Log in

Construction of optimal designs for quantile regression model via particle swarm optimization

  • Research Article
  • Published:
Journal of the Korean Statistical Society Aims and scope Submit manuscript

Abstract

As an extension of mean regression and being robust against outliers, quantile regression has been used in many fields such as biomedicine, ecology, economics. However, it is theoretically and computationally challenging to find the optimal experimental design for quantile regression due to the complexity of the optimization problem. The purpose of this paper is to provide theoretical necessary conditions for A- and c-optimality of a design separately, and a numerical algorithm to find optimal designs for quantile regression models. The algorithm is constructed through particle swarm optimization so as to solve the problem of non-convexity of optimality criteria. In this paper, the algorithm is applied to obtain locally as well as Bayesian optimal designs for Michaelis–Menten, Emax and Exponential quantile regression models. We demonstrate that this technique can be applied to a variety of optimality criteria and scale functions without making any further assumption.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Broudiscou, A., Leardi, R., & Phan-Tan-Luu, R. (1996). Genetic algorithm as a tool for selection of D-optimal design. Chemometrics and Intelligent Laboratory Systems, 35(1), 105–116.

    Article  Google Scholar 

  • Chen, R.-B., Chang, S.-P., Wang, W., Tung, H.-C., & Wong, W. K. (2015). Minimax optimal designs via particle swarm optimization methods. Statistics and Computing, 25(5), 975–988.

    Article  MathSciNet  MATH  Google Scholar 

  • Chernoff, H. (1953). Locally optimal designs for estimating parameters. The Annals of Mathematical Statistics, 24(4), 586–602.

    Article  MathSciNet  MATH  Google Scholar 

  • Cressie, N., & Keightley, D. (1979). The underlying structure of the direct linear plot with application to the analysis of hormone-receptor interactions. Journal of Steroid Biochemistry, 11(2), 1173–1180.

    Article  Google Scholar 

  • Dette, H., Bretz, F., Pepelyshev, A., & Pinheiro, J. (2008). Optimal designs for dose-finding studies. Journal of the American Statistical Association, 103(483), 1225–1237.

    Article  MathSciNet  MATH  Google Scholar 

  • Dette, H., Kiss, C., & Bevanda, M. (2010). Optimal designs for the emax, log-linear and exponential models. Biometrika, 97(2), 513–518.

    Article  MathSciNet  MATH  Google Scholar 

  • Dette, H., & Trampisch, M. (2012). Optimal designs for quantile regression models. Journal of the American Statistical Association, 107(499), 1140–1151.

    Article  MathSciNet  MATH  Google Scholar 

  • Eberhart, R. & Kennedy, J. (1995). A new optimizer using particle swarm theory. In MHS’95. Proceedings of the sixth international symposium on micro machine and human science, pp. 39–43. IEEE.

  • Fang, Y., Xu, P., Yang, J., & Qin, Y. (2018). A quantile regression forest based method to predict drug response and assess prediction reliability. PLOS ONE, 13(10), e0205155.

    Article  Google Scholar 

  • Fedorov, V. (1972). Theory of Optimal Experiments (Probability and Statistics). Academic Press.

    Google Scholar 

  • He, X. (1997). Quantile curves without crossing. The American Statistician, 51(2), 186–192.

    Google Scholar 

  • Huber, P. J. (1967). The behavior of maximum likelihood estimates under nonstandard conditions. In Proceedings of the fifth Berkeley symposium on mathematical statistics and probability, (vol. 1, pp. 221–233).

  • Kennedy, J. (2006). Swarm intelligence. Handbook of nature-inspired and innovative computing: Integrating classical models and with emerging technologies (pp. 187–219). Springer.

    Chapter  Google Scholar 

  • Koenker, R. (2005). Quantile regression (Vol. 38). Cambridge University Press.

    Book  MATH  Google Scholar 

  • Kong, L., & Wiens, D. P. (2015). Model-robust designs for quantile regression. Journal of the American Statistical Association, 110(509), 233–245.

    Article  MathSciNet  MATH  Google Scholar 

  • Peterson, M. D., & Krishnan, C. (2015). Growth charts for muscular strength capacity with quantile regression. American Journal of Preventive Medicine, 49(6), 935–938.

    Article  Google Scholar 

  • Qiu, J., Chen, R.-B., Wang, W., & Wong, W. K. (2014). Using animal instincts to design efficient biomedical studies via particle swarm optimization. Swarm and Evolutionary Computation, 18, 1–10.

    Article  Google Scholar 

  • Selvaratnam, S., Kong, L., & Wiens, D. P. (2021). Model-robust designs for nonlinear quantile regression. Statistical Methods in Medical Research, 30(1), 221–232.

    Article  MathSciNet  Google Scholar 

  • Shi, Y., Zhang, Z., & Wong, W. K. (2019). Particle swarm based algorithms for finding locally and bayesian d-optimal designs. Journal of Statistical Distributions and Applications, 6, 3.

    Article  MATH  Google Scholar 

  • Van Kerm, P., Yu, S., & Choe, C. (2016). Decomposing quantile wage gaps: A conditional likelihood approach. Journal of the Royal Statistical Society: Series C (Applied Statistics), 65(4), 507–527.

    MathSciNet  Google Scholar 

  • Wei, Y., & He, X. (2006). Conditional growth charts. The Annals of Statistics, 34(5), 2069–2097.

    Article  MathSciNet  MATH  Google Scholar 

  • Whitacre, J. M. (2011). Recent trends indicate rapid growth of nature-inspired optimization in academia and industry. Computing, 93(2), 135–146.

    Article  MathSciNet  MATH  Google Scholar 

  • Yang, Z., Ghadamyari, M., Khorramdel, H., Alizadeh, S. M. S., Pirouzi, S., Milani, M., Banihashemi, F., & Ghadimi, N. (2021). Robust multi-objective optimal design of islanded hybrid system with renewable and diesel sources/stationary and mobile energy storage systems. Renewable and Sustainable Energy Reviews, 148, 111295.

    Article  Google Scholar 

  • Zhai, Y., & Fang, Z. (2018). Locally optimal designs for binary dose-response models. Canadian Journal of Statistics, 46(2), 336–354.

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

We thank the anonymous reviewers for their comments and suggestions that helped improve the manuscript. Yi Zhai is supported by the grant No. 11901325 from the National Natural Science Foundation of China.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhide Fang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

Proof of Theorem 1

Because locally optimality is considered here, for fixed initial guess for \(\theta\), \(\theta\) is omitted in \(D_i(\xi ,\theta )\) and \(H(\xi ,\theta )\) next. Assume \(\xi ^*\) is locally A-optimal for quantile regression model (1), i.e. \(\xi ^*\) minimizes the trace \(\text {tr}(H(\xi ))\). For \(\alpha \in [0,1]\) and a further design \(\xi _\alpha =(1-\alpha )\xi ^*+\alpha \xi\). The directional derivative of the function,

$$\begin{aligned} m(\xi _\alpha )=\text {tr}(H(\xi _\alpha ))=\text {tr}(D_1^{-1}(\xi _\alpha )D_0(\xi _\alpha )D_1^{-1}(\xi _\alpha )) =\text {tr}(D_1^{-2}(\xi _\alpha )D_0(\xi _\alpha )), \end{aligned}$$

at \(\xi ^*\) in the direction of \(\xi -\xi ^*\) is

$$\begin{aligned}{} & {} \frac{d}{d\alpha }m(\xi _\alpha ) \bigg |_{\alpha =0}=\frac{d}{d\alpha }\text {tr}(D_1^{-2}(\xi _\alpha )D_0(\xi _\alpha ))\bigg |_{\alpha =0}\\{} & {} \quad =\frac{d}{d\alpha }\text {tr}\left( \left( (1-\alpha )D_1(\xi ^*)+\alpha D_1(\xi )\right) ^{-2}\left( (1-\alpha )D_0(\xi ^*)+\alpha D_0(\xi )\right) \right) \bigg |_{\alpha =0}\\{} & {} \quad =\text {tr}\left( \frac{d}{d\alpha }\left( (1-\alpha )D_1(\xi ^*)+\alpha D_1(\xi )\right) ^{-2}\right. \\{} & {} \quad \left. \bigg |_{\alpha =0}D_0(\xi ^*)+D_1^{-2}(\xi ^*)\left( D_0(\xi )-D_0(\xi ^*)\right) \right) \\{} & {} \quad =-\text {tr}\left( D_1^{-2}(\xi ^*)D_1(\xi )D_1^{-1}(\xi ^*)D_0(\xi ^*)\right) -\text {tr} \left( D_1^{-1}(\xi ^*)D_1(\xi )D_1^{-2}(\xi ^*)D_0(\xi ^*)\right) \\{} & {} \qquad +2\text {tr}\left( D_1^{-2}(\xi ^*)D_0(\xi ^*)\right) +\text {tr}\left( D_1^{-2}(\xi ^*)D_0 (\xi )\right) -\text {tr}\left( D_1^{-2}(\xi ^*)D_0(\xi ^*)\right) \\{} & {} \quad =-\text {tr}\left( D_1(\xi )D_1^{-1}(\xi ^*)D_0(\xi ^*)D_1^{-2}(\xi ^*)\right) -\text {tr}\left( D_1(\xi )D_1^{-2}(\xi ^*)D_0(\xi ^*)D_1^{-1}(\xi ^*)\right) \\{} & {} \qquad +\text {tr}\left( D_1^{-2}(\xi ^*)D_0(\xi )\right) +\text {tr}\left( D_1^{-2}(\xi ^*)D_0(\xi ^*)\right) \ge 0, \end{aligned}$$

for all designs \(\xi\). So the inequality holds for \(\xi =\delta _x\) where \(\delta _x\) denotes Dirac measure with mass 1 at points \(x\in {\mathcal {X}}\). That is,

$$\begin{aligned}{} & {} -\text {tr}\left( D_1(\delta _x)D_1^{-1}(\xi ^*)D_0(\xi ^*)D_1^{-2}(\xi ^*)\right) -\text {tr}\left( D_1(\delta _x)D_1^{-2}(\xi ^*)D_0(\xi ^*)D_1^{-1}(\xi ^*)\right) \\{} & {} \qquad +\text {tr}\left( D_1^{-2}(\xi ^*)D_0(\delta _x)\right) +\text {tr}\left( D_1^{-2}(\xi ^*)D_0(\xi ^*)\right) \\{} & {} \quad =-\frac{1}{\sigma (x,\theta )}\dot{g}^T(x,\theta )D_1^{-1}(\xi ^*)D_0(\xi ^*)D_1^{-2}(\xi ^*)\dot{g}(x,\theta )\\{} & {} \qquad -\frac{1}{\sigma (x,\theta )}\dot{g}^T(x,\theta )D_1^{-2}(\xi ^*)D_0(\xi ^*)D_1^{-1}(\xi ^*)\dot{g}(x,\theta )\\{} & {} \qquad +\dot{g}^T(x,\theta )D_1^{-2}(\xi ^*)\dot{g}(x,\theta )+\text {tr}\left( D_1^{-2}(\xi ^*)D_0(\xi ^*)\right) \ge 0, \end{aligned}$$

for all \(x\in {\mathcal {X}}\). From (2) and (3) it follows that

$$\begin{aligned}{} & {} \int \frac{1}{\sigma (x,\theta )}\dot{g}^T(x,\theta )D_1^{-1}(\xi ^*)D_0(\xi ^*)D_1^{-2}(\xi ^*)\dot{g}(x,\theta )d\xi ^*(x)\\{} & {} \quad =\int \frac{1}{\sigma (x,\theta )}\dot{g}^T(x,\theta )D_1^{-2}(\xi ^*)D_0(\xi ^*)D_1^{-1}(\xi ^*)\dot{g}(x,\theta )d\xi ^*(x)\\{} & {} \quad =\int \dot{g}^T(x,\theta )D_1^{-2}(\xi ^*)\dot{g}(x,\theta )d\xi ^*(x)=\text {tr}\left( D_1^{-2}(\xi ^*)D_0(\xi ^*)\right) . \end{aligned}$$

It then follows that the equality is attained at each support point of \(\xi ^*\), which concludes the proof. \(\square\)

Proof of Theorem 2

Similarly, \(\theta\) is omitted in g \(D_i(\xi ,\theta )\) and \(H(\xi ,\theta )\) next. Assume \(\xi ^*\) is locally c-optimal for quantile regression model (1), i.e. \(\xi ^*\) minimizes \(c^TH(\xi )c\). For \(\alpha \in [0,1]\) and a further design \(\xi _\alpha =(1-\alpha )\xi ^*+\alpha \xi\), the directional derivative of \(H(\xi _\alpha )\) at \(\xi ^*\) in the direction of \(\xi -\xi ^*\) is

$$\begin{aligned}{} & {} \frac{d}{d\alpha }H(\xi _\alpha )\bigg |_{\alpha =0}= \frac{d}{d\alpha }D_1^{-1}(\xi _\alpha )D_0(\xi _\alpha )D_1^{-1}(\xi _\alpha )\bigg |_{\alpha =0}\\{} & {} \quad =\frac{d}{d\alpha }D_1^{-1}(\xi _\alpha )\bigg |_{\alpha =0}D_0(\xi ^*) D_1^{-1}(\xi ^*)+ D_1^{-1}(\xi ^*)\left( D_0(\xi )-D_0(\xi ^*)\right) D_1^{-1}(\xi ^*)\\{} & {} \qquad +D_1^{-1}(\xi ^*)D_0(\xi ^*)\frac{d}{d\alpha }D_1^{-1}(\xi _\alpha )\bigg |_{\alpha =0}\\{} & {} \quad =-D_1^{-1}(\xi ^*)\left( D_1(\xi )-D_1(\xi ^*)\right) D_1^{-1}(\xi ^*)D_0(\xi ^*)D_1^{-1}(\xi ^*)\\{} & {} \qquad +D_1^{-1}(\xi ^*)\left( D_0(\xi )-D_0(\xi ^*)\right) D_1^{-1}(\xi ^*)\\{} & {} \qquad -D_1^{-1}(\xi ^*)D_0(\xi ^*)D_1^{-1}(\xi ^*)\left( D_1(\xi )-D_1(\xi ^*)\right) D_1^{-1}(\xi ^*)\\{} & {} \quad =-D_1^{-1}(\xi ^*)\left( D_1(\xi )D_1^{-1}(\xi ^*)D_0(\xi ^*)+D_0(\xi ^*)\right. \\{} & {} \qquad \left. D_1^{-1}(\xi ^*)D_1(\xi )-D_0(\xi )-D_0(\xi ^*)\right) D_1^{-1}(\xi ^*). \end{aligned}$$

Consequently, the directional derivative of \(c^TH(\xi _\alpha )c\) at \(\xi ^*\) in the direction of \(\xi -\xi ^*\) is

$$\begin{aligned}{} & {} \frac{d}{d\alpha }c^TH(\xi _\alpha )c \bigg | _{\alpha =0}\\{} & {} \quad =-c^TD_1^{-1}(\xi ^*)\left( D_1(\xi )D_1^{-1}(\xi ^*)D_0(\xi ^*)\right. \\{} & {} \qquad \left. + D_0(\xi ^*)D_1^{-1}(\xi ^*)D_1(\xi )-D_0(\xi )-D_0(\xi ^*)\right) D_1^{-1}(\xi ^*)c\\{} & {} \quad =-c^TD_1^{-1}(\xi ^*)\frac{1}{\sigma (x,\theta )}\dot{g}(x,\theta ) \dot{g}^T(x,\theta )D_1^{-1}(\xi ^*)D_0(\xi ^*)D_1^{-1}(\xi ^*)c\\{} & {} \qquad -c^TD_1^{-1}(\xi ^*)D_0(\xi ^*)D_1^{-1}(\xi ^*)\frac{1}{\sigma (x,\theta )}\dot{g}(x,\theta )\dot{g}^T(x,\theta )D_1^{-1}(\xi ^*)c\\{} & {} \qquad +c^TD_1^{-1}(\xi ^*)\dot{g}(x,\theta )\dot{g}^T(x,\theta )D_1^{-1}(\xi ^*)c+c^TD_1^{-1}(\xi ^*)D_0(\xi ^*)D_1^{-1}(\xi ^*)c\ge 0 \end{aligned}$$

for all designs \(\xi\). So the inequality holds for \(\xi =\delta _x\) where \(\delta _x\) denotes Dirac measure with mass 1 at points \(x\in {\mathcal {X}}\). That is,

$$\begin{aligned}{} & {} -\frac{2}{\sigma (x,\theta )}\left( c^TD_1^{-1}(\xi ^*)\dot{g}(x,\theta )\right) \left( c^TD_1^{-1}(\xi ^*)D_0(\xi ^*)D_1^{-1}(\xi ^*)\dot{g}(x,\theta )\right) \\{} & {} \quad +\left( c^TD_1^{-1}(\xi ^*)\dot{g}(x,\theta )\right) ^2+c^TD_1^{-1}(\xi ^*)D_0(\xi ^*)D_1^{-1}(\xi ^*)c\ge 0 \end{aligned}$$

for all \(x\in {\mathcal {X}}\). From (2) and (3), it follows that

$$\begin{aligned}{} & {} \int \frac{1}{\sigma (x,\theta )}\left( c^TD_1^{-1}(\xi ^*)\dot{g}(x,\theta ) \right) \left( c^TD_1^{-1}(\xi ^*)D_0(\xi ^*)D_1^{-1}(\xi ^*)\dot{g}(x,\theta )\right) d\xi ^*(x)\\{} & {} \quad =\int \left( c^TD_1^{-1}(\xi ^*)\dot{g}(x,\theta )\right) ^2d\xi ^*(x) \\{} & {} \quad =c^TD_1^{-1}(\xi ^*)D_0(\xi ^*)D_1^{-1}(\xi ^*)c. \end{aligned}$$

It then follows that the equality is attained at each support point of \(\xi ^*\), which concludes the proof. \(\square\)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhai, Y., **ng, C. & Fang, Z. Construction of optimal designs for quantile regression model via particle swarm optimization. J. Korean Stat. Soc. 52, 921–943 (2023). https://doi.org/10.1007/s42952-023-00228-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42952-023-00228-1

Keywords

Mathematics Subject Classification

Navigation