Log in

Magnetic alignment of electrochemically exfoliated graphite in epoxy as a thermal interface material with high through-plane thermal conductivity

  • Rapid Communications
  • Published:
Carbon Letters Aims and scope Submit manuscript

Abstract

Thermal management is significant to maintain the reliability and durability of electronic devices. Heat can be dissipated using thermal interface materials (TIMs) comprised of thermally conductive polymers and fillers. Furthermore, it is important to enhance the thermal conductivity of TIMs through the formation of a heat transfer pathway. This paper reports a polymer composite containing vertically aligned electrochemically exfoliated graphite (EEG). We modify the EEG via edge selective oxidation to decorate the surface with iron oxides and enhance the dispersibility of EEG in polymer resin. During the heat treatment and curing process, a magnetic field is applied to the polymer composites to align the iron oxide decorated EEG. The resulting polymer composite containing 25 wt% of filler has a remarkable thermal conductivity of 1.10 W m−1 K−1 after magnetic orientation. These results demonstrate that TIM can be designed with a small amount of filler by magnetic alignment to form an efficient heat transfer pathway.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

References

  1. Suh D, Moon CM, Kim D, Baik S (2016) Ultrahigh thermal conductivity of interface materials by silver-functionalized carbon nanotube phonon conduits. Adv Mater 28(33):7220–7227

    Article  CAS  Google Scholar 

  2. Xu S, Zhang J (2020) Vertically aligned graphene for thermal interface materials. Small Struct 1(3):2000034

    Article  Google Scholar 

  3. Ci H, Chang H, Wang R, Wei T, Wang Y, Chen Z, Sun Y, Dou Z, Liu Z, Li J, Gao P, Liu Z (2019) Enhancement of heat dissipation in ultraviolet light-emitting diodes by a vertically oriented graphene nanowall buffer layer. Adv Mater 31(29):1901624

    Article  Google Scholar 

  4. Dai W, Lv L, Lu J, Hou H, Yan Q, Alam FE, Li Y, Zeng X, Yu J, Wei Q, Xu X, Wu J, Jiang N, Du S, Sun R, Xu J, Wong C, Lin C-T (2019) A paper-like inorganic thermal interface material composed of hierarchically structured graphene/silicon carbide nanorods. ACS Nano 13(2):1547–1554

    CAS  Google Scholar 

  5. Huang S, Zhao J, Gong L, Duan X (2017) Thermal performance and structure optimization for slotted microchannel heat sink. Appl Therm Eng 115:1266–1276

    Article  CAS  Google Scholar 

  6. Qi C, Hu J, Liu M, Guo L, Rao Z (2017) Experimental study on thermo-hydraulic performances of CPU cooled by nanofluids. Energy Convers Manag 153:557–565

    Article  CAS  Google Scholar 

  7. Razeeb KM, Dalton E, Cross GLW, Robinson AJ (2018) Present and future thermal interface materials for electronic devices. Int Mater Rev 63(1):1–21

    Article  CAS  Google Scholar 

  8. **a G, Cao L, Bi G (2017) A review on battery thermal management in electric vehicle application. J Power Sources 367:90–105

    Article  CAS  Google Scholar 

  9. Yan Q, Alam FE, Gao J, Dai W, Tan X, Lv L, Wang J, Zhang H, Chen D, Nishimura K, Wang L, Yu J, Lu J, Sun R, **ang R, Maruyama S, Zhang H, Wu S, Jiang N, Lin C-T (2021) Soft and self-adhesive thermal interface materials based on vertically aligned, covalently bonded graphene nanowalls for efficient microelectronic cooling. Adv Funct Mater 31(36):2104062

    Article  CAS  Google Scholar 

  10. Dai W, Ma T, Yan Q, Gao J, Tan X, Lv L, Hou H, Wei Q, Yu J, Wu J, Yao Y, Du S, Sun R, Jiang N, Wang Y, Kong J, Wong C, Maruyama S, Lin C-T (2019) Metal-level thermally conductive yet soft graphene thermal interface materials. ACS Nano 13(10):11561–11571

    Article  CAS  Google Scholar 

  11. Hansson J, Nilsson TM, Ye L, Liu J (2018) Novel nanostructured thermal interface materials: a review. Int Mater Rev 63(1):22–45

    Article  CAS  Google Scholar 

  12. Kang D-G, Ko H, Koo J, Lim S-I, Kim JS, Yu Y-T, Lee C-R, Kim N, Jeong K-U (2018) Anisotropic thermal interface materials: directional heat transfer in uniaxially oriented liquid crystal networks. ACS Appl Mater Interfaces 10(41):35557–35562

    Article  CAS  Google Scholar 

  13. Ebrahimi H, Roghani-Mamaqani H, Salami-Kalajahi M, Shahi S, Abdollahi A (2020) Chemical incorporation of epoxy-modified graphene oxide into epoxy/novolac matrix for the improvement of thermal characteristics. Carbon Lett 30(1):13–22

    Article  Google Scholar 

  14. Oh Y, Kang JS, Kang CS, Kwon KC, Lee GW (2020) Investigation of mechanical, thermal and electrical properties of hybrid composites reinforced with multi-walled carbon nanotubes and fused silica particles. Carbon Lett 30(4):353–365

    Article  Google Scholar 

  15. Balandin AA, Ghosh S, Bao W, Calizo I, Teweldebrhan D, Miao F, Lau CN (2008) Superior thermal conductivity of single-layer graphene. Nano Lett 8(3):902–907

    Article  CAS  Google Scholar 

  16. Chung S-H, Kim H, Jeong SW (2018) Improved thermal conductivity of carbon-based thermal interface materials by high-magnetic-field alignment. Carbon 140:24–29

    Article  CAS  Google Scholar 

  17. Chen H, Ginzburg VV, Yang J, Yang Y, Liu W, Huang Y, Du L, Chen B (2016) Thermal conductivity of polymer-based composites: Fundamentals and applications. Prog Polym Sci 59:41–85

    Article  CAS  Google Scholar 

  18. Zhang F, Feng Y, Feng W (2020) Three-dimensional interconnected networks for thermally conductive polymer composites: design, preparation, properties, and mechanisms. Mater Sci Eng R: Rep 142:100580

    Article  Google Scholar 

  19. Chen J, Huang X, Sun B, Wang Y, Zhu Y, Jiang P (2017) Vertically aligned and interconnected boron nitride nanosheets for advanced flexible nanocomposite thermal interface materials. ACS Appl Mater Interfaces 9(36):30909–30917

    Article  CAS  Google Scholar 

  20. Kong Q, Bodelot L, Lebental B, Lim YD, Shiau LL, Gusarov B, Tan CW, Liang K, Lu C, Tan CS, Coquet P, Tay BK (2018) Novel three-dimensional carbon nanotube networks as high performance thermal interface materials. Carbon 132:359–369

    Article  CAS  Google Scholar 

  21. Ma J, Shang T, Ren L, Yao Y, Zhang T, **e J, Zhang B, Zeng X, Sun R, Xu J-B, Wong C-P (2020) Through-plane assembly of carbon fibers into 3D skeleton achieving enhanced thermal conductivity of a thermal interface material. Chem Eng J 380:122550

    Article  CAS  Google Scholar 

  22. Kwon YJ, Kwon Y, Park HS, Lee JU (2019) Mass-produced electrochemically exfoliated graphene for ultrahigh thermally conductive paper using a multimetal electrode system. Adv Mater Interfaces 6(9):1900095

    Article  Google Scholar 

  23. Park J, Kim YS, Sung SJ, Kim T, Park CR (2017) Highly dispersible edge-selectively oxidized graphene with improved electrical performance. Nanoscale 9(4):1699–1708

    Article  CAS  Google Scholar 

  24. Park JH, Oh YJ, Park DY, Lee J, Park JS, Park CR, Kim JH, Kim T, Yang SJ (2021) A new class of carbon nanostructures for high-performance electro-magnetic and-chemical barriers. Adv Sci 8(22):2102718

    Article  CAS  Google Scholar 

  25. Park JS, Han YB, So SH, Kim J, Ryu JH, Choi J, Park DH, Park CR, Kim JH, Yang SJ (2022) Concentration-driven polymorphic mesocrystal and morphosynthetic transformation toward omni-adsorbent with the widest range of pores. Chem Eng J 433:133871

    Article  CAS  Google Scholar 

  26. Shin G-J, Rhee K, Park S-J (2016) Improvement of CO2 capture by graphite oxide in presence of polyethylenimine. Int J Hydrog Energy 41(32):14351–14359

    Article  CAS  Google Scholar 

  27. Kang W-S, Rhee KY, Park S-J (2016) Thermal, impact and toughness behaviors of expanded graphite/graphite oxide-filled epoxy composites. Compos B Eng 94:238–244

    Article  CAS  Google Scholar 

  28. Dam B, Jamatia R, Gupta A, Pal AK (2017) Metal-free greener syntheses of pyrimidine derivatives using a highly efficient and reusable graphite oxide carbocatalyst under solvent-free reaction conditions. ACS Sustain Chem Eng 5(12):11459–11469

    Article  CAS  Google Scholar 

  29. Wang L, Liu F, Shao W, Cui S, Zhao Y, Zhou Y, He J (2019) Graphite oxide do** polyimide nanofiber membrane via electrospinning for high performance lithium-ion batteries. Compos Commun 16:150–157

    Article  Google Scholar 

  30. Agostini M, Brutti S, Hassoun J (2016) High voltage Li-ion battery using exfoliated graphite/graphene nanosheets anode. ACS Appl Mater Interfaces 8(17):10850–10857

    Article  CAS  Google Scholar 

  31. Shin MC, Kim JH, Nam S, Oh YJ, ** HJ, Park CR, Zhang Q, Yang SJ (2020) Atomic-distributed coordination state of metal-phenolic compounds enabled low temperature graphitization for high-performance multioriented graphite anode. Small 16(33):2003104

    Article  CAS  Google Scholar 

  32. Oh YJ, Park JH, Park JS, Kim SS, Hong SJ, Na YW, Kim JH, Nam SH, Yang SJ (2022) Fast-chargeable N-doped multi-oriented graphitic carbon as a Li-intercalation compound. Energy Storage Mater 44:416–424

    Article  Google Scholar 

  33. Lee MH, Kim HY, Kim J, Han JT, Lee Y-S, Woo JS (2020) Influence of oxyfluorinated graphite on fluorinated ethylene–propylene composites as bipolar plates. Carbon Lett 30(3):345–352

    Article  Google Scholar 

  34. Na YW, Cheon JY, Kim JH, Jung Y, Lee K, Park JS, Park JY, Song KS, Lee SB, Kim T, Yang SJ (2022) All-in-one flexible supercapacitor with ultrastable performance under extreme load. Sci Adv 8(1):eabl8631

    Article  CAS  Google Scholar 

  35. Hu J, Liang C, Li J, Liang Y, Li S, Li G, Wang Z, Dong D (2021) Flexible reduced graphene oxide@ Fe3O4/silicone rubber composites for enhanced microwave absorption. Appl Surf Sci 570:151270

    Article  CAS  Google Scholar 

  36. Jiang S, Qian K, Yu K, Zhou H, Weng Y, Zhang Z (2020) Controllable synthesis and microwave absorption properties of Fe3O4@ f-GNPs nanocomposites. Compos Commun 20:100363

    Article  Google Scholar 

  37. Zhao Q, Liu J, Wang Y, Tian W, Liu J, Zang J, Ning H, Yang C, Wu M (2018) Novel in-situ redox synthesis of Fe3O4/rGO composites with superior electrochemical performance for lithium-ion batteries. Electrochim Acta 262:233–240

    Article  CAS  Google Scholar 

  38. Kim KH, Han J-I, Kang D-H, Lee Y-S (2018) Improved heat-spreading properties of fluorinated graphite/epoxy film. Carbon Lett 28:96–99

    Google Scholar 

  39. Xu B, Mao N, Zhao Y, Tong L, Zhang J (2021) Polarized Raman spectroscopy for determining crystallographic orientation of low-dimensional materials. J Phys Chem Lett 12(31):7442–7452

    Article  CAS  Google Scholar 

  40. Yan H, Wang R, Li Y, Long W (2015) Thermal conductivity of magnetically aligned graphene–polymer composites with Fe3O4-decorated graphene nanosheets. J Electron Mater 44(2):658–666

    Article  CAS  Google Scholar 

  41. Huang L, Zhu P, Li G, Lu DD, Sun R, Wong C (2014) Core–shell SiO2@RGO hybrids for epoxy composites with low percolation threshold and enhanced thermo-mechanical properties. J Mater Chem 2(43):18246–18255

    Article  CAS  Google Scholar 

  42. Lin Z, Liu Y, Raghavan S, Moon K-s, Sitaraman SK, Wong C-p (2013) Magnetic alignment of hexagonal boron nitride platelets in polymer matrix: toward high performance anisotropic polymer composites for electronic encapsulation. ACS Appl Mater Interfaces 5(15):7633–7640

    Article  CAS  Google Scholar 

  43. Mao D, Chen J, Ren L, Zhang K, Yuen MM, Zeng X, Sun R, Xu J-B, Wong C-P (2019) Spherical core-shell Al@Al2O3 filled epoxy resin composites as high-performance thermal interface materials. Compos A Appl Sci Manuf 123:260–269

    Article  CAS  Google Scholar 

  44. Min C, Yu D, Cao J, Wang G, Feng L (2013) A graphite nanoplatelet/epoxy composite with high dielectric constant and high thermal conductivity. Carbon 55:116–125

    Article  CAS  Google Scholar 

  45. Wang X, Wu P (2018) Melamine foam-supported 3D interconnected boron nitride nanosheets network encapsulated in epoxy to achieve significant thermal conductivity enhancement at an ultralow filler loading. Chem Eng J 348:723–731

    Article  CAS  Google Scholar 

  46. Yang F, Sun X, Guo Q, Yao Z (2019) Improvement of thermal conductivities for epoxy composites via incorporating poly (vinyl benzal)-coated h-BN fillers and solvent-assisted dispersion. Ind Eng Chem Res 58(40):18635–18643

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by Inha University Research Grant (65427).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jae Ho Kim or Seung Jae Yang.

Ethics declarations

Conflict of interest

The authors declare that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 3953 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ryu, J.H., Yang, S.M., Lee, J.U. et al. Magnetic alignment of electrochemically exfoliated graphite in epoxy as a thermal interface material with high through-plane thermal conductivity. Carbon Lett. 32, 1433–1439 (2022). https://doi.org/10.1007/s42823-022-00378-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42823-022-00378-y

Keywords

Navigation