Log in

Schrödinger equations with combined non-linearity

  • Original Paper
  • Published:
Annals of Functional Analysis Aims and scope Submit manuscript

Abstract

This paper investigates two class of Schrödinger equations with mixed source terms, containing, respectively, a local/non-local non-linearity and an inhomogeneous perturbation. In the energy sub-critical regime, one obtains some sharp thresholds of global/non-global existence dichotomy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Cazenave, T.: Semilinear Schrödinger Equations. Courant Lecture Notes in Mathematics, vol. 10. NYU, CIMS, American Mathematical Society, Providence (2003)

    MATH  Google Scholar 

  2. Chen, J.: On the inhomogeneous non-linear Schrödinger equation with harmonic potential and unbounded coefficient. Czechoslov. Math. J. 60(3), 715–736 (2010)

    Article  Google Scholar 

  3. Chen, J.: On a class of nonlinear inhomogeneous Schrödinger equation. J. Appl. Math. Comput. 32, 237–253 (2010)

    Article  MathSciNet  Google Scholar 

  4. Chen, J., Guo, B.: Sharp constant of improved Gagliardo–Nirenberg inequality and its application. Annali di Matematica 190, 341–354 (2011)

    Article  MathSciNet  Google Scholar 

  5. Farah, L.G.: Global well-posedness and blow-up on the energy space for the inhomogeneous non-linear Schrödinger equation. J. Evol. Equ. 16, 193–208 (2016)

    Article  MathSciNet  Google Scholar 

  6. Feng, B., Wang, Y.: Sharp thresholds of blow-up and global existence for the Schrödinger equation with combined power-type and Choquard-type nonlinearities. Bound. Value Probl. 195 (2019)

  7. Feng, B., Yuan, X.: On the Cauchy problem for the Schrödinger-Hartree equation. Evol. Equ. Control Theory 4(4), 431–445 (2015)

    Article  MathSciNet  Google Scholar 

  8. Genoud, F.: An inhomogeneous, \(L^2\)-critical, nonlinear Schrödinger equation. Z. Anal. Anwend. 31(3), 283–290 (2012)

    Article  MathSciNet  Google Scholar 

  9. Gill, T.S.: Optical guiding of laser beam in nonuniform plasma. Pramana J. Phys. 55, 845–852 (2000)

    Google Scholar 

  10. Glassey, R.T.: On the blowing-up of solutions to the Cauchy problem for the non-linear Schrödinger equation. J. Math. Phys. 18, 1794–1797 (1977)

    Article  MathSciNet  Google Scholar 

  11. Guzman, Carlos M.: On well posedness for the inhomogeneous nonlinear Schrödinger equation. Nonlinear Anal. Real World Appl. 37, 249–286 (2017)

    Article  MathSciNet  Google Scholar 

  12. Hezzi, H., Marzouk, A., Saanouni, T.: A note on the inhomogeneous Schrödinger equation with mixed power nonlinearity. Commun. Math. Anal. 18(2), 34–53 (2015)

    MathSciNet  MATH  Google Scholar 

  13. Holmer, J., Roudenko, S.: A sharp condition for scattering of the radial 3D cubic nonlinear Schrödinger equation. Commun. Math. Phys. 282, 435–467 (2008)

    Article  Google Scholar 

  14. Leng, L., Li, X., Zheng, P.: Sharp criteria for the nonlinear Schrödinger equation with combined nonlinearities of power-type and Hartree-type. Appl. Anal. 96(16), 2846–2851 (2017)

    Article  MathSciNet  Google Scholar 

  15. Lewin, M., Rougerie, N.: Derivation of Pekar’s polarons from a microscopic model of quantum crystal. SIAM J. Math. Anal. 45, 1267–1301 (2013)

    Article  MathSciNet  Google Scholar 

  16. Liu, C.S., Tripathi, V.K.: Laser guiding in an axially nonuniform plasma channel. Phys. Plasmas 1, 3100–3103 (1994)

    Article  Google Scholar 

  17. Miao, C., Xu, G., Zhao, L.: The dynamics of the 3D radial NLS with the combined terms. Commun. Math. Phys. 318(3), 767–808 (2013)

    Article  MathSciNet  Google Scholar 

  18. Miao, C., Xu, G., Zhao, L.: The dynamics of the NLS with the combined terms in five and higher dimensions. In: Some Topics in Harmonic Analysis and Applications. Advanced Lectures in Mathematics, ALM, vol. 34, pp. 265–298. Higher Education Press/International Press, Bei**g (2015)

  19. Pelinovsky, D.E., Afanasjev, V.V., Kivshar, Y.S.: Non-linear theory of oscillating, decaying, and collapsing solitons in the generalized non-linear Schrödinger equation. Phys. Rev. E 53(2), 1940–1953 (1996)

    Article  Google Scholar 

  20. Saanouni, T.: Scattering threshold for the focusing Choquard equation. Nonlinear Differ. Equ. Appl. 26(41) (2019)

  21. Sulem, C., Sulem, P.L.: The Nonlinear Schrödinger Equation. Self Focusing and Wave Collapse. Applied Mathematical Sciences, vol. 139. Springer, New York (1999)

    MATH  Google Scholar 

  22. Tao, T., Visan, M., Zhang, X.: The nonlinear Schrödinger equation with combined power-type non-linearities. Commun. Part. Differ. Equ. 32(7–9), 1281–1343 (2007)

    Article  Google Scholar 

  23. Zhang, X.: On Cauchy problem of 3-D energy-critical Schrödinger equations with sub-critical perturbations. J. Differ. Equ. 230(2), 422–445 (2006)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tarek Saanouni.

Additional information

Communicated by Klaus Guerlebeck.

Appendix

Appendix

This section proves the variance identity in Proposition 2.4 and the compact Sobolev embedding in Lemma 2.5.

1.1 Proof of Proposition 2.4

Let \({u}\in C_{T^*}(\Sigma )\) be a solution to (1). Define the real function on \([0,T^*)\), by

$$\begin{aligned} V:t\longmapsto \int _{{\mathbb{R}}^N}|xu(t,x)|^2\,{\mathrm{d}}x. \end{aligned}$$

Take, for simplicity \(\epsilon _i=1\) and denote also the quantities

$$\begin{aligned} a(x):=|x|^2\quad \text{and}\quad {\mathcal {N}}:={\mathcal {N}}_p+{\mathcal {N}}_q:=|x|^b|u|^{2(p-1)}u +(I_\alpha *|u|^q)|u|^{q-2}u. \end{aligned}$$

Multiplying Eq. (1) by 2u and examining the imaginary parts

$$\begin{aligned} \partial _t (|u|^2) =-2\mathfrak {I}({\bar{u}} \Delta u). \end{aligned}$$

Thus

$$\begin{aligned} V'=\, & {} -2\int _{{\mathbb{R}}^N}|x|^2\mathfrak {I}({\bar{u}}\Delta u)\,{\mathrm{d}}x\\ =\, & {} 4\mathfrak {I}\int _{{\mathbb{R}}^N}(x.\nabla u){\bar{u}} \,{\mathrm{d}}x\\ =\, & {} 2\mathfrak {I}\int _{{\mathbb{R}}^N}(\partial _ka\partial _ku){\bar{u}} \,{\mathrm{d}}x. \end{aligned}$$

Compute

$$\begin{aligned} \partial _t\mathfrak {I}(\partial _k u{\bar{u}})=\, & {} \mathfrak {I}(\partial _k{\dot{u}}{\bar{u}})+\mathfrak {I}(\partial _k u\bar{{\dot{u}}})\\ =\, & {} \mathfrak {R}(i{\dot{u}}\partial _k{\bar{u}})-\mathfrak {R}(i\partial _k {\dot{u}}{\bar{u}})\\ =\, & {} \mathfrak {R}(\partial _k{\bar{u}}(-\Delta u-{\mathcal {N}}))-\mathfrak {R}({\bar{u}}\partial _k (-\Delta u-{\mathcal {N}}))\\ =\, & {} \mathfrak {R}({\bar{u}}\partial _k\Delta u-\partial _k{\bar{u}}\Delta u)+\mathfrak {R}({\bar{u}}\partial _k{\mathcal {N}}-\partial _k{\bar{u}}{\mathcal {N}}). \end{aligned}$$

Recall the identity

$$\begin{aligned} \frac{1}{2}\partial _k\Delta (|u|^2)-2\partial _l\mathfrak {R}(\partial _{k}u \partial _l{\bar{u}})=\mathfrak {R}({\bar{u}}\partial _k\Delta u-\partial _k{\bar{u}}\Delta u). \end{aligned}$$

Then

$$\begin{aligned} \int _{{\mathbb{R}}^N}\partial _ka\mathfrak {R}({\bar{u}}\partial _k\Delta u-\partial _k{\bar{u}}\Delta u)\,{\mathrm{d}}x=\, & {} \int _{{\mathbb{R}}^N}\partial _ka\left( \frac{1}{2}\partial _k\Delta (|u|^2) -2\partial _l\mathfrak {R}(\partial _ku\partial _l{\bar{u}})\right) \,{\mathrm{d}}x\\ =\, & {} 2\int _{{\mathbb{R}}^N}\partial _l\partial _ka\mathfrak {R}(\partial _ku\partial _l{\bar{u}})\,{\mathrm{d}}x\\ =\, & {} 4\Vert \nabla u\Vert ^2. \end{aligned}$$

Write now

$$\begin{aligned} \partial _ka\mathfrak {R}({\bar{u}}\partial _k{\mathcal {N}}-\partial _k {\bar{u}}{\mathcal {N}})=\partial _ka\mathfrak {R}({\bar{u}}\partial _k {\mathcal {N}}_p-\partial _k{\bar{u}}{\mathcal {N}}_p) +\partial _ka\mathfrak {R}({\bar{u}}\partial _k{\mathcal {N}}_q -\partial _k{\bar{u}}{\mathcal {N}}_q). \end{aligned}$$

On the other hand

$$\begin{aligned}&\partial _ka\mathfrak {R}({\bar{u}}\partial _k{\mathcal {N}}_p- \partial _k{\bar{u}}{\mathcal {N}}_p)\,{\mathrm{d}}x\\&\quad =\int _{{\mathbb{R}}^N}\partial _ka\mathfrak {R}(\partial _k[{\bar{u}} {\mathcal {N}}_p]-2\partial _k{\bar{u}}{\mathcal {N}}_p)\,{\mathrm{d}}x\\&\quad =-\int _{{\mathbb{R}}^N}\Big (\Delta a{\bar{u}}{\mathcal {N}}_p+2\mathfrak {R}(\partial _ka\partial _k{\bar{u}}{\mathcal {N}}_p)\Big )\,{\mathrm{d}}x\\&\quad =-2N\int _{{\mathbb{R}}^N}|u|^{2p}|x|^b\,{\mathrm{d}}x-2\int _{{\mathbb{R}}^N} \partial _ka|x|^b\partial _k\left( \frac{|u|^{2p}}{2p}\right) \,{\mathrm{d}}x. \end{aligned}$$

Moreover

$$\begin{aligned} \int _{{\mathbb{R}}^N}\partial _ka|x|^b\partial _k(|u|^{2p})\,{\mathrm{d}}x= & {} -\int _{{\mathbb{R}}^N}\text{div}\Big (\partial _ka|x|^b\Big )|u|^{2p}\,{\mathrm{d}}x\\= & {} -\int _{{\mathbb{R}}^N}\Big (\Delta a|x|^b+\partial _ka\partial _k(|x|^b) \Big )|u|^{2p}\,{\mathrm{d}}x\\= & {} -\int _{{\mathbb{R}}^N}\Big (2N|x|^b+2x.bx|x|^{b-2}\Big )|u|^{2p}\,{\mathrm{d}}x\\= & {} -2(N+b)\int _{{\mathbb{R}}^N}|u|^{2p}|x|^{b}\,{\mathrm{d}}x. \end{aligned}$$

Thus

$$\begin{aligned} \partial _ka\mathfrak {R}({\bar{u}}\partial _k{\mathcal {N}}_p- \partial _k{\bar{u}}{\mathcal {N}}_p)\,{\mathrm{d}}x= & {} -2N\int _{{\mathbb{R}}^N}|u|^{2p}|x|^b\,{\mathrm{d}}x-2 \int _{{\mathbb{R}}^N}\partial _ka|x|^b\partial _k\left( \frac{|u|^{2p}}{2p}\right) \,{\mathrm{d}}x\\= & {} -2N\int _{{\mathbb{R}}^N}|u|^{2p}|x|^b\,{\mathrm{d}}x+ \frac{2(N+b)}{p}\int _{{\mathbb{R}}^N}|u|^{2p}|x|^{b}\,{\mathrm{d}}x\\= & {} -\frac{2B_p}{p}\int _{{\mathbb{R}}^N}|u|^{2p}|x|^b\,{\mathrm{d}}x. \end{aligned}$$

On the other hand

$$\begin{aligned}&\int _{{\mathbb{R}}^N}\partial _ka\mathfrak {R}({\bar{u}}\partial _k{\mathcal {N}}_q -\partial _k{\bar{u}}{\mathcal {N}}_q)\,{\mathrm{d}}x\\&\quad =\int _{{\mathbb{R}}^N}\partial _ka\mathfrak {R}(\partial _k[{\bar{u}} {\mathcal {N}}_q]-2\partial _k{\bar{u}}{\mathcal {N}}_q)\,{\mathrm{d}}x\\&\quad =-\int _{{\mathbb{R}}^N}\Big (\Delta a{\bar{u}}{\mathcal {N}}_q +2\mathfrak {R}(\partial _ka\partial _k{\bar{u}}{\mathcal {N}}_q)\Big )\,{\mathrm{d}}x\\&\quad =-2N\int _{{\mathbb{R}}^N}|u|^q(I_\alpha *|u|^{q})\,{\mathrm{d}}x -2\int _{{\mathbb{R}}^N}\partial _ka\mathfrak {R}(\partial _k{\bar{u}}{\mathcal {N}}_q)\,{\mathrm{d}}x\\&\quad =-2N\int _{{\mathbb{R}}^N}|u|^q(I_\alpha *|u|^{q})\,{\mathrm{d}}x -\frac{2}{q}\int _{{\mathbb{R}}^N}\partial _ka\partial _k(|u|^q)(I_\alpha *|u|^q)\,{\mathrm{d}}x. \end{aligned}$$

Moreover

$$\begin{aligned}&\int _{{\mathbb{R}}^N}\partial _ka\partial _k(|u|^{q})(I_\alpha *|u|^q)\,{\mathrm{d}}x\\&\quad =-2\int _{{\mathbb{R}}^N}\text{div}(x(I_\alpha *|u|^q))|u|^{q}\,{\mathrm{d}}x\\&\quad =-2N\int _{{\mathbb{R}}^N}(I_\alpha *|u|^q)|u|^q\,{\mathrm{d}}x-2 \int _{{\mathbb{R}}^N}x(\nabla I_\alpha *|u|^q)|u|^q\,{\mathrm{d}}x\\&\quad =-2N\int _{{\mathbb{R}}^N}(I_\alpha *|u|^q)|u|^q\,{\mathrm{d}}x -2(\alpha -N)\int _{{\mathbb{R}}^N}x\left( \frac{.}{|\cdot |^2}I_\alpha *|u|^q\right) |u|^q\,{\mathrm{d}}x. \end{aligned}$$

Moreover

$$\begin{aligned} (B):= & {} \int _{{\mathbb{R}}^N}x\left( \frac{.}{|\cdot |^2}I_\alpha *|u|^q\right) |u|^q\,{\mathrm{d}}x\\= & {} \int _{{\mathbb{R}}^N}(x-y+y)(x-y)\frac{I_\alpha (x-y)}{|x-y|^2}|u(y)|^q|u(x)|^q\,{\mathrm{d}}y\,{\mathrm{d}}x\\= & {} \int _{{\mathbb{R}}^N}{I_\alpha (x-y)}|u(y)|^q|u(x)|^q\,{\mathrm{d}}y\,{\mathrm{d}}x+\int _{{\mathbb{R}}^N}y(x-y)\frac{I_\alpha (x-y)}{|x-y|^2}|u(y)|^q|u(x)|^q\,{\mathrm{d}}y\,{\mathrm{d}}x\\= & {} \int _{{\mathbb{R}}^N}{I_\alpha (x-y)}|u(y)|^q|u(x)|^q\,{\mathrm{d}}y\,{\mathrm{d}}x-\int _{{\mathbb{R}}^N}x(x-y)\frac{I_\alpha (x-y)}{|x-y|^2}|u(y)|^q|u(x)|^q\,{\mathrm{d}}y\,{\mathrm{d}}x\\= & {} \int _{{\mathbb{R}}^N}{I_\alpha (x-y)}|u(y)|^q|u(x)|^q\,{\mathrm{d}}y\,{\mathrm{d}}x-(B)\\= & {} \frac{1}{2}\int _{{\mathbb{R}}^N}(I_\alpha *|u|^q)|u|^q\,{\mathrm{d}}x. \end{aligned}$$

Thus

$$\begin{aligned} (A):= & {} \int _{{\mathbb{R}}^N}\partial _ka\mathfrak {R}({\bar{u}}\partial _k{\mathcal {N}}_q-\partial _k{\bar{u}}{\mathcal {N}}_q)\,{\mathrm{d}}x\\= & {} -2N\int _{{\mathbb{R}}^N}|u|^q(I_\alpha *|u|^{q})\,{\mathrm{d}}x-\frac{2}{q}\int _{{\mathbb{R}}^N}\partial _ka\partial _k(|u|^q)(I_\alpha *|u|^q)\,{\mathrm{d}}x\\= & {} -2N\int _{{\mathbb{R}}^N}|u|^q(I_\alpha *|u|^{q})\,{\mathrm{d}}x-\frac{2}{q}\left( -2N\int _{{\mathbb{R}}^N}(I_\alpha *|u|^q)|u|^q\,{\mathrm{d}}x \right. \\&-2\left. (\alpha -N)\int _{{\mathbb{R}}^N}x\left( \frac{.}{|\cdot |^2}I_\alpha *|u|^q\right) |u|^q\,{\mathrm{d}}x \right) \\= & {} -2N\left( 1-\frac{2}{q}\right) \int _{{\mathbb{R}}^N}|u|^q(I_\alpha *|u|^{q})\,{\mathrm{d}}x+\frac{4(\alpha -N)}{q}\int _{{\mathbb{R}}^N}x \left( \frac{.}{|\cdot |^2}I_\alpha *|u|^q\right) |u|^q\,{\mathrm{d}}x \\= & {} \left( -2N\left( 1-\frac{2}{q}\right) +\frac{2(\alpha -N)}{q}\right) \int _{{\mathbb{R}}^N}|u|^q(I_\alpha *|u|^{q})\,{\mathrm{d}}x\\= & {} -\frac{2B_q}{q}\int _{{\mathbb{R}}^N}|u|^q(I_\alpha *|u|^{q})\,{\mathrm{d}}x. \end{aligned}$$

Finally

$$\begin{aligned} V''=8\Vert \nabla u\Vert ^2-\frac{4B_p}{p}\int _{{\mathbb{R}}^N}|u|^{2p}|x|^b\,{\mathrm{d}}x-\frac{4B_q}{q}\int _{{\mathbb{R}}^N}(I_\alpha *|u|^q)|u|^q\,{\mathrm{d}}x. \end{aligned}$$

The variance identity is proved.

1.2 Proof of Lemma 2.5

Take \(\epsilon >0\) and \(1+\frac{b\chi _{b>0}}{N-1}< p<p^*\).

  1. A.

    First case \(-2<b<0\).

    Let \((u_n)\) a bounded sequence of \(H^1.\) Without loss of generality, one assumes that \((u_n)\) converges weakly to zero in \(H^1.\) The purpose is to prove that \(\Vert u_n\Vert _{L^{2p}(|x|^{b}\,{\mathrm{d}}x)}\rightarrow 0.\) Take \(\epsilon >0\) and \(R>\epsilon ^\frac{1}{b}\). Using Hölder estimate, for a couple \((q,q')\) satisfying \(q'|b|<N\), which is equivalent to \(q>\frac{N}{N+b}\), one gets

    $$\begin{aligned} \int _{|x|\le R}|x|^{b}|u_n|^{2p}\,{\mathrm{d}}x\le & {} \Vert u_n\Vert _{L^{2pq}(|x|\le R)}^{2p}\Vert |x|^{b}\Vert _{L^{q'}(|x|\le R)}\\\le & {} C\Vert u_n\Vert _{L^{2pq}(|x|<R)}^{2p}\int _0^R\frac{{\mathrm{d}}t}{t^{-q'b-N+1}}\\\le & {} C\Vert u_n\Vert _{L^{2pq}(|x|<R)}^{2p}R^{N+q'b}. \end{aligned}$$
    1. 1.

      First sub-case \(N\ge 3\).

      Now, since \(p<\frac{b+N}{N-2}\), there exists \(q>\frac{N}{b+N}\), such that \(1<qp<\frac{N}{N-2}\). Thus, with compact Sobolev injections

      $$\begin{aligned} \int _{|x|\le R}|x|^{b}|u_n|^{2p}\,{\mathrm{d}}x\rightarrow 0. \end{aligned}$$
    2. 2.

      Second sub-case \(1\le N\le 2\).

      In such a case, the condition \(\frac{N}{b+N}<\frac{N}{p(N-2)}\) is always satisfied. Therefore, one has the same conclusion as above.

    Since \(1<p<\frac{N}{N-2}\), one has for a sub-sequence

    $$\begin{aligned} \int _{|x|\ge R}|x|^{b}|u_n|^{2p}\,{\mathrm{d}}x \le \epsilon \Vert u_n\Vert _{L^{2p}(|x|>R)}^{2p}\le C\epsilon . \end{aligned}$$

    Since \(\epsilon\) is arbitrary, one obtains \(\int _{{\mathbb{R}}^N}|x|^{b}|u_n|^{2p}\,{\mathrm{d}}x\rightarrow 0\) as \(n\rightarrow \infty .\) The proof is complete.

  2. B.

    Second case \(b\ge 0\).

    Take \((u_n)\) a bounded sequence of \(H^1_{rd}.\) Without loss of generality, one assumes that \((u_n)\) converges weakly to zero in \(H^1.\) The purpose is to prove that \(\Vert u_n\Vert _{L^{2p}(|x|^{b}\,{\mathrm{d}}x)}\rightarrow 0.\)

    Let \(\epsilon >0\). Thanks to Strauss inequality and Sobolev injections via the assumption \(1+\frac{b}{N-1}<p<p^*\), write

    $$\begin{aligned} \int _{|x|\le \epsilon }|x|^{b}|u_n|^{2p}\,{\mathrm{d}}x= & {} \int _{|x|\le \epsilon }\left( |x|^{\frac{N-1}{2}}|u_n|\right) ^{\frac{2b}{N-1}}|u_n|^{2p-\frac{2b}{N-1}}\,{\mathrm{d}}x\\\le & {} C\Vert u_n\Vert _{H^1}^{\frac{2b}{N-1}}\Vert u_n\Vert _{2p-\frac{2b}{N-1}}^{2p-\frac{2b}{N-1}}\rightarrow 0. \end{aligned}$$

    Moreover, with Strauss inequality and Rellich Theorem

    $$\begin{aligned} \int _{\epsilon \le |x|\le \frac{1}{\epsilon }}|x|^{b}|u_n|^{2p}\,{\mathrm{d}}x\le C\Vert u_n\Vert _{L^\infty \left( \epsilon \le |x|\le \frac{1}{\epsilon }\right) }^{2(p-1)}\int _{\epsilon \le |x|\le \frac{1}{\epsilon }}|u_n|^2\,{\mathrm{d}}x\rightarrow 0. \end{aligned}$$

    Now, with Strauss inequality

    $$\begin{aligned} \int _{|x|\ge \frac{1}{\epsilon }}|x|^{b}|u_n|^{2p}\,{\mathrm{d}}x=\, & {} \int _{|x|\ge \frac{1}{\epsilon }}|x|^{b-(p-1)(N-1)}\left( |x|^{\frac{N-1}{2}}|u_n|\right) ^{2(p-1)}|u_n|^2\,{\mathrm{d}}x\\ \le\, & {} C\Vert u_n\Vert _{H^1}^{2(p-1)}\int _{|x|\ge \frac{1}{\epsilon }}|x|^{b-(p-1)(N-1)}|u_n|^2\,{\mathrm{d}}x\\ \le\, & {} C\epsilon ^{(p-1)(N-1)-b}\Vert u_n\Vert _{H^1}^{2p}\\ \le\, & {} C\epsilon ^{(p-1)(N-1)-b}. \end{aligned}$$

    The proof is achieved, because \(b-(p-1)(N-1)<0.\)

Summary In conclusion, this paper gives a discussion of the existence of global/non-global solutions to the inhomogeneous Schrödinger problems (1) and (2), depending on the competition between the free associated propagator and the two parts of the combined source term.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Saanouni, T. Schrödinger equations with combined non-linearity. Ann. Funct. Anal. 12, 44 (2021). https://doi.org/10.1007/s43034-021-00129-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s43034-021-00129-6

Keywords

Mathematics Subject Classification

Navigation