Log in

On High-Resolution Entropy-Consistent Flux with Slope Limiter for Hyperbolic Conservation Laws

  • Original Paper
  • Published:
Communications on Applied Mathematics and Computation Aims and scope Submit manuscript

Abstract

This paper proposes a new version of the high-resolution entropy-consistent (EC-Limited) flux for hyperbolic conservation laws based on a new minmod-type slope limiter. Firstly, we identify the numerical entropy production, a third-order differential term deduced from the previous work of Ismail and Roe [11]. The corresponding dissipation term is added to the original Roe flux to achieve entropy consistency. The new, resultant entropy-consistent (EC) flux has a general and explicit analytical form without any corrective factor, making it easy to compute and a less-expensive method. The inequality constraints are imposed on the standard piece-wise quadratic reconstruction to enforce the pointwise values of bounded-type numerical solutions. We design the new minmod slope limiter as combining two separate limiters for left and right states. We propose the EC-Limited flux by adding this reconstruction data method to the primitive variables rather than to the conservative variables of the EC flux to preserve the equilibrium of the primitive variables. These resulting fluxes are easily applied to general hyperbolic conservation laws while having attractive features: entropy-stable, robust, and non-oscillatory. To illustrate the potential of these proposed fluxes, we show the applications to the Burgers equation and the Euler equations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Barth, T.: An Introduction to Recent Development in Theory and Numeric of Conservation Laws. Springer, Berlin, Heidelberg (1999)

    Google Scholar 

  2. Barth, T., Jespersen, D.C.: The design and application of upwind schemes on unstructured meshes. AIAA 89 (0366) (1989)

  3. Berger, M., Colella, P.: Local adaptive mesh refinement for shock hydrodynamics. J. Comput. Phys. 82(1), 64–84 (1989)

    Article  MATH  Google Scholar 

  4. Cockburn, B., Shu, C.-W.: The Runge-Kutta discontinuous Galerkin method for conservation laws V: multidimensional systems. J. Comput. Phys. 141(2), 199–224 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  5. Colella, P., Woodward, P.: The piecewise parabolic method for gas-dynamical simulations. J. Comput. Phys. 54(1), 174–201 (1984)

    Article  MATH  Google Scholar 

  6. Gottlieb, S., Tadmor, E.: Strong stability-preserving high-order time discretization methods. SIAM Rev. 43(1), 89–112 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  7. Harten, A.: High resolution schemes for hyperbolic conservation laws. J. Comput. Phys. 49(3), 357–393 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  8. Harten, A., Enjquist, B., Osher, S., Chakravarthy, S.R.: Uniformly high-order accurate essentially non-oscillatory schemes, III. J. Comput. Phys. 71(2), 231–303 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  9. Hu, C., Shu, C.-W.: Weighted essentially non-oscillatory schemes on triangular meshes. J. Comput. Phys. 150(1), 97–127 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  10. Ismail, F.: Toward a reliable prediction of shocks in hypersonic flow: resolving carbuncles with entropy and vorticity control, Ph.D. thesis. The University of Michigan, Ann Arbor, MI, USA (2006)

  11. Ismail, F., Roe, P.L.: Affordable, entropy-consistent Euler flux functions II: entropy production at shocks. J. Comput. Phys. 228(15), 5410–5436 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  12. Jiang, G.S., Shu, C.-W.: Efficient implementation of weighted ENO schemes. J. Comput. Phys. 126(1), 202–228 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  13. Kuzmin, D.: A vertex-based hierarchical slope limiter for p-adaptive discontinuous Galerkin methods. J. Comput. Appl. Math. 233(12), 3077–3085 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  14. Kuzmin, D.: A new perspective on flux and slope limiting in discontinuous Galerkin methods for hyperbolic conservation laws. Computer. Methods. Appl. Mech. Engrg. 373, 113569 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  15. Lax, P.D., Liu, X.D.: Solution of two-dimensional Riemann problems of gas dynamics by positive schemes. SIAM J. Sci. Comput. 19(2), 319–340 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  16. Liu, X.D., Osher, S.: Weighted essentially non-oscillatory schemes. J. Comput. Phys. 115(1), 200–212 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  17. Liu, Y., Feng, J.: High resolution, entropy-consistent scheme using flux limiter for hyperbolic systems of conservation laws. J. Sci. Comput. 64(3), 914–937 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  18. Michalak, K., Ollivier-Gooch, C.: Limiters for unstructured higher-order aaccurate solutions of the Euler equations. In: 46th AIAA Aerospace Sciences Meeting and Exhibit, 7–10 January 2008, Reno, Nevada, AIAA 2008-776 (2008)

  19. Ren, J., Feng, J.: High resolution entropy consistent schemes for hyperbolic conservation laws. Chinese Journal of Computational Physics 31(5), 539–551 (2014)

    Google Scholar 

  20. Roe, P. L.: Some contributions to the modeling of discontinuous flows. In: Large-Scale Computations in Fluid Mechanics, pp. 163–169, American Mathematical Society, Providence, RI (1983)

  21. Shi, J., Zhang, Y.-T., Shu, C.-W.: Resolution of high order WENO schemes for complicated flow structures. J. Comput. Phys. 186(2), 690–696 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  22. Shu, C.-W., Osher, S.: Efficient implementation of essentially non-oscillatory schemes II. J. Comput. Phys. 83(1), 32–78 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  23. Sweby, P.K.: High resolution schemes using flux limiter for hyperbolic conservation laws. SIAM J. Numer. Anal. 21(5), 995–1011 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  24. Sweby, P.K., Baines, M.J.: On convergence of Roe’s scheme for the general non-linear scalar wave equation. J. Comput. Phys. 56(1), 135–148 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  25. Tadmor, E.: The numerical viscosity of entropy stable schemes for systems of conservation laws. I. Math. Comput. 49(179), 91–103 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  26. Tadmor, E.: Entropy stability theory for difference approximations of nonlinear conservation laws and related time-dependent. Acta. Numer. 12, 451–512 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  27. Woodward, P., Colella, P.: The numerical simulation of two-dimensional fluid flow with strong shocks. J. Comput. Phys. 54(1), 115–173 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  28. Young, Y.N., Tufo, H.: On the miscible Rayleigh-Taylor instability: two and three dimensions. J. Fluid. Mech. 447, 377–408 (2011)

    Article  MATH  Google Scholar 

  29. Zhang, S., Shu, C.-W.: A new smoothness indicator for the WENO schemes and its effect on the convergence to steady state solutions. J. Sci. Comput. 31(1), 273–305 (2007)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

This work is supported by the National Natural Science Found Project of China through project number 11971075.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Supei Zheng.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ren, X., Feng, J., Zheng, S. et al. On High-Resolution Entropy-Consistent Flux with Slope Limiter for Hyperbolic Conservation Laws. Commun. Appl. Math. Comput. 5, 1616–1643 (2023). https://doi.org/10.1007/s42967-022-00232-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42967-022-00232-y

Keywords

Mathematics Subject Classification

Navigation