamine synthetase

HE:

Hepatic encephalopathy

LT:

Liver transplantation

LTP:

Long-term potentiation

mHE:

Minimal HE

MRI:

Magnetic resonance imaging

NMDA:

N-Methyl-D-aspartate

PCA:

Portocaval anastomosis

TAA:

Thioacetamide

References

  1. Montagnese S, Bajaj JS (2019) Impact of hepatic encephalopathy in cirrhosis on quality-of-life issues. Drugs 79:11–16. https://doi.org/10.1007/s40265-018-1019-y

    Article  PubMed  PubMed Central  Google Scholar 

  2. Bajaj JS, Saeian K, Hafeezullah M et al (2008) Patients with minimal hepatic encephalopathy have poor insight into their driving skills. Clin Gastroenterol Hepatol 6:1135–1139. https://doi.org/10.1016/j.cgh.2008.05.025

    Article  PubMed  Google Scholar 

  3. Vilstrup H, Amodio P, Bajaj J et al (2014) Hepatic encephalopathy in chronic liver disease: 2014 practice guideline by the American association for the study of liver diseases and the European association for the study of the liver. Hepatology 60:715–735. https://doi.org/10.1002/hep.27210

    Article  PubMed  Google Scholar 

  4. Jepsen P, Ott P, Andersen PK et al (2010) Clinical course of alcoholic liver cirrhosis: a Danish population-based cohort study. Hepatology 51:1675–1682. https://doi.org/10.1002/hep.23500

    Article  PubMed  Google Scholar 

  5. Bajaj JS, O’Leary JG, Tandon P et al (2017) Hepatic encephalopathy is associated with mortality in patients with cirrhosis independent of other extrahepatic organ failures. Clin Gastroenterol Hepatol 15:565–574. https://doi.org/10.1016/j.cgh.2016.09.157

    Article  PubMed  Google Scholar 

  6. Amodio P, Del Piccolo F, Pettenò E et al (2001) Prevalence and prognostic value of quantified electroencephalogram (EEG) alterations in cirrhotic patients. J Hepatol 35:37–45. https://doi.org/10.1016/s0168-8278(01)00129-5

    Article  CAS  PubMed  Google Scholar 

  7. Romero-Gómez M, Boza F, García-Valdecasas MS et al (2001) Subclinical hepatic encephalopathy predicts the development of overt hepatic encephalopathy. Am J Gastroenterol 96:2718–2723. https://doi.org/10.1111/j.1572-0241.2001.04130.x

    Article  PubMed  Google Scholar 

  8. Rose CF, Amodio P, Bajaj JS et al (2020) Hepatic encephalopathy: novel insights into classification, pathophysiology and therapy. J Hepatol 73:1526–1547. https://doi.org/10.1016/j.jhep.2020.07.013

    Article  PubMed  Google Scholar 

  9. Seraj SM, Campbell EJ, Argyropoulos SK et al (2017) Hospital readmissions in decompensated cirrhotics: factors pointing toward a prevention strategy. World J Gastroenterol 23:6868–6876. https://doi.org/10.3748/wjg.v23.i37.6868

    Article  PubMed  PubMed Central  Google Scholar 

  10. Sood KT, Wong RJ (2019) Hepatic encephalopathy is a strong predictor of early hospital readmission among cirrhosis patients. J Clin Exp Hepatol 9:484–490. https://doi.org/10.1016/j.jceh.2019.01.005

    Article  PubMed  PubMed Central  Google Scholar 

  11. Hirode G, Vittinghoff E, Wong RJ (2019) Increasing burden of hepatic encephalopathy among hospitalized adults: an analysis of the 2010–2014 national inpatient sample. Dig Dis Sci 64:1448–1457. https://doi.org/10.1007/s10620-019-05576-9

    Article  CAS  PubMed  Google Scholar 

  12. Aldridge DR, Tranah EJ, Shawcross DL (2015) Pathogenesis of hepatic encephalopathy: role of ammonia and systemic inflammation. J Clin Exp Hepatol 5:S7–S20. https://doi.org/10.1016/j.jceh.2014.06.004

    Article  PubMed  Google Scholar 

  13. Bosoi CR, Rose CF (2009) Identifying the direct effects of ammonia on the brain. Metab Brain Dis 24:95–102. https://doi.org/10.1007/s11011-008-9112-7

    Article  CAS  PubMed  Google Scholar 

  14. Ochoa-Sanchez R, Rose CF (2018) Pathogenesis of hepatic encephalopathy in chronic liver disease. J Clin Exp Hepatol 8:262–271. https://doi.org/10.1016/j.jceh.2018.08.001

    Article  PubMed  PubMed Central  Google Scholar 

  15. Roberts MS, Angus DC, Bryce CL et al (2004) Survival after liver transplantation in the United States: a disease-specific analysis of the UNOS database. Liver Transpl 10:886–897. https://doi.org/10.1002/lt.20137

    Article  PubMed  Google Scholar 

  16. Zivković SA (2013) Neurologic complications after liver transplantation. World J Hepatol 5:409–416. https://doi.org/10.4254/wjh.v5.i8.409

    Article  PubMed  PubMed Central  Google Scholar 

  17. Weiss N, Thabut D (2019) Neurological complications occurring after liver transplantation: role of risk factors, hepatic encephalopathy, and acute (on chronic) brain injury. Liver Transpl 25:469–487. https://doi.org/10.1002/lt.25420

    Article  PubMed  Google Scholar 

  18. Stracciari A, Guarino M (2001) Neuropsychiatric complications of liver transplantation. Metab Brain Dis 16:3–11. https://doi.org/10.1023/a:1011698526025

    Article  CAS  PubMed  Google Scholar 

  19. Agildere AM, Başaran C, Cakir B et al (2006) Evaluation of neurologic complications by brain MRI in kidney and liver transplant recipients. Transplant Proc 38:611–618. https://doi.org/10.1016/j.transproceed.2005.12.113

    Article  CAS  PubMed  Google Scholar 

  20. Raffa GM, Agnello F, Occhipinti G et al (2019) Neurological complications after cardiac surgery: a retrospective case-control study of risk factors and outcome. J Cardiothorac Surg 14:1–9. https://doi.org/10.1186/s13019-019-0844-8

    Article  Google Scholar 

  21. Estol CJ, Pessin MS, Martinez AJ (1991) Cerebrovascular complications after orthotopic liver transplantation: a clinicopathologic study. Neurology 41:815–819. https://doi.org/10.1212/wnl.41.6.815

    Article  CAS  PubMed  Google Scholar 

  22. Lescot T, Karvellas CJ, Chaudhury P et al (2013) Postoperative delirium in the intensive care unit predicts worse outcomes in liver transplant recipients. Can J Gastroenterol 27:207–212. https://doi.org/10.1155/2013/289185

    Article  PubMed  PubMed Central  Google Scholar 

  23. Lin X-H, Teng S, Wang L et al (2017) Fatigue and its associated factors in liver transplant recipients in Bei**g: a cross-sectional study. BMJ Open 7(2):e011840. https://doi.org/10.1136/bmjopen-2016-011840

    Article  PubMed  PubMed Central  Google Scholar 

  24. Pflugrad H, Tryc AB, Goldbecker A et al (2019) Cerebral metabolite alterations in patients with posttransplant encephalopathy after liver transplantation. PLoS ONE 14(8):e0221626. https://doi.org/10.1371/journal.pone.0221626

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Rodrigue JR, Nelson DR, Reed AI et al (2010) Fatigue and sleep quality before and after liver transplantation. Prog Transplant 20:221–233. https://doi.org/10.7182/prtr.20.3.x82q1832184j4733

    Article  PubMed  Google Scholar 

  26. Teperman LW (2013) Impact of pretransplant hepatic encephalopathy on liver posttransplantation outcomes. Int J Hepatol 2013:952828. https://doi.org/10.1155/2013/952828

    Article  PubMed  PubMed Central  Google Scholar 

  27. Blanco R, De Girolami U, Jenkins RL, Khettry U (1995) Neuropathology of liver transplantation. Clin Neuropathol 14:109–117

    CAS  PubMed  Google Scholar 

  28. Campagna F, Montagnese S, Schiff S et al (2014) Cognitive impairment and electroencephalographic alterations before and after liver transplantation: what is reversible? Liver Transpl 20:977–986. https://doi.org/10.1002/lt.23909

    Article  PubMed  Google Scholar 

  29. Zhang X-D, Cheng Y, Poon CS et al (2015) Long-and short-range functional connectivity density alteration in non-alcoholic cirrhotic patients one month after liver transplantation: a resting-state fMRI study. Brain Res 1620:177–187. https://doi.org/10.1016/j.brainres.2015.04.046

    Article  CAS  PubMed  Google Scholar 

  30. Senzolo M, Pizzolato G, Ferronato C et al (2009) Long-term evaluation of cognitive function and cerebral metabolism in liver transplanted patients. Transplant Proc 41:1295–1296. https://doi.org/10.1016/j.transproceed.2009.03.087

    Article  CAS  PubMed  Google Scholar 

  31. Bhutiani N, Jones CM, Cannon RM et al (2018) Assessing relative cost of complications following orthotopic liver transplant. Clin Transplant 32:e13209. https://doi.org/10.1111/ctr.13209

    Article  PubMed  Google Scholar 

  32. Derle E, Kibaroğlu S, Öcal R et al (2015) Neurologic complications after liver transplant: experience at a single center. Exp Clin Transplant 13(Suppl 1):327–330. https://doi.org/10.6002/ect.mesot2014.p177

    Article  PubMed  Google Scholar 

  33. Moini M, Schilsky ML, Tichy EM (2015) Review on immunosuppression in liver transplantation. World J Hepatol 7:1355–1368. https://doi.org/10.4254/wjh.v7.i10.1355

    Article  PubMed  PubMed Central  Google Scholar 

  34. Pillai AA, Levitsky J (2009) Overview of immunosuppression in liver transplantation. World J Gastroenterol 15:4225–4233. https://doi.org/10.3748/wjg.15.4225

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Beydoun MA, Dore GA, Canas J-A et al (2018) Systemic inflammation is associated with longitudinal changes in cognitive performance among urban adults. Front Aging Neurosci 10:313. https://doi.org/10.3389/fnagi.2018.00313

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Brezzo G, Simpson J, Ameen-Ali KE et al (2020) Acute effects of systemic inflammation upon the neuro-glial-vascular unit and cerebrovascular function. Brain Behav Immun - Health 5:100074. https://doi.org/10.1016/j.bbih.2020.100074

    Article  PubMed  PubMed Central  Google Scholar 

  37. Kamdar KY, Rooney CM, Heslop HE (2011) Posttransplant lymphoproliferative disease following liver transplantation. Curr Opin Organ Transplant 16:274–280. https://doi.org/10.1097/MOT.0b013e3283465715

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Huffman JC, Popkin MK, Stern TA (2003) Psychiatric considerations in the patient receiving organ transplantation: a clinical case conference. Gen Hosp Psychiatry 25:484–491. https://doi.org/10.1016/s0163-8343(03)00090-2

    Article  PubMed  Google Scholar 

  39. Rabinstein AA, Keegan MT (2013) Neurologic complications of anesthesia: a practical approach. Neurol Clin Pract 3:295–304. https://doi.org/10.1212/CPJ.0b013e3182a1b9bd

    Article  PubMed  PubMed Central  Google Scholar 

  40. Kumar SS, Mashour GA, Picton P (2018) Neurologic considerations and complications related to liver transplantation. Anesthesiology 128:1008–1014. https://doi.org/10.1097/ALN.0000000000002148

    Article  PubMed  Google Scholar 

  41. Wu L, Zhao H, Weng H, Ma D (2019) Lasting effects of general anesthetics on the brain in the young and elderly: “mixed picture” of neurotoxicity, neuroprotection and cognitive impairment. J Anesth 33:321–335. https://doi.org/10.1007/s00540-019-02623-7

    Article  PubMed  PubMed Central  Google Scholar 

  42. Sotil EU, Gottstein J, Ayala E et al (2009) Impact of preoperative overt hepatic encephalopathy on neurocognitive function after liver transplantation. Liver Transplant 15:184–192. https://doi.org/10.1002/lt.21593

    Article  Google Scholar 

  43. Garcia-Martinez R, Rovira A, Alonso J et al (2011) Hepatic encephalopathy is associated with posttransplant cognitive function and brain volume. Liver Transpl 17:38–46. https://doi.org/10.1002/lt.22197

    Article  PubMed  Google Scholar 

  44. Nardelli S, Allampati S, Riggio O et al (2017) Hepatic encephalopathy is associated with persistent learning impairments despite adequate medical treatment: a multicenter, international study. Dig Dis Sci 62:794–800. https://doi.org/10.1007/s10620-016-4425-6

    Article  PubMed  Google Scholar 

  45. Pujol A, Graus F, Rimola A et al (1994) Predictive factors of in-hospital CNS complications following liver transplantation. Neurology 44:1226–1230. https://doi.org/10.1212/wnl.44.7.1226

    Article  CAS  PubMed  Google Scholar 

  46. Dhar R, Young GB, Marotta P (2008) Perioperative neurological complications after liver transplantation are best predicted by pre-transplant hepatic encephalopathy. Neurocrit Care 8:253–258. https://doi.org/10.1007/s12028-007-9020-4

    Article  PubMed  Google Scholar 

  47. Mechtcheriakov S, Graziadei IW, Mattedi M et al (2004) Incomplete improvement of visuo-motor deficits in patients with minimal hepatic encephalopathy after liver transplantation. Liver Transpl 10:77–83. https://doi.org/10.1002/lt.20009

    Article  PubMed  Google Scholar 

  48. Ahluwalia V, Wade JB, Moeller FG et al (2015) The etiology of cirrhosis is a strong determinant of brain reserve: a multimodal magnetic resonance imaging study. Liver Transpl 21:1123–1132. https://doi.org/10.1002/lt.24163

    Article  PubMed  PubMed Central  Google Scholar 

  49. Patel AV, Wade JB, Thacker LR et al (2015) Cognitive reserve is a determinant of health-related quality of life in patients with cirrhosis, independent of covert hepatic encephalopathy and model for end-stage liver disease score. Clin Gastroenterol Hepatol 13:987–991. https://doi.org/10.1016/j.cgh.2014.09.049

    Article  PubMed  Google Scholar 

  50. Fan Y, Liu X (2018) Alterations in expression and function of ABC family transporters at blood-brain barrier under liver failure and their clinical significances. Pharmaceutics 10(3):102. https://doi.org/10.3390/pharmaceutics10030102

    Article  CAS  PubMed Central  Google Scholar 

  51. Wijdicks EF (2001) Neurotoxicity of immunosuppressive drugs. Liver Transpl 7:937–942. https://doi.org/10.1053/jlts.2001.27475

    Article  CAS  PubMed  Google Scholar 

  52. Scott TR, Kronsten VT, Hughes RD, Shawcross DL (2013) Pathophysiology of cerebral oedema in acute liver failure. World J Gastroenterol 19:9240–9255. https://doi.org/10.3748/wjg.v19.i48.9240

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Detry O, Arkadopoulos N, Ting P et al (1999) Intracranial pressure during liver transplantation for fulminant hepatic failure. Transplantation 67:767–770. https://doi.org/10.1097/00007890-199903150-00024

    Article  CAS  PubMed  Google Scholar 

  54. Fu KA, DiNorcia J, Sher L et al (2014) Predictive factors of neurological complications and one-month mortality after liver transplantation. Front Neurol 5:275. https://doi.org/10.3389/fneur.2014.00275

    Article  PubMed  PubMed Central  Google Scholar 

  55. Hori T, Ogura Y, Onishi Y et al (2016) Systemic hemodynamics in advanced cirrhosis: concerns during perioperative period of liver transplantation. World J Hepatol 8:1047–1060. https://doi.org/10.4254/wjh.v8.i25.1047

    Article  PubMed  PubMed Central  Google Scholar 

  56. Olde Damink SWM, Dejong CHC, Jalan R (2009) Review article: hyperammonaemic and catabolic consequences of upper gastrointestinal bleeding in cirrhosis. Aliment Pharmacol Ther 29:801–810. https://doi.org/10.1111/j.1365-2036.2009.03938.x

    Article  CAS  PubMed  Google Scholar 

  57. Clément MA, Bosoi CR, Oliveira MM et al (2020) Bile-duct ligation renders the brain susceptible to hypotension-induced neuronal degeneration: implications of ammonia. J Neurochem 157:561–573. https://doi.org/10.1111/jnc.15290

  58. Magistretti PJ, Allaman I (2015) A cellular perspective on brain energy metabolism and functional imaging. Neuron 86:883–901. https://doi.org/10.1016/j.neuron.2015.03.035

    Article  CAS  PubMed  Google Scholar 

  59. Buis CI, Wiesner RH, Krom RAF et al (2002) Acute confusional state following liver transplantation for alcoholic liver disease. Neurology 59:601–605. https://doi.org/10.1212/WNL.59.4.601

    Article  PubMed  Google Scholar 

  60. Lewis MB, Howdle PD (2003) Neurologic complications of liver transplantation in adults. Neurology 61:1174–1178. https://doi.org/10.1212/01.wnl.0000089487.42870.c6

    Article  CAS  PubMed  Google Scholar 

  61. Wijarnpreecha K, Chesdachai S, Jaruvongvanich V, Ungprasert P (2018) Hepatitis C virus infection and risk of Parkinson’s disease: a systematic review and meta-analysis. Eur J Gastroenterol Hepatol 30:9–13. https://doi.org/10.1097/MEG.0000000000000991

    Article  CAS  PubMed  Google Scholar 

  62. Mathew S, Faheem M, Ibrahim SM et al (2016) Hepatitis C virus and neurological damage. World J Hepatol 8:545–556. https://doi.org/10.4254/wjh.v8.i12.545

    Article  PubMed  PubMed Central  Google Scholar 

  63. Weinstein G, Zelber-Sagi S, Preis SR et al (2018) Association of nonalcoholic fatty liver disease with lower brain volume in healthy middle-aged adults in the Framingham Study. JAMA Neurol 75:97–104. https://doi.org/10.1001/jamaneurol.2017.3229

    Article  PubMed  Google Scholar 

  64. Escartin C, Galea E, Lakatos A et al (2021) Reactive astrocyte nomenclature, definitions, and future directions. Nat Neurosci 24:312–325. https://doi.org/10.1038/s41593-020-00783-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Agarwal AN, Mais DD (2019) Sensitivity and specificity of Alzheimer type II astrocytes in hepatic encephalopathy. Arch Pathol Lab Med. https://doi.org/10.5858/arpa.2018-0455-OA

    Article  PubMed  Google Scholar 

  66. Bajaj JS, Schubert CM, Heuman DM et al (2010) Persistence of cognitive impairment after resolution of overt hepatic encephalopathy. Gastroenterology 138:2332–2340. https://doi.org/10.1053/j.gastro.2010.02.015

    Article  PubMed  Google Scholar 

  67. Chen H-J, Jiao Y, Zhu X-Q et al (2013) Brain dysfunction primarily related to previous overt hepatic encephalopathy compared with minimal hepatic encephalopathy: resting-state functional MR imaging demonstration. Radiology 266:261–270. https://doi.org/10.1148/radiol.12120026

    Article  PubMed  Google Scholar 

  68. Ishihara T, Ito M, Niimi Y et al (2013) Clinical and radiological impact of liver transplantation for brain in cirrhosis patients without hepatic encephalopathy. Clin Neurol Neurosurg 115:2341–2347. https://doi.org/10.1016/j.clineuro.2013.08.015

    Article  PubMed  Google Scholar 

  69. Lin W-C, Hsu T-W, Chen C-L et al (2014) Reestablishing brain networks in patients without overt hepatic encephalopathy after liver transplantation. J Cereb Blood Flow Metab 34:1877–1886. https://doi.org/10.1038/jcbfm.2014.143

    Article  PubMed  PubMed Central  Google Scholar 

  70. Prasad S, Dhiman RK, Duseja A et al (2007) Lactulose improves cognitive functions and health-related quality of life in patients with cirrhosis who have minimal hepatic encephalopathy. Hepatology 45:549–559. https://doi.org/10.1002/hep.21533

    Article  PubMed  Google Scholar 

  71. Chavarria L, Cordoba J (2015) Magnetic resonance imaging and spectroscopy in hepatic encephalopathy. J Clin Exp Hepatol 5:S69–S74. https://doi.org/10.1016/j.jceh.2013.10.001

    Article  PubMed  Google Scholar 

  72. Zeneroli ML, Cioni G, Vezzelli C et al (1987) Prevalence of brain atrophy in liver cirrhosis patients with chronic persistent encephalopathy. Evaluation by computed tomography. J Hepatol 4:283–292. https://doi.org/10.1016/s0168-8278(87)80536-6

    Article  CAS  PubMed  Google Scholar 

  73. García Martínez R, Rovira A, Alonso J et al (2010) A long-term study of changes in the volume of brain ventricles and white matter lesions after successful liver transplantation. Transplantation 89:589–594. https://doi.org/10.1097/TP.0b013e3181ca7bb3

    Article  PubMed  Google Scholar 

  74. Butterworth RF (2007) Neuronal cell death in hepatic encephalopathy. Metab Brain Dis 22:309–320. https://doi.org/10.1007/s11011-007-9072-3

    Article  PubMed  Google Scholar 

  75. Vasan S, Kumar A (2021) Wernicke encephalopathy. In: StatPearls [Internet]. StatPearls Publishing, Treasure Island, FL

  76. Kril JJ, Butterworth RF (1997) Diencephalic and cerebellar pathology in alcoholic and nonalcoholic patients with end-stage liver disease. Hepatology 26:837–841. https://doi.org/10.1002/hep.510260405

    Article  CAS  PubMed  Google Scholar 

  77. Montoliu C, Gonzalez-Escamilla G, Atienza M et al (2012) Focal cortical damage parallels cognitive impairment in minimal hepatic encephalopathy. Neuroimage 61:1165–1175. https://doi.org/10.1016/j.neuroimage.2012.03.041

    Article  PubMed  Google Scholar 

  78. Klejman A, Wegrzynowicz M, Szatmari EM et al (2005) Mechanisms of ammonia-induced cell death in rat cortical neurons: roles of NMDA receptors and glutathione. Neurochem Int 47:51–57. https://doi.org/10.1016/j.neuint.2005.04.006

    Article  CAS  PubMed  Google Scholar 

  79. Takanashi J, Barkovich AJ, Cheng SF et al (2003) Brain MR imaging in neonatal hyperammonemic encephalopathy resulting from proximal urea cycle disorders. AJNR Am J Neuroradiol 24:1184–1187

    PubMed  PubMed Central  Google Scholar 

  80. Dolman CL, Clasen RA, Dorovini-Zis K (1988) Severe cerebral damage in ornithine transcarbamylase deficiency. Clin Neuropathol 7:10–15

    CAS  PubMed  Google Scholar 

  81. Braissant O, McLin VA, Cudalbu C (2013) Ammonia toxicity to the brain. J Inherit Metab Dis 36:595–612. https://doi.org/10.1007/s10545-012-9546-2

    Article  CAS  PubMed  Google Scholar 

  82. Mohammadian F, Firouzjaei MA, Haghani M et al (2019) Inhibition of inflammation is not enough for recovery of cognitive impairment in hepatic encephalopathy: effects of minocycline and ibuprofen. Brain Res Bull 149:96–105. https://doi.org/10.1016/j.brainresbull.2019.04.015

    Article  CAS  PubMed  Google Scholar 

  83. Jeong JH, Kim DK, Lee N-S et al (2018) Neuroprotective effect of nortriptyline in overt hepatic encephalopathy through attenuation of mitochondrial dysfunction. ASN Neuro 10:1759091418810583. https://doi.org/10.1177/1759091418810583

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Khanna A, Trigun SK (2016) Resveratrol normalizes hyperammonemia induced pro-inflammatory and pro-apoptotic conditions in rat brain. Int J Complement Altern Med 4(2):00115. https://doi.org/10.15406/ijcam.2016.04.00115

    Article  Google Scholar 

  85. García-Lezana T, Oria M, Romero-Giménez J et al (2017) Cerebellar neurodegeneration in a new rat model of episodic hepatic encephalopathy. J Cereb Blood Flow Metab 37:927–937. https://doi.org/10.1177/0271678X16649196

    Article  PubMed  Google Scholar 

  86. Yang N, Liu H, Jiang Y et al (2015) Lactulose enhances neuroplasticity to improve cognitive function in early hepatic encephalopathy. Neural Regen Res 10:1457–1462. https://doi.org/10.4103/1673-5374.165516

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Kosenko E, Kaminsky Y, Solomadin I et al (2007) Acute ammonia neurotoxicity in vivo involves increase in cytoplasmic protein P53 without alterations in other markers of apoptosis. J Neurosci Res 85:2491–2499. https://doi.org/10.1002/jnr.21385

    Article  CAS  PubMed  Google Scholar 

  88. Rao KVR, Panickar KS, Jayakumar AR, Norenberg MD (2005) Astrocytes protect neurons from ammonia toxicity. Neurochem Res 30:1311–1318. https://doi.org/10.1007/s11064-005-8803-2

    Article  CAS  PubMed  Google Scholar 

  89. Wang F, Chen S, Jiang Y et al (2018) Effects of ammonia on apoptosis and oxidative stress in bovine mammary epithelial cells. Mutagenesis 33:291–299. https://doi.org/10.1093/mutage/gey023

    Article  CAS  PubMed  Google Scholar 

  90. Cai Z, Zhu X, Zhang G et al (2019) Ammonia induces calpain-dependent cleavage of CRMP-2 during neurite degeneration in primary cultured neurons. Aging 11:4354–4366. https://doi.org/10.18632/aging.102053

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Cai L, Chan JSY, Yan JH, Peng K (2014) Brain plasticity and motor practice in cognitive aging. Front Aging Neurosci. https://doi.org/10.3389/fnagi.2014.00031

    Article  PubMed  PubMed Central  Google Scholar 

  92. Forrest MP, Parnell E, Penzes P (2018) Dendritic structural plasticity and neuropsychiatric disease. Nat Rev Neurosci 19:215–234. https://doi.org/10.1038/nrn.2018.16

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Yuan T-F, Li W-G, Zhang C et al (2020) Targeting neuroplasticity in patients with neurodegenerative diseases using brain stimulation techniques. Transl Neurodegener 9:44. https://doi.org/10.1186/s40035-020-00224-z

    Article  PubMed  PubMed Central  Google Scholar 

  94. Chen J-R, Wang B-N, Tseng G-F et al (2014) Morphological changes of cortical pyramidal neurons in hepatic encephalopathy. BMC Neurosci 15:15. https://doi.org/10.1186/1471-2202-15-15

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Chepkova AN, Sergeeva OA, Görg B et al (2017) Impaired novelty acquisition and synaptic plasticity in congenital hyperammonemia caused by hepatic glutamine synthetase deficiency. Sci Rep 7:40190. https://doi.org/10.1038/srep40190

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Anand KS, Dhikav V (2012) Hippocampus in health and disease: an overview. Ann Indian Acad Neurol 15:239–246. https://doi.org/10.4103/0972-2327.104323

    Article  PubMed  PubMed Central  Google Scholar 

  97. Muñoz MD, Monfort P, Gaztelu JM, Felipo V (2000) Hyperammonemia impairs NMDA receptor-dependent long-term potentiation in the CA1 of rat hippocampus in vitro. Neurochem Res 25:437–441. https://doi.org/10.1023/a:1007547622844

    Article  PubMed  Google Scholar 

  98. Izumi Y, Svrakic N, O’Dell K, Zorumski CF (2013) Ammonia inhibits long-term potentiation via neurosteroid synthesis in hippocampal pyramidal neurons. Neuroscience 233:166–173. https://doi.org/10.1016/j.neuroscience.2012.12.035

    Article  CAS  PubMed  Google Scholar 

  99. Chen S-D, Wu C-L, Hwang W-C, Yang D-I (2017) More insight into BDNF against neurodegeneration: anti-apoptosis, anti-oxidation, and suppression of autophagy. Int J Mol Sci 18(3):545. https://doi.org/10.3390/ijms18030545

    Article  CAS  PubMed Central  Google Scholar 

  100. Lau D, Bengtson CP, Buchthal B, Bading H (2015) BDNF reduces toxic extrasynaptic NMDA receptor signaling via synaptic NMDA receptors and nuclear-calcium-induced transcription of inhba/Activin A. Cell Rep 12:1353–1366. https://doi.org/10.1016/j.celrep.2015.07.038

    Article  CAS  PubMed  Google Scholar 

  101. Tanqueiro SR, Ramalho RM, Rodrigues TM et al (2018) Inhibition of NMDA receptors prevents the loss of BDNF function induced by Amyloid β. Front Pharmacol 9:237. https://doi.org/10.3389/fphar.2018.00237

    Article  PubMed  PubMed Central  Google Scholar 

  102. Wilasco MIA, Uribe-Cruz C, Santetti D et al (2016) Brain-derived neurotrophic factor in children and adolescents with cirrhosis due to biliary atresia. Ann Nutr Metab 69:1–8. https://doi.org/10.1159/000447364

    Article  CAS  PubMed  Google Scholar 

  103. Dhanda S, Gupta S, Halder A et al (2018) Systemic inflammation without gliosis mediates cognitive deficits through impaired BDNF expression in bile duct ligation model of hepatic encephalopathy. Brain Behav Immun 70:214–232. https://doi.org/10.1016/j.bbi.2018.03.002

    Article  CAS  PubMed  Google Scholar 

  104. Galland F, Negri E, Da Ré C et al (2017) Hyperammonemia compromises glutamate metabolism and reduces BDNF in the rat hippocampus. NeuroToxicol 62:46–55. https://doi.org/10.1016/j.neuro.2017.05.006

    Article  CAS  Google Scholar 

  105. Verkhratsky A, Zorec R, Parpura V (2017) Stratification of astrocytes in healthy and diseased brain. Brain Pathol 27:629–644. https://doi.org/10.1111/bpa.12537

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Verkhratsky A, Nedergaard M (2018) Physiology of astroglia. Physiol Rev 98:239–389. https://doi.org/10.1152/physrev.00042.2016

    Article  CAS  PubMed  Google Scholar 

  107. Butterworth RF (2002) Glutamate transporters in hyperammonemia. Neurochem Int 41:81–85. https://doi.org/10.1016/s0197-0186(02)00027-x

    Article  CAS  PubMed  Google Scholar 

  108. Rovira A, Alonso J, Córdoba J (2008) MR imaging findings in hepatic encephalopathy. Am J Neuroradiol 29:1612–1621. https://doi.org/10.3174/ajnr.A1139

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Jaeger V, DeMorrow S, McMillin M (2019) The direct contribution of astrocytes and microglia to the pathogenesis of hepatic encephalopathy. J Clin Transl Hepatol 7:352–361. https://doi.org/10.14218/JCTH.2019.00025

    Article  PubMed  PubMed Central  Google Scholar 

  110. Rose CF, Verkhratsky A, Parpura V (2013) Astrocyte glutamine synthetase: pivotal in health and disease. Biochem Soc Trans 41:1518–1524. https://doi.org/10.1042/BST20130237

    Article  CAS  PubMed  Google Scholar 

  111. Thumburu KK, Dhiman RK, Vasishta RK et al (2014) Expression of astrocytic genes coding for proteins implicated in neural excitation and brain edema is altered after acute liver failure. J Neurochem 128:617–627. https://doi.org/10.1111/jnc.12511

    Article  CAS  PubMed  Google Scholar 

  112. Chastre A, Jiang W, Desjardins P, Butterworth RF (2010) Ammonia and proinflammatory cytokines modify expression of genes coding for astrocytic proteins implicated in brain edema in acute liver failure. Metab Brain Dis 25:17–21. https://doi.org/10.1007/s11011-010-9185-y

    Article  CAS  PubMed  Google Scholar 

  113. Jayakumar AR, Tong XY, Curtis KM et al (2014) Decreased astrocytic thrombospondin-1 secretion after chronic ammonia treatment reduces the level of synaptic proteins: in vitro and in vivo studies. J Neurochem 131:333–347. https://doi.org/10.1111/jnc.12810

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Norenberg MD (1987) The role of astrocytes in hepatic encephalopathy. Neurochem Pathol 6:13–33. https://doi.org/10.1007/BF02833599

    Article  CAS  PubMed  Google Scholar 

  115. Jover R, Rodrigo R, Felipo V et al (2006) Brain edema and inflammatory activation in bile duct ligated rats with diet-induced hyperammonemia: a model of hepatic encephalopathy in cirrhosis. Hepatology 43:1257–1266. https://doi.org/10.1002/hep.21180

    Article  CAS  PubMed  Google Scholar 

  116. Görg B, Karababa A, Häussinger D (2018) Hepatic encephalopathy and astrocyte senescence. J Clin Exp Hepatol 8:294–300. https://doi.org/10.1016/j.jceh.2018.05.003

    Article  PubMed  PubMed Central  Google Scholar 

  117. Görg B, Karababa A, Shafigullina A et al (2015) Ammonia-induced senescence in cultured rat astrocytes and in human cerebral cortex in hepatic encephalopathy: hepatic encephalopathy and senescence. Glia 63:37–50. https://doi.org/10.1002/glia.22731

    Article  PubMed  Google Scholar 

  118. Murthy CR, Rama Rao KV, Bai G, Norenberg MD (2001) Ammonia-induced production of free radicals in primary cultures of rat astrocytes. J Neurosci Res 66:282–288. https://doi.org/10.1002/jnr.1222

    Article  CAS  PubMed  Google Scholar 

  119. Mederos S, González-Arias C, Perea G (2018) Astrocyte–neuron networks: a multilane highway of signaling for homeostatic brain function. Front Synaptic Neurosci 10:45. https://doi.org/10.3389/fnsyn.2018.00045

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Oberheim NA, Takano T, Han X et al (2009) Uniquely hominid features of adult human astrocytes. J Neurosci 29:3276–3287. https://doi.org/10.1523/JNEUROSCI.4707-08.2009

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Lemberg A, Fernández MA (2009) Hepatic encephalopathy, ammonia, glutamate, glutamine and oxidative stress. Ann Hepatol 8:95–102

    Article  PubMed  Google Scholar 

  122. Kritis AA, Stamoula EG, Paniskaki KA, Vavilis TD (2015) Researching glutamate – induced cytotoxicity in different cell lines: a comparative/collective analysis/study. Front Cell Neurosci 9:91. https://doi.org/10.3389/fncel.2015.00091

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Vaquero J, Butterworth RF (2006) The brain glutamate system in liver failure. J Neurochem 98:661–669. https://doi.org/10.1111/j.1471-4159.2006.03918.x

    Article  CAS  PubMed  Google Scholar 

  124. Kimelberg HK (2005) Astrocytic swelling in cerebral ischemia as a possible cause of injury and target for therapy. Glia 50:389–397. https://doi.org/10.1002/glia.20174

    Article  PubMed  Google Scholar 

  125. Rodrigo R, Cauli O, Boix J et al (2009) Role of NMDA receptors in acute liver failure and ammonia toxicity: therapeutical implications. Neurochem Int 55:113–118. https://doi.org/10.1016/j.neuint.2009.01.007

    Article  CAS  PubMed  Google Scholar 

  126. Ahmadi S, Poureidi M, Rostamzadeh J (2015) Hepatic encephalopathy induces site-specific changes in gene expression of GluN1 subunit of NMDA receptor in rat brain. Metab Brain Dis 30:1035–1041. https://doi.org/10.1007/s11011-015-9669-x

    Article  CAS  PubMed  Google Scholar 

  127. Felipo V (2006) Contribution of altered signal transduction associated to glutamate receptors in brain to the neurological alterations of hepatic encephalopathy. World J Gastroenterol 12:7737–7743. https://doi.org/10.3748/wjg.v12.i48.7737

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Hermenegildo C, Monfort P, Felipo V (2000) Activation of N-methyl-D-aspartate receptors in rat brain in vivo following acute ammonia intoxication: characterization by in vivo brain microdialysis. Hepatology 31:709–715. https://doi.org/10.1002/hep.510310322

    Article  CAS  PubMed  Google Scholar 

  129. Li Y, Maher P, Schubert D (1997) Requirement for cGMP in nerve cell death caused by glutathione depletion. J Cell Biol 139:1317–1324. https://doi.org/10.1083/jcb.139.5.1317

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Montoliu C, Llansola M, Monfort P et al (2001) Role of nitric oxide and cyclic GMP in glutamate-induced neuronal death. Neurotox Res 3:179–188. https://doi.org/10.1007/BF03033190

    Article  CAS  PubMed  Google Scholar 

  131. Lavoie J, Giguère J-F, Layrargues GP, Butterworth RF (1987) Activities of neuronal and astrocytic marker enzymes in autopsied brain tissue from patients with hepatic encephalopathy. Metab Brain Dis 2:283–290. https://doi.org/10.1007/BF00999698

    Article  CAS  PubMed  Google Scholar 

  132. Rackayova V, Braissant O, Rougemont A-L et al (2020) Longitudinal osmotic and neurometabolic changes in young rats with chronic cholestatic liver disease. Sci Rep 10:7536. https://doi.org/10.1038/s41598-020-64416-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Bosoi CR, Rose CF (2013) Brain edema in acute liver failure and chronic liver disease: similarities and differences. Neurochem Int 62:446–457. https://doi.org/10.1016/j.neuint.2013.01.015

    Article  CAS  PubMed  Google Scholar 

  134. Häussinger D, Kircheis G, Fischer R et al (2000) Hepatic encephalopathy in chronic liver disease: a clinical manifestation of astrocyte swelling and low-grade cerebral edema? J Hepatol 32:1035–1038. https://doi.org/10.1016/s0168-8278(00)80110-5

    Article  PubMed  Google Scholar 

  135. Ventura-Cots M, Carmona I, Moreno C et al (2017) Duration of the acute hepatic encephalopathy episode determines survival in cirrhotic patients. Ther Adv Gastroenterol 11:1–12. https://doi.org/10.1177/1756283X17743419

    Article  Google Scholar 

  136. Patwardhan VR, Jiang ZG, Risech-Neiman Y et al (2016) Serum ammonia is associated with transplant-free survival in hospitalized patients with acutely decompensated cirrhosis [corrected]. J Clin Gastroenterol 50:345–350. https://doi.org/10.1097/MCG.0000000000000443

    Article  PubMed  Google Scholar 

  137. Mookerjee RP, Sheikh SM, Agarwal B et al (2019) Prognostic role of ammonia in patients with cirrhosis. Hepatology 70:982–994. https://doi.org/10.1002/hep.30534

    Article  CAS  PubMed  Google Scholar 

  138. Vierling JM, Mokhtarani M, Brown RS et al (2016) Fasting blood ammonia predicts risk and frequency of hepatic encephalopathy episodes in patients with cirrhosis. Clin Gastroenterol Hepatol 14:903-906.e1. https://doi.org/10.1016/j.cgh.2015.11.018

    Article  CAS  PubMed  Google Scholar 

  139. Dasarathy S, Mookerjee RP, Rackayova V et al (2017) Ammonia toxicity: from head to toe? Metab Brain Dis 32:529–538. https://doi.org/10.1007/s11011-016-9938-3

    Article  CAS  PubMed  Google Scholar 

  140. Lucidi C, Ginanni Corradini S, Abraldes JG et al (2016) Hepatic encephalopathy expands the predictivity of model for end-stage liver disease in liver transplant setting: evidence by means of 2 independent cohorts. Liver Transplant 22:1333–1342. https://doi.org/10.1002/lt.24517

    Article  Google Scholar 

  141. Chavarria L, Alonso J, García-Martínez R et al (2011) Biexponential analysis of diffusion-tensor imaging of the brain in patients with cirrhosis before and after liver transplantation. Am J Neuroradiol 32:1510–1517. https://doi.org/10.3174/ajnr.A2533

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge the financial support of Canadian Institutes of Health Research (CIHR). Figures are created with BioRender.com.

Funding

Canadian Institutes of Health Research (CIHR).

Author information

Authors and Affiliations

Authors

Contributions

RO, FT, and CFR, contributed to the review concept and wrote the manuscript review.

Corresponding author

Correspondence to Christopher F. Rose.

Ethics declarations

Conflict of interest

The authors declare that there is no conflict of interest.

Additional information

Special issue: In Honor of Vladimir Parpura.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ochoa-Sanchez, R., Tamnanloo, F. & Rose, C.F. Hepatic Encephalopathy: From Metabolic to Neurodegenerative. Neurochem Res 46, 2612–2625 (2021). https://doi.org/10.1007/s11064-021-03372-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11064-021-03372-4

Keywords

Navigation