Log in

Efficient Classification of Prostate Cancer Using Artificial Intelligence Techniques

  • Original Research
  • Published:
SN Computer Science Aims and scope Submit manuscript

Abstract

As the primary cause of illness and death for men, Prostate Cancer (PCa) is a serious worldwide health problem. To maximise treatment results and raise patient survival rates, prostate cancer diagnosis and timing are essential. The rising death rate of PCa could be reduced with better treatment planning and diagnosis, both of which depend on early and accurate detection. In this paper, a comprehensive computer-aided diagnostic (CAD) system that transforms prostate cancer diagnosis is introduced. The system includes crucial steps like feature extraction, feature classification, prostate segmentation, and image denoising, providing an all-encompassing strategy for early and precise detection. A careful evaluation of the denoising filters’ effectiveness on 300 mp-Magnetic Resonance Imaging images focuses on preserving key structural features. Notably, anisotropic and Non-Local Means filters are shown to be the best options for reducing noise while maintaining image quality. The quality of diagnostic images is improved as a result of the standardization of denoising techniques in medical imaging. A remarkable 7.8% improvement in accuracy is achieved by the study’s integration of Particle Swarm Optimization (PSO) into the segmentation process. The ability of PSO-based segmentation algorithms to manage a variety of data sources and medical imaging modalities effectively is highlighted by the flexibility and robustness of these algorithms. The study uses support vector machine, multilayer perceptron, and linear discriminant analysis machine learning algorithms to accurately classify benign and malignant prostate cancer cases. A thorough evaluation framework that includes a variety of assessment metrics, including the Peak Signal Noise Ratio, Structural Similarity Index, Feature Similarity Index, Mean Opinion Score, and a Final Score, guarantees a thorough examination of the performance of the suggested method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data Availability

Not Applicable.

References

  1. Pati S, Irfan W, Jameel A, Ahmed S, Shahid RK. Obesity and cancer: a current overview of epidemiology, pathogenesis, outcomes, and management. Cancers. 2023;15(2):485.

    Article  Google Scholar 

  2. Cox TR. The matrix in cancer. Nat Rev Cancer. 2021;21(4):217–38.

    Article  Google Scholar 

  3. Copeland BT, Juan Du, Pal SK, Jones JO. Factors that influence the androgen receptor cistrome in benign and malignant prostate cells. Mol Oncol. 2019;13(12):2616–32.

    Article  Google Scholar 

  4. American Cancer Society, Cancer Facts & Figures 2021. Accessed on 6 February 2021.

  5. Bashir MN. Epidemiology of prostate cancer. Asian Pac J Cancer Prev. 2015;16(13):5137–41.

    Article  Google Scholar 

  6. Patel AR, Klein EA. Risk factors for prostate cancer. Nat Clin Pract Urol. 2009;6(2):87–95.

    Article  Google Scholar 

  7. Tenke P, Horti J, Balint P, Kovacs B. Prostate cancer screening. Prostate Cancer. 2007. https://doi.org/10.1007/978-3-540-40901-4_5.

    Article  Google Scholar 

  8. Gayther SA, de Foy KA, Harrington P, Pharoah P, Dunsmuir WD, Edwards SM, Gillett C, Ardern-Jones A, Dearnaley DP, Easton DF, Ford D. The frequency of germ-line mutations in the breast cancer predisposition genes BRCA1 and BRCA2 in familial prostate cancer. Cancer Res. 2000;60(16):4513–8.

    Google Scholar 

  9. Cheng I, Witte JS, McClure LA, Shema SJ, Cockburn MG, John EM, Clarke CA. Socioeconomic status and prostate cancer incidence and mortality rates among the diverse population of California. Cancer Causes Control. 2009;20:1431–40.

    Article  Google Scholar 

  10. Taitt HE. Global trends and prostate cancer: a review of incidence, detection, and mortality as influenced by race, ethnicity, and geographic location. Am J Mens Health. 2018;12(6):1807–23.

    Article  Google Scholar 

  11. Lin P-H, Aronson W, Freedland SJ. Nutrition, dietary interventions and prostate cancer: the latest evidence. BMC Med. 2015;13(1):1–15.

    Article  Google Scholar 

  12. Schneider F, Kliesch S, Schlatt S, Neuhaus N. Andrology of male-to-female transsexuals: influence of cross-sex hormone therapy on testicular function. Andrology. 2017;5(5):873–80.

    Article  Google Scholar 

  13. Papavasileiou, Georgios, Dimitrios Tsilingiris, Nikolaos Spyrou, Natalia G. Vallianou, Irene Karampela, Faidon Magkos, and Maria Dalamaga. "Obesity and main urologic cancers: Current systematic evidence, novel biological mechanisms, perspectives and challenges." In Seminars in Cancer Biology. Academic Press, 2023.

  14. Multigner L, Ndong JR, Giusti A, Romana M, Delacroix-Maillard H, Cordier S, Jégou B, Thome JP, Blanchet P. Chlordecone exposure and risk of prostate cancer. J Clin Oncol. 2010;28(21):3457–62.

    Article  Google Scholar 

  15. Ferlay J, Ervik M, Lam F, Colombet M, Mery L, Piñeros M, Znaor A, Soerjomataram I, Bray F (2020). Global Cancer Observatory: Cancer Today. Lyon, France: International Agency for Research on Cancer. Available from: https://gco.iarc.fr/today, (Accessed on 06–07–2021).

  16. Lemaître G, Martí R, Freixenet J, Vilanova JC, Walker PM, Meriaudeau F. Computer-aided detection and diagnosis for prostate cancer based on mono and multi-parametric MRI: a review. Comput Biol Med. 2015;1(60):8–31. https://doi.org/10.1016/j.compbiomed.2015.02.009.

    Article  Google Scholar 

  17. Litjens, G. (2015). Computerized detection of cancer in multi-parametric prostate MRI. (PhD thesis). Retrieved from https://geertlitjens.nl/publication/litj-15-a/litj-15-a.pdf

  18. Garg G, Juneja M. A survey of denoising techniques for multi-parametric prostate MRI. Multimed Tools Appl. 2019;78:12689–722. https://doi.org/10.1007/s11042-018-6487-2.

    Article  Google Scholar 

  19. Udoh EA, Essiet IU, Ekwere PD. Correlation between prostate size and age of patients evaluated for symptomatic benign prostatic hyperplasia. Ibom Med J. 2020;13(1):12–7.

    Article  Google Scholar 

  20. National Institute of Health, Prostate Tests, https://www.niddk.nih.gov/health-information/diagnostic-tests/prostate, Accessed on 07 March 2021.

  21. Smentkowski KE, Das AK, Trabulsi EJ. Transrectal Ultrasound. InPractical Urological Ultrasound 2021 (pp. 185–198). Springer, Cham.

  22. Murphy G, Haider M, Ghai S, Sreeharsha B. The expanding role of MRI in prostate cancer. Am J Roentgenol. 2013;201(6):1229–38.

    Article  Google Scholar 

  23. Sera T. Computed tomography. InTransparency in Biology 2021 (pp. 167–187). Springer, Singapore.

  24. Li F, Yamin Ru, Lv X-G. Patch-based weighted scad prior for rician noise removal. J Sci Comput. 2022;90(1):26.

    Article  MathSciNet  Google Scholar 

  25. Ribas D, Miguel A, Ortega A, Lleida E. Wiener filter and deep neural networks: a well-balanced pair for speech enhancement. Appl Sci. 2022;12(18):9000.

    Article  Google Scholar 

  26. Shukla, Tushar Dhar, K. Kalpana, Richa Gupta, D. Kalpanadevi, Md Abul Ala Walid, and K. Keshav Kumar. "A Novel Machine Learning Algorithm for Prostate Cancer Image Segmentation using mpMRI." In: 2023 International Conference on Sustainable Computing and Smart Systems (ICSCSS), pp. 96–101. IEEE, 2023.

  27. Luisier F, Blu T, Wolfe PJ. A CURE for noisy magnetic resonance images: Chi-square unbiased risk estimation. IEEE Trans Image Process. 2012;21(8):3454–66.

    Article  MathSciNet  Google Scholar 

  28. Luisier F, Blu T, Unser M. A new SURE approach to image denoising: Interscale orthonormal wavelet thresholding. IEEE Trans Image Process. 2007;16(3):593–606.

    Article  MathSciNet  Google Scholar 

  29. Sudeep PV, Palanisamy P, Kesavadas C, Rajan J. Nonlocal linear minimum mean square error methods for denoising MRI. Biomed Signal Process Control. 2015;1(20):125–34.

    Article  Google Scholar 

  30. Isa IS, Sulaiman SN, Mustapha M, Darus S. Evaluating denoising performances of fundamental filters for T2-weighted MRI images. Proc Comput Sci. 2015;1(60):760–8.

    Article  Google Scholar 

  31. Manjón JV, Coupé P, Buades A. MRI noise estimation and denoising using non-local PCA. Med Image Anal. 2015;22(1):35–47.

    Article  Google Scholar 

  32. Seetha J, Raja SS. Denoising of MRI images using filtering methods. In: 2016 International Conference on Wireless Communications, Signal Processing and Networking (WiSPNET) 2016 Mar 23 (pp. 765–769). IEEE.

  33. Hu J, Zhou J, Wu X. Non-local MRI denoising using random sampling. Magn Reson Imaging. 2016;34(7):990–9.

    Article  Google Scholar 

  34. Biswas R, Purkayastha D, Roy S. Denoising of MRI Images Using Curvelet Transform. In Advances in Systems, Control and Automation 2018 (pp. 575–583). Springer, Singapore.

  35. Klosowski J, Frahm J. Image denoising for real-time MRI. Magn Reson Med. 2017;77(3):1340–52.

    Article  Google Scholar 

  36. Yuan J. An improved variational model for denoising magnetic resonance images. Comput Math Appl. 2018;76(9):2212–22.

    Article  MathSciNet  Google Scholar 

  37. Ali HM. MRI medical image denoising by fundamental filters. High-Resolut Neuroimaging-Basic Phys Princ Clin Appl. 2018;14(14):111–24.

    Google Scholar 

  38. Liu L, Yang H, Fan J, Liu RW, Duan Y. Rician noise and intensity nonuniformity correction (NNC) model for MRI data. Biomed Signal Process Control. 2019;1(49):506–19.

    Article  Google Scholar 

  39. Sharma KK, Gurjar D, Jyotyana M, Kumari V. Denoising of brain MRI images using a hybrid filter method of Sylvester-Lyapunov equation and non-local means. In Smart Innovations in Communication and Computational Sciences 2019 (pp. 495–505). Springer, Singapore.

  40. Das P, Pal C, Chakrabarti A, Acharyya A, Basu S. Adaptive denoising of 3D volumetric MR images using local variance based estimator. Biomed Signal Process Control. 2020;1(59): 101901.

    Article  Google Scholar 

  41. Thanh DN, Hien NN, Kalavathi P, Prasath VS. Adaptive switching weight mean filter for salt and pepper image denoising. Procedia Comput Sci. 2020;1(171):292–301.

    Article  Google Scholar 

  42. Zhu Y, Pan X, Lv T, Liu Y, Li L. DESN: An unsupervised MR image denoising network with deep image prior. Theoret Comput Sci. 2021;880:97–110.

    Article  MathSciNet  Google Scholar 

  43. Chen Z, Fu Y, **ang Y, Zhu Y. A novel MR image denoising via LRMA and NLSS. Signal Process. 2021;1(185): 108109.

    Article  Google Scholar 

  44. Singh D, Kaur A. Fuzzy based fast non local mean filter to denoise Rician noise. Mater Today: Proc. 2021;46:6445–52.

    Google Scholar 

  45. Rawat S, Rana KP, Kumar V. A novel complex-valued convolutional neural network for medical image denoising. Biomed Signal Process Control. 2021;1(69): 102859.

    Article  Google Scholar 

  46. Upadhyay P, Upadhyay SK, Shukla KK. Magnetic resonance images denoising using a wavelet solution to laplace equations associated with a new variational model. Appl Math Comput. 2021;1(400): 126083.

    MathSciNet  Google Scholar 

  47. Hassan MR, Islam MF, Uddin MZ, Ghoshal G, Hassan MM, Huda S, Fortino G. Prostate cancer classification from ultrasound and MRI images using deep learning based Explainable artificial intelligence. Futur Gener Comput Syst. 2022;127:462–72.

    Article  Google Scholar 

  48. Kim CH, Bhattacharjee S, Prakash D, Kang S, Cho NH, Kim HC, Choi HK. Artificial intelligence techniques for prostate cancer detection through dual-channel tissue feature engineering. Cancers. 2021;13(7):1524.

    Article  Google Scholar 

  49. Yoo S, Gujrathi I, Haider MA, Khalvati F. Prostate cancer detection using deep convolutional neural networks. Sci Rep. 2019;9(1):19518.

    Article  Google Scholar 

  50. Liu, S., Zheng, H., Feng, Y. and Li, W., 2017, March. Prostate cancer diagnosis using deep learning with 3D multiparametric MRI. In Medical imaging 2017: computer-aided diagnosis (Vol. 10134, pp. 581–584). SPIE.

  51. Wei X, Zhu L, Zeng Y, Xue K, Dai Y, Xu J, Liu G, Liu F, Xue W, Wu D, Wu G. Detection of prostate cancer using diffusion-relaxation correlation spectrum imaging with support vector machine model–a feasibility study. Cancer Imaging. 2022;22(1):77.

    Article  Google Scholar 

  52. Akinnuwesi BA, Olayanju KA, Aribisala BS, Fashoto SG, Mbunge E, Okpeku M, Owate P. Application of support vector machine algorithm for early differential diagnosis of prostate cancer. Data Sci Manag. 2023;6(1):1–2.

    Article  Google Scholar 

  53. Huljanah, M., Rustam, Z., Utama, S. and Siswantining, T., 2019, June. Feature selection using random forest classifier for predicting prostate cancer. In IOP Conference Series: Materials Science and Engineering (Vol. 546, No. 5, p. 052031). IOP Publishing.

  54. Toth R, Schiffmann H, Hube-Magg C, Büscheck F, Höflmayer D, Weidemann S, Lebok P, Fraune C, Minner S, Schlomm T, Sauter G. Random forest-based modelling to detect biomarkers for prostate cancer progression. Clin Epigenetics. 2019;11:1–15.

    Article  Google Scholar 

  55. Maliha, S.K., Ema, R.R., Ghosh, S.K., Ahmed, H., Mollick, M.R.J. and Islam, T., 2019, July. Cancer disease prediction using naive Bayes, K-nearest neighbor and J48 algorithm. In: 2019 10th International Conference on Computing, Communication and Networking Technologies (ICCCNT) (pp. 1–7). IEEE.

  56. Bustamam A, Bachtiar A, Sarwinda D. Selecting feature subsets based on support vector machine-recursive features elimination and one dimensional-naïve bayes classifier using support vector machines for classification of prostate and breast cancer. Procedia Comput Sci. 2019;157:450–8.

    Article  Google Scholar 

  57. Motwani A, Shukla PK, Pawar M. Ubiquitous and smart healthcare monitoring frameworks based on machine learning: a comprehensive review. Artif Intell Med. 2022;1(134):102431.

    Article  Google Scholar 

  58. Shukla, P.K., Patel, A., Shukla, P.K., Parashar, P., & Tiwari, B. (Eds.). (2023). IoT in Healthcare Systems: Applications, Benefits, Challenges, and Case Studies (1st ed.). CRC Press. https://doi.org/10.1201/9781003145035.

Download references

Funding

Not Applicable.

Author information

Authors and Affiliations

Authors

Contributions

Not Applicable.

Corresponding author

Correspondence to Rami Mohamdfowzi Yaslam Baazeem.

Ethics declarations

Conflict of interest

Not Applicable.

Human or Animal Rights

Not Applicable.

Informed Consent

Not Applicale.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is part of the topical collection “Machine Intelligence and Smart Systems” guest edited by Manish Gupta and Shikha Agrawal.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Baazeem, R.M.Y. Efficient Classification of Prostate Cancer Using Artificial Intelligence Techniques. SN COMPUT. SCI. 5, 389 (2024). https://doi.org/10.1007/s42979-024-02745-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s42979-024-02745-0

Keywords

Navigation