Log in

Production of rutile nano-rods from Egyptian ilmenite mineral via a two-step physicochemical processes: a comparison study between low-grade and high-grade ilmenite concentrate

  • Original Paper
  • Published:
Brazilian Journal of Chemical Engineering Aims and scope Submit manuscript

Abstract

The synthesis of pure titanium dioxide (TiO2) nanomaterials from naturally occurring ilmenite (FeTiO3), which is present in black sands, is highly desirable due to its numerous industrial and technological applications. In this study, nanostructured rutile nanorods were synthesized using Egyptian ilmenite concentrate through a simple mechanical/chemical route, comprising two stages: the first stage involved the reduction of ilmenite by activated carbon as a reducing agent during milling, while the second stage involved the decomposition of FeTiO3/carbon and the selective dissolution for  iron and silica using a mixture of HCl/H2O2 and NH4F/HF, respectively. The results indicated that the optimal conditions for hydrothermal leaching of the milled ilmenite/carbon are achieved at a solid/liquid ratio of 167 g/L, 4 h at 170 °C. The amorphous titanium dioxide could be converted to ~ 95% pure rutile-phase nanorods by annealing at 700 °C followed by additional leaching processes to simply remove silica from the synthesized rutile.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Scheme 1

Similar content being viewed by others

Data availability

All relevant data generated and analysed during this study, which include experimental, spectroscopic, crystallographic data, are included in this article and its supplementary information. Copies of the data can be obtained free of charge.

References

  • Abdelgalil M, El-Barawy K, Ge Y, **a L (2023) The recovery of TiO2 from ilmenite ore by ammonium sulfate roasting-leaching process. Processes 11(9):2570

    Article  CAS  Google Scholar 

  • Ahyuningsih W, Ramelan S, Pramono AH (2014) Titanium dioxide production by hydrochloric acid leaching of roasting ilmenite sand. J Sci Res 4:2250–3153

    Google Scholar 

  • Berkovich SA (1975) Recovery of titanium oxide from ores. US Patent US3903239A

  • Castañeda L, Terrones M (2007) Synthesis and structural characterization of novel flower-like titanium dioxide nanostructures. Phys B 390:143–146

    Article  Google Scholar 

  • Demadis KD, Somara M, Mavredaki E (2012) Additive-driven dissolution enhancement of colloidal silica. 3. fluorine-containing additives. Ind Eng Chem Res 51:2952–2962

    Article  CAS  Google Scholar 

  • El-Hazek N, Lasheen TA, El-Sheikh R et al (2007) Hydrometallurgical criteria for TiO2 leaching from Rosetta ilmenite by hydrochloric acid. Hydrometallurgy 87:45–50

    Article  CAS  Google Scholar 

  • Fouda MF, Amin RS, Saleh HI et al (2010) Preparation and characterization of nanosized titania prepared from beach black sands broad on the mediterranean sea coast in egypt via reaction with acids. Aust J Basic Appl Sci 4:4540–4553

    CAS  Google Scholar 

  • Gharakhlou AR, Sarvi MN (2017) Synthesis of mesoporous nanoparticles of TiO2 from ilmenite. Mater Res Express 4:025027

    Article  Google Scholar 

  • Gireesh VS, Vinod VP, Nair SK et al (2015) Catalytic leaching of ilmenite using hydrochloric acid: a kinetic approach. Int J Miner Process 134:36–40

    Article  CAS  Google Scholar 

  • Landmann M, Rauls E, Schmidt W (2012) The electronic structure and optical response of rutile, anatase, and brookite TiO2. J Phys: Condens Matter 24:195503

    PubMed  CAS  Google Scholar 

  • León A, Reuquen P, Garin C et al (2017) FTIR and Raman characterization of TiO2 nanoparticles coated with polyethylene glycol as carrier for 2-methoxyestradiol. Appl Sci 7:49

    Article  Google Scholar 

  • Li C, Liang B, Wang H (2008) Preparation of synthetic rutile by hydrochloric acid leaching of mechanically activated Panzhihua ilmenite. Hydrometallurgy 91(1–4):121–129

    Article  CAS  Google Scholar 

  • Liu W, Wang X, Lu Z et al (2017) Preparation of synthetic rutile via selective sulfation of ilmenite with (NH4)2SO4 followed by targeted removal of impurities. Chin J Chem Eng 25:821–828

    Article  CAS  Google Scholar 

  • Mackey TS (1994) Upgrading Ilmenite into a high-grade synthetic rutile. JOM 46: 59–64

  • Mahmoud M, Afifi A, Ibrahim I (2004) Reductive leaching of ilmenite ore in hydrochloric acid for preparation of synthetic rutile. Hydrometallurgy 73:99–109

    Article  CAS  Google Scholar 

  • Parirenyatwa S, Escudero-Castejon L, Sanchez-Segado S et al (2016) Comparative study of alkali roasting and leaching of chromite ores and titaniferous minerals. Hydrometallurgy 165:213–226

    Article  CAS  Google Scholar 

  • Phoohinkong W, Pavasupree S, Wannagon A et al (2017) Characterization and x-ray absorption spectroscopy of ilmenite nanoparticles derived from natural ilmenite ore via acid-assisted mechanical ball-milling process. Adv Nat Sci: Nanosci Nanotechnol 8:035012

    Google Scholar 

  • Rajakaruna TPB, Udawatte CP, Chandrajith R, Gamini Rajapakse RM (2020) Process for extracting pure titanium dioxide nanorods from geogenic ilmenite. ACS Omega 5:16176–16182

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Ramadan A, Farghaly M, Fathy W, Ahmed M (2016) Leaching and kinetics studies on processing of Abu-Ghalaga ilmenite ore. Int Res J Eng Technol 3:46–53

    Google Scholar 

  • Razavi R (2014) Production of nanosized synthetic rutile from ilmenite concentrate by sonochemical HCl and H2SO4 leaching. Iran J Chem Chem Eng (IJCCE) 33(2):29–36

    CAS  Google Scholar 

  • Sahu K, Alex TC, Mishra D, Agrawal A (2006) An overview on the production of pigment grade titania from titania-rich slag. Waste Manag Res 24:74–79

    Article  PubMed  CAS  Google Scholar 

  • Shahien MG, Khedr MMH, Maurice AE, Farghali AA, Ali RAM (2015) Synthesis of high purity rutile nanoparticles from medium-grade Egyptian natural ilmenite, Beni-Suef University. J Basic Appl Sci 4:207–213

    Google Scholar 

  • Tao T, Chen Y, Zhou D et al (2013) Expanding the applications of the ilmenite mineral to the preparation of nanostructures: TiO2 nanorods and their photocatalytic properties in the degradation of oxalic acid. Chem Eur J 19:1091–1096

    Article  PubMed  CAS  Google Scholar 

  • Tao T, Glushenkov AM, Chen Q et al (2011) Porous TiO2 with a controllable bimodal pore size distribution from natural ilmenite. Cryst Eng Comm 13:1322–1327

    Article  CAS  Google Scholar 

  • Thambiliyagodage C, Wijesekera R, Bakker MG (2021) Leaching of ilmenite to produce titanium based materials: a review. Discov Mater 1(1):20

    Article  Google Scholar 

  • Thambiliyagodage C, Wijesekera R (2022) Ball milling–a green and sustainable technique for the preparation of titanium based materials from ilmenite. Curr Res Green Sustain Chem 5:100236

    Article  CAS  Google Scholar 

  • Usgodaarachchi L, Thambiliyagodage C, Wijesekera R, Vigneswaran S, Kandanapitiye M (2022) Fabrication of TiO2 spheres and a visible light active α-Fe2O3/TiO2-rutile/TiO2-anatase heterogeneous photocatalyst from natural ilmenite. ACS Omega 7(31):27617–27637

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Valencia S, Marín JM, Restrepo G (2010) Study of the bandgap of synthesized titanium dioxide nanoparticules using the sol-gel method and a hydrothermal treatment. Open Mater Sci J 4:9–14

    Article  CAS  Google Scholar 

  • van Dyk JP, Vegter NM, Pistorius PC (2002) Kinetics of ilmenite dissolution in hydrochloric acid. Hydrometallurgy 65:31–36

    Article  Google Scholar 

  • Welham NJ, Williams JS (1999) Carbothermic reduction of ilmenite (FeTiO3) and rutile (TiO2). Metall Mater Trans B 30b:1075–1082

    Article  CAS  Google Scholar 

  • Wilson NC (2011) Ilmenite (0001) surface investigated using hybrid density functional theory. Phys Rev B 84:075310

    Article  Google Scholar 

  • Wu F, Li X, Wang Z, Xu C, He H, Qi A, ... Guo H (2013) Preparation of high-value TiO2 nanowires by leaching of hydrolyzed titania residue from natural ilmenite. Hydrometallurgy 140:82–88

  • Wu F, Li X, Wang Z, Wu L, Guo H, **ong X, ... Wang X (2011) Hydrogen peroxide leaching of hydrolyzed titania residue prepared from mechanically activated Panzhihua ilmenite leached by hydrochloric acid. Int J Min Process 98(1–2):106–112

  • Yin H, Wada Y, Kitamura T, Kambe S, Murasawa S, Mori H, Sakatac T, Yanagida S (2001) Hydrothermal synthesis of nanosized anatase and rutile TiO2 using amorphous phase TiO2. J Mater Chem 11:1694–1703

    Article  CAS  Google Scholar 

  • Zhang W, Zhu Z, Yong C et al (2011) A literature review of titanium metallurgical processes. Hydrometallurgy 108:177–188

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Emad A. Elshehy.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 455 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Attia, A., Elshehy, E., El Nahas, H. et al. Production of rutile nano-rods from Egyptian ilmenite mineral via a two-step physicochemical processes: a comparison study between low-grade and high-grade ilmenite concentrate. Braz. J. Chem. Eng. (2024). https://doi.org/10.1007/s43153-024-00467-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s43153-024-00467-7

Keywords

Navigation