Log in

Efficient production of 14α-OH-AD by engineered Mycolicibacterium neoaurum via coupled cofactor and reconstructed electron transport system

  • Original Article
  • Published:
Systems Microbiology and Biomanufacturing Aims and scope Submit manuscript

Abstract

14α-hydroxy-androst-4-ene-3,17-dione (14α-OH-AD) is an important precursor for the synthesis of steroid drugs with anti-cancer and carcinolytic activity. Initially, 14α-OH-AD was mostly synthesized by whole-cell fermentation of mold fungi using androstenedione (AD) as a substrate, which had difficulties in product isolation and purification as well as problems of high production cost. In this study, the source of the 14α-hydroxylase gene was expanded. And 14α-hydroxylase genes were heterologously expressed in Mycolicibacterium neoaurum (MNR) M3ΔksdD, which enabled the one-step biotransformation from the cheap substrate phytosterols (PS) to 14α-OH-AD, reducing the difficulty of product purification and production cost. What is more, to alleviate the problem of poor activity of 14α-hydroxylase, the 14α-hydroxylase gene was co-expressed with the electron transport chain element genes and the coenzyme regeneration genes, and a superior engineered strain MNR M3ΔksdD/pMV261-14α-G6PDH was obtained. Finally, the transformation conditions were optimized for the transformation of PS by the engineered strain. The molar yield of 14α-OH-AD reached to 60.4 ± 2.3% (about 0.22 g/L productivity). This study investigated for the first time the effects of the tandem electron transport chain element genes and the tandem coenzyme regeneration genes on the 14α-hydroxylation reaction, providing a theoretical basis for the industrial production of 14α-OH-AD.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data availability

All data generated or analyzed during this study are included in this published article and its supplementary information files.

References

  1. Fernandes P, Cruz A, Angelova B, Pinheiro HM, Cabral JMS. Microbial conversion of steroid compounds: recent developments. Enzyme Microb Technol. 2003;32(6):688–705. https://doi.org/10.1016/S0141-0229(03)00029-2.

    Article  CAS  Google Scholar 

  2. Bhatti HN, Khera RA. Biological transformations of steroidal compounds: a review. Steroids. 2012;77(12):1267–90. https://doi.org/10.1016/j.steroids.2012.07.018.

    Article  CAS  PubMed  Google Scholar 

  3. Templeton JF, Sashi Kumar VP, Bose D, Smyth DD, Kim RS, Labella FS. Digitalis-like pregnanes cardiac and renal effects of a glycoside of 14 beta-hydroxyprogesterone. Can J Physiol Pharm. 1988;66(11):1420–4. https://doi.org/10.1139/y88-231.

    Article  CAS  Google Scholar 

  4. Takara Y, Masaaki F, Yasuko F, Jo K, Masamichi N, Makoto Y, Hiroji O. Inhibitory effect of a new androstenedione derivative, 14α-hydroxy-4-androstene-3,6,17-trione (14α-OH-AT) on aromatase activity of human uterine tumors. J Steroid Biochem. 1990;36(6):517–21. https://doi.org/10.1016/0022-4731(90)90167-Q.

    Article  Google Scholar 

  5. Parez V, Sutton D. Recent investigations of the efficacy and safety of proligestone for the prevention of oestrus and pseudopregnancy in bitches. J Reprod Fertil Suppl. 1993;47:544–5.

    CAS  PubMed  Google Scholar 

  6. Karpova NV, Andryushina VA, Stytsenko TS, Druzhinina AV, Feofanova TD, Kurakov AV. A search for microscopic fungi with directed hydroxylase activity for the synthesis of steroid drugs. Appl Biochem Biotechnol. 2016;52(3):316–23. https://doi.org/10.1134/s000368381603008x.

    Article  CAS  Google Scholar 

  7. Kollerov VV, Fokina VV, Sukhodolskaya GV, Shutov AA, Donova MV. 11β-hydroxylation of 6α-fluoro-16α-methyl-deoxy-corticosterone 21-acetate by filamentous fungi. Appl Biochem Microb. 2015;51(2):169–79. https://doi.org/10.1134/S0003683815020106.

    Article  CAS  Google Scholar 

  8. Kolet SP, Haldar S, Niloferjahan S, Thulasiram HV. Mucor hiemalis mediated 14α-hydroxylation on steroids: in vivo and in vitro investigations of 14α-hydroxylase activity. Steroids. 2014;85:6–12. https://doi.org/10.1016/j.steroids.2014.04.002.

    Article  CAS  PubMed  Google Scholar 

  9. Suzuki K, Sanga K, Chikaoka Y, Itagaki E. Purification and properties of cytochrome P-450(P-450lun) catalyzing steroid 11 beta hydroxylation in Curvularia lunata. Biochim Biophys Acta. 1993;1203(2):215–23. https://doi.org/10.1016/0167-4838(93)90086-7.

    Article  CAS  PubMed  Google Scholar 

  10. Chen J, Tang JL, ** YY, Dai ZB, Bi CH, Chen X, Fan F, Zhang XL. Production of 14α-hydroxysteroids by a recombinant Saccharomyces cerevisiae biocatalyst expressing of a fungal steroid 14α-hydroxylation system. Appl Microbiol Biotechnol. 2019;103(20):8363–74. https://doi.org/10.1007/s00253-019-10076-x.

    Article  CAS  PubMed  Google Scholar 

  11. Tang R, Shen YB, **a ML, Tu L, Luo JM, Geng YH, Gao T, Zhou HJ, Zhao YQ, Wang M. A highly efficient step-wise biotransformation strategy for direct conversion of phytosterol to boldenone. Bioresour Technol. 2019;283:242–50. https://doi.org/10.1016/j.biortech.2019.03.058.

    Article  CAS  PubMed  Google Scholar 

  12. Sripalakit P, Saraphanchotiwitthaya A. Utilization of phytosterol-containing vegetable oils as a substrate for production of androst-4-ene-3,17-dione and androsta-1,4-diene-3,17-dione by using Mycobacterium sp. Biocatal Agric Biotechnol. 2016;8:18–23. https://doi.org/10.1016/j.bcab.2016.07.006.

    Article  Google Scholar 

  13. Felpeto-Santero C, Beatriz G, José LG. Engineering the steroid hydroxylating system from Cochliobolus lunatus in Mycolicibacterium smegmatis. Microorganisms. 2021;9(7):1–13. https://doi.org/10.3390/microorganisms9071499.

    Article  CAS  Google Scholar 

  14. **e RL, Shen YB, Qin N, Wang YB, Su LQ, Wang M. Genetic differences in ksdD influence on the ADD/AD ratio of Mycobacterium neoaurum. J Ind Microbiol Biotechnol. 2015;42(4):507–13. https://doi.org/10.1007/s10295-014-1577-2.

    Article  CAS  PubMed  Google Scholar 

  15. Zhao YQ, Shen YB, Ma S, Luo JM, Ouyang W, Zhou HJ, Tang R, Wang M. Production of 5α-androstene-3,17-dione from phytosterols by co-expression of 5α-reductase and glucose-6-phosphate dehydrogenase in engineered Mycobacterium neoaurum. Green Chem. 2019;21(7):1809–15. https://doi.org/10.1039/C8GC03489C.

    Article  CAS  Google Scholar 

  16. Tang R, Ren XX, **a ML, Shen YB, Tu L, Luo JM, Zhang Q, Wang YY, Ji PL, Wang M. Efficient one-step biocatalytic multienzyme cascade strategy for direct conversion of phytosterol to C-17-hydroxylated steroids. Appl Environ Microb. 2021;87(24):e00321-e421. https://doi.org/10.1128/AEM.00321-21.

    Article  CAS  Google Scholar 

  17. Hannemann F, Bichet A, Ewen KM, Bernhardt R. Cytochrome P450 systems–biological variations of electron transport chains. Biochim Biophys Acta. 2007;1770(3):330–44. https://doi.org/10.1016/j.bbagen.2006.07.017.

    Article  CAS  PubMed  Google Scholar 

  18. Petrič S, Hakki T, Bernhardt R, Zigon D, Crešnar B. Discovery of a steroid 11α-hydroxylase from Rhizopus oryzae and its biotechnological application. J Biotechnol. 2010;150(3):428–37. https://doi.org/10.1016/j.jbiotec.2010.09.928.

    Article  CAS  PubMed  Google Scholar 

  19. Niraula NP, Bhattarai S, Lee NR, Sohng JK, Oh TJ. Biotransformation of flavone by CYP105P2 from Streptomyces peucetius. J Microbiol Biotechnol. 2012;22(8):1059–65. https://doi.org/10.4014/jmb.1201.01037.

    Article  CAS  PubMed  Google Scholar 

  20. Hakki T, Zearo S, Drăgan CA, Bureik M, Bernhardt R. Coexpression of redox partners increases the hydrocortisone (cortisol) production efficiency in CYP11B1 expressing fission yeast Schizosaccharomyces pombe. J Biotechnol. 2008;133(3):351–9. https://doi.org/10.1016/j.jbiotec.2007.06.022.

    Article  CAS  PubMed  Google Scholar 

  21. Gold ND, Fossati E, Hansen CC, DiFalco M, Douchin V, Martin VJJ. A combinatorial approach to study cytochrome P450 enzymes for de novo production of steroid glucosides in baker’s yeast. ACS Synth Biol. 2018;7(12):2918–29. https://doi.org/10.1021/acssynbio.8b00470.

    Article  CAS  PubMed  Google Scholar 

  22. Theron CW, Labuschagné M, Albertyn J, Smit MS. Heterologous coexpression of the benzoate-para-hydroxylase CYP53B1 with different cytochrome P450 reductases in various yeasts. Microb Biotechnol. 2019;12(6):1126–38. https://doi.org/10.1111/1751-7915.13321.

    Article  CAS  PubMed  Google Scholar 

  23. Jiang L, Huang L, Cai J, Xu Z, Lian J. Functional expression of eukaryotic cytochrome P450s in yeast. Biotechnol Bioeng. 2020;118(3):1050–65. https://doi.org/10.1002/bit.27630.

    Article  CAS  PubMed  Google Scholar 

  24. Sagadin T, Riehm JL, Milhim M, Hutter MC, Bernhardt R. Binding modes of CYP106A2 redox partners determine differences in progesterone hydroxylation product patterns. Commun Biol. 2018;1(1):99. https://doi.org/10.1038/s42003-018-0104-9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. van den Brink HM, van Gorcom RF, van den Hondel CA, Punt PJ. Cytochrome P450 enzyme systems in fungi. Fungal Genet Biol. 1998;23(1):1–17. https://doi.org/10.1006/fgbi.1997.1021.

    Article  PubMed  Google Scholar 

  26. Knaus T, Paul CE, Levy CW, de Vries S, Mutti FG, Hollmann F, Scrutton NS. Better than nature: nicotinamide biomimetics that outperform natural coenzymes. J Am Chem Soc. 2016;138(3):1033–9. https://doi.org/10.1021/jacs.5b12252.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Guo HW, Han JY, Wu JJ, Chen HW. Heteroexpression and functional characterization of glucose 6-phosphate dehydrogenase from industrial Aspergillus oryzae. J Microbiol Biotechnol. 2019;29(4):577–86. https://doi.org/10.4014/jmb.1812.12064.

    Article  CAS  PubMed  Google Scholar 

  28. Jiang HW, Chen Q, Pan J, Zheng GW, Xu JH. Rational engineering of formate dehydrogenase substrate/cofactor affinity for better performance in NADPH regeneration. Appl Biochem Biotechnol. 2020;192(2):530–43. https://doi.org/10.1007/s12010-020-03317-7.

    Article  CAS  PubMed  Google Scholar 

  29. Pongtharangkul T, Chuekitkumchorn P, Suwanampa N, Payongsri P, Honda K, Panbangred W. Kinetic properties and stability of glucose dehydrogenase from Bacillus amyloliquefaciens SB5 and its potential for cofactor regeneration. AMB Expr. 2015;5(1):68. https://doi.org/10.1186/s13568-015-0157-9.

    Article  CAS  Google Scholar 

  30. Hilberath T, Raffaele A, Windeln LM, Urlacher VB. Evaluation of P450 monooxygenase activity in lyophilized recombinant E. coli cells compared to resting cells. AMB Expr. 2021. https://doi.org/10.1186/s13568-021-01319-0.

    Article  Google Scholar 

  31. Pham SQ, Gao PF, Li Z. Engineering of recombinant E. coli cells co-expressing P450pyrTM monooxygenase and glucose dehydrogenase for highly regio and stereoselective hydroxylation of alicycles with cofactor recycling. Biotechnol Bioeng. 2013;110(2):363–73. https://doi.org/10.1002/bit.24632.

    Article  CAS  PubMed  Google Scholar 

  32. Shen YB, Wang M, Li HN, Wang YB, Luo JM. Influence of hydroxypropyl-β-cyclodextrin on phytosterol biotransformation by different strains of Mycobacterium neoaurum. J Ind Microbiol Biotechnol. 2012;39(9):1253–9. https://doi.org/10.1007/s10295-012-1130-0.

    Article  CAS  PubMed  Google Scholar 

  33. Felpeto-Santero C, Galán B, Luengo JM, Fernández-Cañon JM, Del Cerro C, Medrano FJ, García JL. Identification and expression of the 11β-steroid hydroxylase from Cochliobolus lunatus in Corynebacterium glutamicum. Microb Biotechnol. 2019;12(5):856–68. https://doi.org/10.1111/1751-7915.13428.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Andryushina VA, Voishvillo NE, Druzhinina AV, Stytsenko TS, Yaderets VV, Petrosyan MA, Zeinalov OA. 14α-Hydroxylation of steroids by mycelium of the mold fungus Curvularia lunata (VKPM F-981) to produce precursors for synthesizing new steroidal drugs. Pharm Chem J. 2013;47(2):103–8. https://doi.org/10.1007/s11094-013-0905-6.

    Article  CAS  Google Scholar 

  35. Andriushina VA, Iaderets VV, Stytsenko TS, Druzhinina AV, Voĭshvillo NE. Effect of the steroid molecule structure on the direction of its hydroxylation by the fungus Curvularia lunata. Prikl Biokhim Mikrobiol. 2013;49(4):382–90. https://doi.org/10.7868/s055510991304003x.

    Article  CAS  PubMed  Google Scholar 

  36. Faramarzi MA, Badiee M, Yazd MT, Amini M, Torshabi M. Formation of hydroxysteroid derivatives from androst-4-en-3,17-dione by the filamentous fungus Mucor racemosus. J Mol Catal B Enzym. 2008;50(1):7–12. https://doi.org/10.1016/j.molcatb.2007.09.017.

    Article  CAS  Google Scholar 

  37. Guengerich FP. Rate-limiting steps in cytochrome P450 catalysis. Biol Chem. 2002;383(10):1553–64. https://doi.org/10.1515/BC.2002.175.

    Article  CAS  PubMed  Google Scholar 

  38. Han L, Liang B. New approaches to NAD(P)H regeneration in the biosynthesis systems. World J Microbiol Biotechnol. 2018;34(10):141. https://doi.org/10.1007/s11274-018-2530-8.

    Article  CAS  PubMed  Google Scholar 

  39. Chen KX, Liu C, Shao ML, Xu ZH, Yang TW, Rao ZM. Enhancing the biotransformation efficiency of human CYP17A1 in Pichia pastoris by co-expressing CPR and glucose-6-phosphate dehydrogenase simultaneously. Syst Microbiol and Biomanuf. 2021. https://doi.org/10.1007/s43393-021-00063-7.

    Article  Google Scholar 

  40. Su LQ, Shen YB, Zhang WK, Gao T, Shang ZH, Wang M. Cofactor engineering to regulate NAD+/NADH ratio with its application to phytosterols biotransformation. Microb Cell Fact. 2017;16(1):182. https://doi.org/10.1186/s12934-017-0796-4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Zhou XL, Zhang Y, Shen YB, Zhang X, Xu SP, Shang ZH, **a ML, Wang M. Efficient production of androstenedione by repeated batch fermentation in waste cooking oil media through regulating NAD+/NADH ratio and strengthening cell vitality of Mycobacterium neoaurum. Bioresour Technol. 2019;279:209–17. https://doi.org/10.1016/j.biortech.2019.01.144.

    Article  CAS  PubMed  Google Scholar 

  42. Han X, Tu YQ, Wu HY, Zhang LJ, Zhao SN. Gene knockout revealed the role of gene feoA in cell growth and division of Lactobacillus delbrueckii subsp. bulgaricus. Arch Microbiol. 2021;203(6):3541–9. https://doi.org/10.1007/s00203-021-02345-z.

    Article  CAS  PubMed  Google Scholar 

  43. Lee HC, Kim JS, Jang W, Kim SY. High NADPH/NADP+ ratio improves thymidine production by a metabolically engineered Escherichia coli strain. J Biotechnol. 2010;149(1–2):24–32. https://doi.org/10.1016/j.jbiotec.2010.06.011.

    Article  CAS  PubMed  Google Scholar 

  44. Yoshikawa Y, Nasuno R, Takagi H. An NADPH-independent mechanism enhances oxidative and nitrosative stress tolerance in yeast cells lacking glucose-6-phosphate dehydrogenase activity. Yeast. 2021;38(7):414–23. https://doi.org/10.1002/yea.3558.

    Article  CAS  PubMed  Google Scholar 

  45. Wang L, Shen Y, Zhang YX, Wei QX, Liang Y, Tian HL, Wu DP, Yuan XQ, Yuan QP, Wang JS. A novel surface treatment of carbon fiber with fenton reagent oxidization for improved cells immobilization and xylitol fermentation. Micropor Mesopor Mat. 2021. https://doi.org/10.1016/j.micromeso.2021.111318.

    Article  Google Scholar 

  46. Egorova OV, Nikolayeva VM, Sukhodolskaya GV, Donova M. Transformation of C 19-steroids and testosterone production bysterol-transforming strains of Mycobacterium spp. J Mol Catal B Enzym. 2009;57(1):198–203. https://doi.org/10.1016/j.molcatb.2008.09.003.

    Article  CAS  Google Scholar 

  47. Zhou XL, Zhang Y, Shen YB, Zhang X, Xu XP, Shang ZH, **a ML, Wang M. Efficient production of androstenedione by repeated batch fermentation in waste cooking oil media through regulating NAD+/NADH ratio and strengthening cell vitality of Mycobacterium neoaurum. Bioresource Technol. 2019;279:209–17. https://doi.org/10.1016/j.biortech.2019.01.144.

    Article  CAS  Google Scholar 

  48. Ma YH, Wang M, Fan Z, Shen YB, Zhang LT. The influence of host-guest inclusion complex formation on the biotransformation of cortisone acetate Delta(1)-dehydrogenation. J Steroid Biochem Mol Biol. 2009;117(4–5):146–51. https://doi.org/10.1016/j.jsbmb.2009.08.007.

    Article  CAS  PubMed  Google Scholar 

  49. Jeon H, Durairaj P, Lee D, Ahsan MM, Yun H. Improved NADPH regeneration for fungal cytochrome P450 monooxygenase by co-expressing bacterial glucose dehydrogenase in resting-cell biotransformation of recombinant yeast. J Microbiol Biotechnol. 2016;26(12):2076–86. https://doi.org/10.4014/jmb.1605.05090.

    Article  CAS  PubMed  Google Scholar 

  50. Tang R, Shen Y, Wang M, Zhou H, Zhao Y. Highly efficient synthesis of boldenone from androst-4-ene-3,17-dione by Arthrobacter simplex and Pichia pastoris ordered biotransformation. Bioprocess Biosyst Eng. 2019;42(6):933–40. https://doi.org/10.1007/s00449-019-02092-y.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Key R&D Program of China, Synthetic Biology Research (no. 2019YFA0905300); the National Natural Science Foundation of China (21978221); the Tian** Synthetic Biotechnology Innovation Capacity Improvement Project (TSBICIP-KJGG-001-08); and the Innovative Research Team of Tian** Municipal Education Commission (TD13-5013) and the Tian** Municipal Science and Technology Commission (21ZYJDJC00030).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yanbing Shen or Min Wang.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 3175 KB)

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, C., Shen, Y., Gao, Y. et al. Efficient production of 14α-OH-AD by engineered Mycolicibacterium neoaurum via coupled cofactor and reconstructed electron transport system. Syst Microbiol and Biomanuf 3, 358–369 (2023). https://doi.org/10.1007/s43393-022-00119-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s43393-022-00119-2

Keywords

Navigation