Log in

Enhancing the biotransformation efficiency of human CYP17A1 in Pichia pastoris by co-expressing CPR and glucose-6-phosphate dehydrogenase simultaneously

  • Original Article
  • Published:
Systems Microbiology and Biomanufacturing Aims and scope Submit manuscript

Abstract

Steroids are a widely used class of drugs, and their hydroxylation modification has important pharmacological significance. Cytochrome P450 is the core enzyme for hydroxylation modification of steroid molecules, but its use is significantly restricted because of low activity and poor catalytic efficiency. In the present study, we optimized the codons of the human CYP17A1 (hCYP17A1) gene and performed its functional expression in Pichia pastoris GS115. The GS115-hCYP17A1 cells exhibited activities of dual function, and the following two products were detected: 17α-hydroxyprogesterone (17-HP, titer: 40.12 ± 3.16 mg/L) and androstenedione (AD, titer: 4.70 ± 0.31 mg/L). Subsequently, we compared the activity of hCYP17A1 co-expression with NADPH-cytochrome P450 oxidoreductases (CPRs) from five different strains of P. pastoris. Moreover, to strengthen the NADPH regeneration system, glucose-6-phosphate dehydrogenase (G6PDH) from three different species was introduced into the pathway from progesterone to 17-HP and AD by the GS115-hCYP17A1 cells. After optimizing CPRs and G6PDHs, three foreign proteins were co-expressed in the host cell, namely CYP17A1, CPRYP from Yorkshire pig, and G6PDHc from Candida tropicalis. Finally, the substrate conversion efficiency was found to be increased by 2.21-fold (46.88%) of that of the starting strains. We obtained a heterologous expression system with the highest biotransformation efficiency achieved to date. This work provided an essential reference for the study of the introduction of crucial enzyme systems into heterologous model organisms to construct an efficient steroid biotransformation system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Liu C, Shao ML, Osire T, Xu ZH, Rao ZM. Identification of bottlenecks in 4-androstene-3,17-dione/1,4-androstadiene-3,17-dione synthesis by Mycobacterium neoaurum JC-12 through comparative proteomics. J Biosci Bioeng. 2021;131(3):264–70. https://doi.org/10.1016/j.jbiosc.2020.10.006.

    Article  CAS  PubMed  Google Scholar 

  2. Jiradej M, Suda S, Aranya M. Enhancement of 17α-hydroxyprogesterone production from progesterone by biotransformation using hydroxypropyl-β-cyclodextrin complexation technique. J Steroid Biochem. 2008;112(4–5):201–4.

    Google Scholar 

  3. Li X, Cheng XY, Peng F, Chen T, Su ZD. Research progress on transformation pathway and strain modification of phytosterols from Mycobacterinm. J Ind Microbio. 2021;51(01):50–6. https://doi.org/10.3969/j.issn.1001-6678.2021.01.008.

    Article  Google Scholar 

  4. Bernhardt R. Cytochromes P450 as versatile biocatalysts. J Biotech. 2006;124(1):128–45. https://doi.org/10.1016/j.jbiotec.2006.01.026.

    Article  CAS  Google Scholar 

  5. Larbat R, Kellner S, Specker S, Hehn A, Gontier E, Hans J, Bourgaud F, Matern U. Molecular cloning and functional characterization of psoralen synthase, the first committed monooxygenase of furanocoumarin biosynthesis. J Biol Chem. 2007;282(1):542–54. https://doi.org/10.1074/jbc.m604762200.

    Article  CAS  PubMed  Google Scholar 

  6. Wrońska N, Brzostek A, Szewczyk R, Soboń A, Dziadek J, Lisowska K. The role of fadD19 and echA19 in sterol side chain degradation by Mycobacterium smegmatis. Molecules. 2016;21(5):598. https://doi.org/10.3390/molecules21050598.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Chang QN, Yao ZD, Wang Y, Yuan YJ. Engineering P450 for specific oxidation of steroids. China Biotech. 2018;38(12):99–112.

    Google Scholar 

  8. Vanegas KG, Larsen AB, Eichenberger M, Fischer D. Indirect and direct routes to C-glycosylated flavones in Saccharomyces cerevisiae. Microb Cell Fact. 2018;17(1):107. https://doi.org/10.1186/s12934-018-0952-5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Putkaradze N, Kiss FM, Schmitz D, Zapp J, Bernhardt R. Biotransformation of prednisone and dexamethasone by cytochrome P450 based systems - Identification of new potential drug candidates. J Biotech. 2017;242:101–10. https://doi.org/10.1016/j.jbiotec.2016.12.011.

    Article  CAS  Google Scholar 

  10. Brixius-Anderko S, Schiffer L, Hannemann F, Janocha B, Bernhardt R. A CYP21A2 based whole-cell system in Escherichia coli for the biotechnological production of premedrol. Microb Cell Fact. 2015. https://doi.org/10.1186/s12934-015-0333-2.

    Article  PubMed  PubMed Central  Google Scholar 

  11. Wizdor A, Ko ET. Transformations of 4- and 17α-substituted testosterone analogues by Fusarium culmorum. Steroids. 2005;70(12):817–24.

    Article  Google Scholar 

  12. Wu DX, Guan YX, Wang HQ, Yao SJ. 11α-Hydroxylation of 16α,17-epoxyprogesterone by Rhizopus nigricans in a biphasic ionic liquid aqueous system. Bioresour Technol. 2011;102(20):9368–73.

    Article  CAS  PubMed  Google Scholar 

  13. Ya De Rets VV, Andryushina VA, Bartoshevich YE, Domracheva AG, Novak MI, Stytsenko TS, Voishvillo NE. A study of steroid hydroxylation activity of Curvularia lunata mycelium. Appl biochem and microbio c/c of prikladnaia biokhimiia i mikrobiologiia. 2007.

  14. Chen J, Fan F, Qu G, Tang J, ** Y, Bi C, Sun Z, Zhang XL. Identification of Absidia orchidis steroid 11β-hydroxylation system and its application in engineering Saccharomyces cerevisiae for one-step biotransformation to produce hydrocortisone. Metab Eng. 2020;57:31–42. https://doi.org/10.1016/j.ymben.2019.10.006.

    Article  CAS  PubMed  Google Scholar 

  15. Kutney JP, Milanova RK, Vassilev CD, Stefanov SS, Nedelcheva NV. Process for the microbial conversion of phytosterols to androstenedione and androstadienedione. US; 2000.

  16. Li S, Li Y, Smolke CD. Strategies for microbial synthesis of high-value phytochemicals. Nat Chem. 2018;10(4):395–404. https://doi.org/10.1038/s41557-018-0013-z.

    Article  CAS  PubMed  ADS  Google Scholar 

  17. Karbalaei M, Rezaee SA, Farsiani H. Pichia pastoris : A highly successful expression system for optimal synthesis of heterologous proteins. J Cell Physiol. 2020;235(9):5867–81. https://doi.org/10.1002/jcp.29583.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Vanz AL, Lünsdorf H, Adnan A, Nimtz M, Gurramkonda C, Khanna N, Rinas U. Physiological response of Pichia pastoris GS115 to methanol-induced high level production of the Hepatitis B surface antigen: catabolic adaptation, stress responses, and autophagic processes. Microb Cell Fact. 2012. https://doi.org/10.1186/1475-2859-11-103.

    Article  PubMed  PubMed Central  Google Scholar 

  19. BillRoslyn M. Recombinant protein subunit vaccine synthesis in microbes: a role for yeast? J Pharm Pharmacol. 2015;67(3):319–28.

    Article  CAS  Google Scholar 

  20. Wang Y, Yuan S, Wang P, Liu X, Zhan D, Zhang Z. Expression, purification, and characterization of recombinant human keratinocyte growth factor-2 in Pichia pastoris. J Biotechnol. 2007;132(1):44–8. https://doi.org/10.1016/j.jbiotec.2007.08.024.

    Article  CAS  PubMed  Google Scholar 

  21. Lu W, Chen X, Feng J, Bao YJ, Wang Y, Wu Q, Zhu D. A Fungal P450 Enzyme from Thanatephorus cucumeris with Steroid Hydroxylation Capabilities. Appl Environ Microbiol. 2018. https://doi.org/10.1128/aem.00503-18.

    Article  PubMed  PubMed Central  Google Scholar 

  22. Pandey AV, Fluck CE, Huang N, Tajima T, Fujieda K, Miller WL. P450 oxidoreductase deficiency: a new disorder of steroidogenesis affecting all microsomal P450 enzymes. Endocr Res. 2004;30(4):881–8. https://doi.org/10.1081/erc-200044134.

    Article  CAS  PubMed  Google Scholar 

  23. Bakkes PJ, Riehm JL, Sagadin T, Rühlmann A, Urlacher VB. Supplementary Information to Engineering of versatile redox partner fusions that support monooxygenase activity of functionally diverse cytochrome P450s. Sci Rep. 2018. https://doi.org/10.1038/s41598-017-10075-w.

    Article  Google Scholar 

  24. Litzenburger M, Bernhardt R. CYP260B1 acts as 9α-hydroxylase for 11-deoxycorticosterone. Steroids. 2017;127:40–5.

    Article  CAS  PubMed  Google Scholar 

  25. Neunzig I, Widjaja M, Peters FT, Maurer HH, Hehn A, Bourgaud F, Bureik M. Coexpression of CPR from various origins enhances biotransformation activity of human CYPs in S. pombe. Appl Biochem Biotechnol. 2013;170(7):1751–66. https://doi.org/10.1007/s12010-013-0303-2.

    Article  CAS  PubMed  Google Scholar 

  26. Zhang J, ten Pierick A, van Rossum HM, Seifar RM, Ras C, Daran JM, Heijnen JJ, Wahl SA. Determination of the cytosolic NADPH/NADP ratio in Saccharomyces cerevisiae using shikimate dehydrogenase as sensor reaction. Sci Rep. 2015;5:12846. https://doi.org/10.1038/srep12846.

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  27. Geng Y, Zhang R, Xu Y, Wang S, Sha C, **ao R. Coexpression of a carbonyl reductase and glucose 6-phosphate dehydrogenase in Pichia pastor is improves the production of (S)-1-phenyl-1,2-ethanediol. Biocatal Biotransfor. 2011;29(5):172–8. https://doi.org/10.3109/10242422.2011.594881.

    Article  CAS  Google Scholar 

  28. Shao ML, Zhang X, Rao ZM, Xu MJ, Yang TW, Li H, Xu ZH, Yang S. Efficient testosterone production by engineered Pichia pastoris co-expressing human 17β-hydroxysteroid dehydrogenase type 3 and Saccharomyces cerevisiae glucose 6-phosphate dehydrogenase with NADPH regeneration. Green Chem. 2016;18(6):1774–84. https://doi.org/10.1039/c5gc02353j.

    Article  CAS  Google Scholar 

  29. Lee-Robichaud P, Akhtar ME, Wright JN, Sheikh QI, Akhtar M. The cationic charges on Arg347, Arg358 and Arg449 of human cytochrome P450c17 (CYP17) are essential for the enzyme’s cytochrome b5-dependent acyl-carbon cleavage activities. J Steroid Biochem Mol Biol. 2004;92(3):119–30. https://doi.org/10.1016/j.jsbmb.2004.07.005.

    Article  CAS  PubMed  Google Scholar 

  30. **ao F, Song X, Tian P, Gan M, Verkhivker GM, Hu G. Comparative dynamics and functional mechanisms of the CYP17A1 tunnels regulated by ligand binding. J Chem Inf Model. 2020;60(7):3632–47. https://doi.org/10.1021/acs.jcim.0c00447.

    Article  CAS  PubMed  Google Scholar 

  31. Devore NM, Scott EE. Structures of cytochrome P450 17A1 with prostate cancer drugs abiraterone and TOK-001. Nature. 2012;482(7383):116–9. https://doi.org/10.1038/nature10743.

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  32. Afshar-Kharghan V, Li CQ, Khoshnevis-Asl M, LóPez JA. Kozak sequence polymorphism of the glycoprotein (GP) Ib gene is a major determinant of the plasma membrane levels of the platelet GP Ib-IX-V complex. Blood. 1999;94(1):186–91. https://doi.org/10.1182/blood.v94.1.186.413k19_186_191.

    Article  CAS  PubMed  Google Scholar 

  33. Khatri Y, Jozwik IK, Ringle M, Ionescu IA, Litzenburger M, Hutter MC, Thunnissen AWH, Bernhardt R. Structure-based engineering of steroidogenic CYP260A1 for stereo- and regioselective hydroxylation of progesterone. ACS Chem Biol. 2018;13(4):1021–8. https://doi.org/10.1021/acschembio.8b00026.

    Article  CAS  PubMed  Google Scholar 

  34. Liu R, ** Q, Tao G, Liang S, Liu Y, Wang X. LC–MS and UPLC–Quadrupole time-of-flight MS for identification of photodegradation products of aflatoxin B 1. Chromatographia. 2010;71(1–2):107–12.

    Article  CAS  Google Scholar 

  35. Auchus RJ, Lee TC, Miller WL. Cytochrome b5 augments the 17,20-Lyase activity of human P450c17 without direct electron transfer. J Biolog Chem. 1998;273(6):3158–65. https://doi.org/10.1074/jbc.273.6.3158.

    Article  CAS  Google Scholar 

  36. **e W, Lv X, Ye L, Zhou P, Yu H. Construction of lycopene-overproducing Saccharomyces cerevisiae by combining directed evolution and metabolic engineering. Metab Eng. 2015;30:69–78.

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This study was funded by the National Key R&D Program of China (No. 2019YFA0905300); the Natural Science Foundation of Jiangsu Province, Science, and Technology Department of Jiangsu Province, China (No. BK20200618); Tian** Synthetic Biotechnology Innovation Capacity Improvement Project (No. TSBICIP-KJGG-001–14); National Natural Science Foundation of China (31700041); Program of the Key Laboratory of Industrial Biotechnology, Ministry of Education, China (No. KLIB-KF202103).

Author information

Authors and Affiliations

Authors

Contributions

KC and LC conceived and designed the research. KC and LC conducted the experiments. KC and LC analyzed the data and wrote the manuscript. All the authors read and approved the manuscript.

Corresponding authors

Correspondence to Taowei Yang or Zhiming Rao.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 629 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, K., Liu, C., Shao, M. et al. Enhancing the biotransformation efficiency of human CYP17A1 in Pichia pastoris by co-expressing CPR and glucose-6-phosphate dehydrogenase simultaneously. Syst Microbiol and Biomanuf 4, 102–111 (2024). https://doi.org/10.1007/s43393-021-00063-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s43393-021-00063-7

Keywords

Navigation