Log in

Protein profiling in a set of wild rice species and rice cultivars: a step** stone to protein quality improvement

  • Original Paper
  • Published:
Cereal Research Communications Aims and scope Submit manuscript

Abstract

In this study, a total of 118 genotypes, including 90 wild accessions belonging to AA genome (O. glaberrima, O. barthii, O. nivara, O. rufipogon, O. longistaminata, O. meridionalis, O. glumaepatula) and CC genome (O. officinalis), 19 non-basmati genotypes and nine basmati cultivars were analyzed for their protein content and grain characteristics in brown rice. The protein content in wild rice accessions was appreciably high as 20.8% followed by non-basmati and (11.5%) and basmati (11%) cultivars. Thousand-grain weight and grain breadth (GB) were highest in wild rice accessions (30.4gm and 2.9 mm), while grain length and L: B were highest in basmati cultivars (8.9 mm and 6.2). Fractionation of storage proteins and SDS gel electrophoresis revealed that significant differences in the protein content between the wild rice species and cultivated rice genotypes were mainly due to differences in their glutelin contents and high molecular weight glutelin polypeptides. The presence of characteristic bands in selected accessions is a useful parameter for identification of rice germplasm. The wild species that had high protein content has potential to increase the nutritional quality of rice through interspecific crosses in future breeding programs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig.4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Adebiyi AP, Adebiyi AO, Hasegawa Y, Ogawa T, Muramoto K (2009) Isolation and characterization of protein fractions from deoiled rice bran. Eur Food Res Technol 228:391–401

    Article  CAS  Google Scholar 

  • Adu-Kwarteng E, Ellis WO, Oduro I, Manful JT (2003) Rice grain quality: a comparison of local varieties with new varieties under study in Ghana. Food Control 14(7):507–514

    Article  Google Scholar 

  • Agboola S, Ng D, Mills D (2005) Characterization and functional properties of Australian rice protein isolates. J Cereal Sci 41:283–290

    Article  CAS  Google Scholar 

  • Amagliani L, O’Regan J, Kelly AL, O’Mahony JA (2017) Composition and protein profile analysis of rice protein ingredients. J Food Compost Anal 59:18–26

    Article  CAS  Google Scholar 

  • Anitalakshmi V, Rame G, Sathisha CS, Shailaja H (2014) Characterization of cultivars based on electrophoretic analysis of seed proteins, isozymes and DNA markers in rice (Oryza sativa L.). Indian J Plant Sci 3(2):2319

    Google Scholar 

  • Ansari IT, Memon AN, Ghanghro AB, Sahito MA, Narejo NT, Umrani JH, Khan S, Shah AM (2013) Comparative study of physicochemical properties of mutant rice varieties cultivated in Sindh. Sind Univ Res J 45(1):17–20

    Google Scholar 

  • AOAC (2000) Official method of analysis, 17th edition. Association of the Official Analytical Chemists. Washington, D. C.

  • Archana RS, Rani MS, Vardhan KV, Fareeda G (2018) Evaluation of rice (Oryza sativa L.) genotypes for grain yield, yield components and nutritional traits for scarce rainfall zone of Andhra Pradesh. J Res ANGRAU 46(3):34–40

    Google Scholar 

  • Banerjee S, Sharma DJ, Verulkar SB, Chandel G (2010) Use of in silico and semiquantitative RT-PCR approaches to develop nutrient rich rice (Oryza sativa L.). Indian J Biotechnol 9(2):203–212

    Google Scholar 

  • Bhat FM, Riar CS (2017) Characterizing the traditional rice (Oryza sativa L.) cultivars on the basis of seed morphology and protein characteristics. Indian J Plant Sci 6:39–47

    Google Scholar 

  • Bradford M (1976) A rapid and sensitive method for the quantification of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254

    Article  CAS  PubMed  Google Scholar 

  • Cagampang GB, Perdon AA, Juliano BO (1976) Changes in salt soluble proteins of rice during grain development. Phytochemistry 15:1425–1429

    Article  CAS  Google Scholar 

  • Cameron DK, Wang Y (2005) A better understanding of factors that affect the hardness and stickiness of long-grain rice. Cereal Chem 82(2):113–119

    Article  CAS  Google Scholar 

  • Cao X, Wen H, Li C, Gu Z (2009) Differences in functional properties and biochemical characteristics of congenetic rice proteins. J Cereal Sci 50:184–189

    Article  CAS  Google Scholar 

  • Chandi GK, Sogi DS (2007) Biochemical characterisation of rice protein fractions. Int J Food Sci Tech 42(11):1357–1362

    Article  CAS  Google Scholar 

  • Chavan JK, Duggal SK (1978) Studies on the essential amino acid composition, protein fractions and biological value (BV) of some new varieties of rice. J Sci Food Agric 29(3):225–229

    Article  CAS  PubMed  Google Scholar 

  • Edukondalu B, Reddy VR, Rani TS, Kumari CA, Soundharya B (2017) Studies on variability, heritability, correlation and path analysis for yield, yield attributes in rice (Oryza sativa L). Int J. Curr Microbiol Appl Sci 6(10):2369–2376

    Article  Google Scholar 

  • FAOSTAT (2020) https://www.fao.org/state-of-food-security-nutrition/en/. Accessed 12 Nov 2020

  • Fufa H, Baenziger PS, Beecher I, Dweikat V, Graybosch RA, Graybosch RA, Eskridge KM (2005) Comparison of phenotypic and molecular marker based classification of hard red winter wheat cultivars. Euphytica 145:133–146

    Article  CAS  Google Scholar 

  • Ghanghas N, Mukilan MT, Sharma S, Prabhakar PK (2020) Classification, composition, extraction, functional modification and application of rice (Oryza sativa) seed protein: a comprehensive review. Food Rev Intl. https://doi.org/10.1080/87559129.2020.1733596

    Article  Google Scholar 

  • Heinemann RJB, Fagundes PDL, Pinto EA, Penteado MDV, Lanfer-Marquez UM (2005) Comparative study of nutrient composition of commercial brown, parboiled and milled rice from Brazil. J Food Compost Anal 18(4):287–296

    Article  CAS  Google Scholar 

  • Ibukun EO (2008) Effect of prolonged parboiling duration on proximate composition of rice. J Sci Res Essay 3(7):323–325

    Google Scholar 

  • Iwasaki T, Shibuya N, Suzuki T, Chikubu S (1982) Gel filtration and electrophoresis of soluble rice proteins extracted from long, medium, and short grain varieties. Cereal Chem 59(3):192–195

    CAS  Google Scholar 

  • Jacquemin J, Bhatia D, Singh K, Wing RA (2013) The international Oryza Map alignment project: development of a genus-wide comparative genomics platform to help solve the 9 billion-people question. Curr Opin Plant Biol 16(2):147–156

    Article  CAS  PubMed  Google Scholar 

  • Ju ZY, Hettiarachchy NS, Rath N (2001) Extraction, denaturation and hydrophobic properties of rice flour proteins. J Food Sci 66:229–232

    Article  CAS  Google Scholar 

  • Juliano BO (1985a) Polysaccharides, proteins, and lipids of rice. In: Juliano BO (ed), Rice: chemistry and technology (2nd ed.). St. Paul, MN: American Association of Cereal Chemists. pp 59e174

  • Juliano BO (1985b) Polysaccharides, proteins and lipids of rice. In: Juliano, BO (ed), Rice chemistry and technology, second ed. AACC, MN, USA, pp 59–174

  • Juliano BO, Bechtel DB (1985) The rice grain and its gross composition. In: Juliano BO (ed), Rice: chemistry and technology (2nd ed.). St. Paul, MN: American Association of Cereal Chemists. pp 17e57

  • Juliano BO, Boulter D (1976) Extraction and composition of rice endosperm glutelin. Phytochemistry 15:1601–1606

    Article  CAS  Google Scholar 

  • Kennedy G, Burlingame B (2003) Analysis of food composition data on rice from a plant genetic resources perspective. Food Chem 80:589–596

    Article  CAS  Google Scholar 

  • Kim JW, Kim BC, Lee J, Lee DR, Rehman S, Yun SJ (2013) Protein content and composition of waxy rice grains. Pak J Bot 45(1):151–156

    Google Scholar 

  • Kim MS, Jeong YH (2002) Extraction and electrophoretic characterization of rice proteins. Prev Nutr Food Sci 4:437–441

    Article  Google Scholar 

  • Krishnan HB, Okita TW (1986) Structural relationship among the rice glutelin polypeptides. Plant Physiol 81:748

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Laemmli UK (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T-4. Nature 227:680–685

    Article  CAS  PubMed  Google Scholar 

  • Lestari P, Koh HJ (2014) Prediction of physicochemical properties of Indonesian indica rice using molecular markers. HAYATI J Biosci 21:276–286

    Article  Google Scholar 

  • Maisont S, Narkrugsa W (2009) Effects of some physicochemical properties of paddy rice varieties on puffing qualities by Microwave ‘ORIGINAL.’ Kasetsart J 43:566–575

    CAS  Google Scholar 

  • Mirali N, El-Khouri S, Rizq F (2007) Genetic diversity and relationships in some Vicia species as determined by SDS-PAGE of seed proteins. Biol Plant 51(4):660–666

    Article  CAS  Google Scholar 

  • Mohanty A, Marndi BC, Sharma S, Das A (2011) Biochemical characterization of two high protein rice cultivars from Assam rice collections. Oryza 48(2):171–174

    Google Scholar 

  • Morita Y, Yoshida C (1968) Studies on gamma globulin of rice embryo Part I. Isolation and purification of gamma globulin from rice embryo. J Biol Chem 32:664–670

    CAS  Google Scholar 

  • Nei M, Li W (1979) Mathematical model for studying genetic variation in terms of restriction endonucleases. Proc Natl Acad Sci 76:5269–5273

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Osborne TB (1924) The vegetable proteins. Longmans, Green and Co, London, UK

    Google Scholar 

  • Padhye WV, Salunkhe DK (1979) Extraction and characterization of rice proteins. Cereal Chem 56(5):389–393

    CAS  Google Scholar 

  • Pan SJ, Reeck GR (1998) Isolation and characterization of rice α-globulin. Cereal Chem 65(4):316–319

    Google Scholar 

  • Resurrection AP, Juliano BO, Tanaka Y (1979) Nutritional content and distribution in milling fractions of rice grains. J Sci Food Agric 30(5):475–481

    Article  Google Scholar 

  • Saikia S, Dutta H, Saikia D, Mahanta CL (2012) Quality characterization and estimation of hytochemical content capacity of aromatic pigmented and non-pigmented rice varieties. Food Res Int 46(1):334–340

    Article  CAS  Google Scholar 

  • Santos KF, Silveira RDD, Martin-Didonet CCG, Brondani C (2013) Storage protein profile and amino acid content in wild rice Oryza glumaepatula. Pesqui Agropecu Bras 48(1):66–72

    Article  Google Scholar 

  • Shyur LF, Chen CS (1994) Purification and characterization of rice prolamins. Bot Stud 35:65–71

    CAS  Google Scholar 

  • Silveira RDD, Santos KFEN, Martim-Didonet CCG, Didonet AD, Brondani C (2010) Proteínas de reserve de acessos de coleção nuclear de arroz. Pesqui Agropecu Bras 45:1441–1447

    Article  Google Scholar 

  • Singh KS, Suneetha Y, Kumar GV, Rao VS, Raja DS, Srinivas T (2020) Variability, correlation and path studies in coloured rice. Int J Chem Stud 8(4):2138–2144

    Article  CAS  Google Scholar 

  • Sneath PH, Sokal RR (1973) Numerical taxonomy. The principles and practice of numerical classifcation

  • Snow SD, Brooks JR (1989) Fractionation of rice glutelin polypeptides using gel filtration chromatography. J Food Sci 54:730

    Article  CAS  Google Scholar 

  • Somaratne GM, Prasantha BDR, Dunuwila GR, Chandrasekara A, Wijesinghe DGNG, Gunasekara DCS (2017) Effect of polishing on glycemic index and antioxidant properties of red and white basmati rice. Food Chem 237:716–723

    Article  CAS  PubMed  Google Scholar 

  • Sompong R, Siebenhandl-Ehn S, Linsberger-Martin G, Berghofer E (2011) Physicochemical and antioxidant properties of red and black rice varieties from Thailand. China Sri Lanka Food Chem 124(1):132–140

    CAS  Google Scholar 

  • Song TM, Zheng DH, Liu Y (1996) Identification of corn varieties using lactate polyacrylamide gel electrophoresis of seed albumins and globulines. Acta Bot Sin 38(8):599–604

    CAS  Google Scholar 

  • Srisawas W, **dal VK (2007) Sensory evaluation of cooked rice in relation to water-to-rice ratio and physicochemical properties. J Texture Stud 38(1):21–41

    Article  Google Scholar 

  • Steenson DF, Sathe SK (1995) Characterization and digestibility of Basmati rice (Oryza sativa L. var. Dehraduni) storage proteins. Cereal chem 72(3):275–280

    CAS  Google Scholar 

  • Stein JC, Yu Y, Copetti D, Zwickl DJ, Zhang L, Zhang C, Chougule K, Gao D, Iwata A, Goicoechea JL, Wei S (2018) Genomes of 13 domesticated and wild rice relatives highlight genetic conservation, turnover and innovation across the genus Oryza. Nature Genet 50(2):285–296

    Article  CAS  PubMed  Google Scholar 

  • Takaiwa F, Ogawa M, Okita TW (1999) Rice glutelins. In: Shewry PR, Casey R (eds) Seed Proteins. Kluwer Academic Publishers, Norwell MA, USA

    Google Scholar 

  • Tchuisse MN, Ngonkeu ELM, Malaa DK, Mballa T, Galani JHY, Nji A (2020) Grain morphological characterization and protein content of sixty-eight local rice (Oryza sativa L) cultivars from Cameroon. Afr J Plant Sci 14(1):24–35

    Article  CAS  Google Scholar 

  • Team RC (2013) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria

  • Terrell EE, Wiser W (1975) Protein and lysine contents in grains of three species of wild-rice (Zizania, gramineae). Bot Gaz 136:312–316

    Article  CAS  Google Scholar 

  • Thomas R, Wan-Nadiah WA, Bhat R (2013) Physiochemical properties, proximate composition, and cooking qualities of locally grown and imported rice varieties marketed in Penang. Malaysia Int Food Res J 20(3):1345–1351

    CAS  Google Scholar 

  • Van Der Borght A, Vandeputte GE, Derycke V, Brijs K, Daenen G, Delcour JA (2006) Extractability and chromatographic separation of rice endosperm proteins. J Cereal Sci 4(1):68–74

    Article  Google Scholar 

  • Verma DK, Srivastav PP (2017) Proximate composition, mineral content and fatty acids analyses of aromatic and non-aromatic Indian rice. Rice Sci 24(1):21–31

    Article  Google Scholar 

  • Wang H, Denney L, Zheng Y, Vinyes-Pares G, Reldy K, Wang P, Zhang Y (2015) Food sources of energy and nutrients in the diets of infants and toddlers in urban areas of China, based on one 24-hour dietary recall. BMC Nutr 1:19

    Article  Google Scholar 

  • Wen TN, Luthe DS (1985) Biochemical characterization of rice glutelin. Plant Physiol 78:172–177

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yadav RB, Khatkar BS, Yadav BS (2013) Electrophoretic characterization and functional properties of rice proteins from Indian rice cultivars. Int J Food Prop 8:17–1788

    Google Scholar 

  • Zarins Z, Chrastil J (1992) Separation and purification of rice oryzenin subunits by anion exchange and gel permeation chromatography. J Agric Food Chem 40:1599

    Article  CAS  Google Scholar 

  • Zhao Q, Selomulya C, **ong H, Chen XD, Ruan X, Wang S et al (2012) Comparison of functional and structural properties of native and industrial process-modified proteins from long-grain indica rice. J Cereal Sci 56:568–575

    Article  CAS  Google Scholar 

Download references

Funding

The authors acknowledge the research facilities supported by the Department of Science and Technology, Government of India under the Promotion of University Research and Scientific Excellence (PURSE) Grant.

Author information

Authors and Affiliations

Authors

Contributions

RK, NS contributed to the study conception and design. Material preparation and data collection were done by RK. Data analysis and interpretation were performed NK, RK, GS. The first draft of the manuscript was written by RK. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Rajvir Kaur.

Ethics declarations

Conflict of interest

The authors declare that there are no conflicts of interest regarding the publication of the paper.

Additional information

Communicated by F. Békés.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 102 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kaur, R., Kaur, R., Sharma, N. et al. Protein profiling in a set of wild rice species and rice cultivars: a step** stone to protein quality improvement. CEREAL RESEARCH COMMUNICATIONS 51, 163–177 (2023). https://doi.org/10.1007/s42976-022-00273-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42976-022-00273-2

Keywords

Navigation