Log in

Influence of oxyfluorinated graphite on fluorinated ethylene–propylene composites as bipolar plates

  • Original Article
  • Published:
Carbon Letters Aims and scope Submit manuscript

Abstract

Numerous studies have reported that good adhesion and fluorination of carbon materials in a fluoropolymer matrix enhance their electrical and mechanical properties. However, a composite reinforced with oxyfluorinated graphite has not been reported for improving mechanical properties. This paper discusses the fabrication of conductive fluorinated ethylene–propylene (FEP)/oxyfluorinated graphite (f-graphite) composite bipolar plates (BPs) via compression molding. To investigate the effects of fluorinating graphite, graphite with a large particle size of 500 μm was mixed with FEP powder with a small particle size of 8 μm through ball milling. The FEP/graphite composites exhibited high anisotropic electrical conductivity with the in-plane conductivity much higher than the through-plane conductivity because of the planar orientation of the graphite sheets. Therefore, the mechanical properties of the composites such as flexural strength tended to deteriorate with increasing graphite content. In particular, the FEP/f-graphite composites exhibited excellent flexural strength of 12 MPa, much higher than that of FEP/graphite composites at 9 MPa with a graphite content of 80 wt%. The interfacial interaction between FEP and f-graphite led to improved physical compatibilization, which contributed to enhance the mechanical properties of these composites. Our results are a step toward develo** BPs for use in high-temperature fuel cells and heat-sink components.

Graphic abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Canada)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Yu A, Ramesh P, Itkis ME, Bekyarova E, Haddon RC (2007) Graphite nanoplatelet-epoxy composite thermal interface materials. J Phys Chem C 111:7565–7569. https://doi.org/10.1021/jp071761s

    Article  CAS  Google Scholar 

  2. Sengupta R, Bhattacharya M, Bandyopadhyay S, Bhowmick AK (2011) A review on the mechanical and electrical properties of graphite and modified graphite reinforced polymer composites. Prog Polym Sci 36:638–670. https://doi.org/10.1016/j.progpolymsci.2010.11.003

    Article  CAS  Google Scholar 

  3. Stankovich S, Dikin DA, Dommett GHB, Kohlhaas KM, Zimney EJ, Stach EA, Piner RD, Nguyen ST, Ruoff RS (2006) Graphene-based composite materials. Nature 442:282–286. https://doi.org/10.1038/nature04969

    Article  CAS  Google Scholar 

  4. Chung DDL (2001) Electromagnetic interference shielding effectiveness of carbon materials. Carbon 39:279–285. https://doi.org/10.1016/S0008-6223(00)00184-6

    Article  CAS  Google Scholar 

  5. Cote LJ, Silva RC, Huang J (2009) Flash reduction and patterning of graphite oxide and its polymer composite. J Am Chem Soc 131:11027–11032. https://doi.org/10.1021/ja902348k

    Article  CAS  Google Scholar 

  6. Kim KH, Han JI, Kang DH, Lee YS (2018) Improved heat-spreading properties of fluorinated graphite/epoxy film. Carbon Lett 28:96–99. https://doi.org/10.5714/CL.2018.28.096

    Article  Google Scholar 

  7. Chandan A, Hattenberger M, El-kharouf A, Du S, Dhir A, Self V, Pollet BG, Ingram A, Bujalski W (2013) High temperature (HT) polymer electrolyte membrane fuel cells (PEMFC) - a review. J Power Sources 231:264–278. https://doi.org/10.1016/j.jpowsour.2012.11.126

    Article  CAS  Google Scholar 

  8. Zhang J, **e Z, Zhang J, Tang Y, Song C, Navessin T, Shi Z, Song D, Wang H, Wilkinson DP, Liu ZS, Holdcroft S (2006) High temperature PEM fuel cells. J Power Sources 160:872–891. https://doi.org/10.1016/j.jpowsour.2006.05.034

    Article  CAS  Google Scholar 

  9. Lim JW, Kim MK, Yu YH, Lee DG (2014) Development of carbon/PEEK composite bipolar plates with nano-conductive particles for high-temperature PEM fuel cells (HT-PEMFCs). Compos Struct 118:519–527. https://doi.org/10.1016/j.compstruct.2014.08.011

    Article  Google Scholar 

  10. Cho EA, Jeon US, Ha HY, Hong SA, Oh IH (2004) Characteristics of composite bipolar plates for polymer electrolyte membrane fuel cells. J Power Sources 125:178–182. https://doi.org/10.1016/j.jpowsour.2003.08.039

    Article  CAS  Google Scholar 

  11. Adamska M, Narkiewicz U (2017) Fluorination of carbon nanotubes—a review. J Fluor Chem 200:179–189. https://doi.org/10.1016/j.jfluchem.2017.06.018

    Article  CAS  Google Scholar 

  12. Khabashesku VN, Billups WE, Margrave JL (2002) Fluorination of single-wall carbon nanotubes and subsequent derivatization reactions. Acc Chem Res 35:1087–1095. https://doi.org/10.1021/ar020146y

    Article  CAS  Google Scholar 

  13. Kharitonov AP, Simbirtseva GV, Tkachev AG, Blohin AN, Dyachkova TP, Maksimkin AA, Chukov DI (2015) Reinforcement of epoxy resin composites with fluorinated carbon nanotubes. Compos Sci Technol 107:162–168. https://doi.org/10.1016/j.compscitech.2014.12.002

    Article  CAS  Google Scholar 

  14. Chamssedine F, Claves D (2007) Three different modes of fluorine chemisorption at the surface of single wall carbon nanotubes. Chem Phys Lett 443:102–106. https://doi.org/10.1016/j.cplett.2007.06.022

    Article  CAS  Google Scholar 

  15. An KH, Heo JG, Jeon KG, Bae DJ, Jo C, Yang CW, Park CY, Lee YH, Lee YS, Chung YS (2002) X-ray photoemission spectroscopy study of fluorinated single-walled carbon nanotubes. Appl Phys Lett 80:4235–4237. https://doi.org/10.1063/1.1482801

    Article  CAS  Google Scholar 

  16. Kim JG, Lee YS, In SJ (2018) Improved flame retardant performance of cellulose fibers following fluorine gas treatment. Carbon Lett 28:66–71. https://doi.org/10.5714/CL.2018.28.066

    Article  Google Scholar 

  17. Geng HZ, Rosen R, Zheng B, Shimoda H, Fleming L, Liu J, Zhou O (2002) Fabrication and properties of composites of poly(ethylene oxide) and functionalized carbon nanotubes. Adv Mater 14:1387–1390. https://doi.org/10.1002/1521-4095

    Article  CAS  Google Scholar 

  18. Owens FJ (2005) Properties of composites of fluorinated single walled carbon nanotubes and polyacrylonitrile. Mater Lett 59:3720–3723. https://doi.org/10.1016/j.matlet.2005.06.066

    Article  CAS  Google Scholar 

  19. Chen X, Burger C, Fang D, Sics I, Wang X, He W, Somani RH, Yoon KH, Hsiao BS, Chu B (2006) In-situ x-ray deformation study of fluorinated multiwalled carbon nanotube and fluorinated ethylene-propylene nanocomposite fibers. Macromolecules 39:5427–5437. https://doi.org/10.1021/ma060173u

    Article  CAS  Google Scholar 

  20. Nakajima T, Kawaguchi M, Watanabe N (1983) Graphite intercalation compound of fluorine with lithium fluoride. Synth Met 7:117–124. https://doi.org/10.1016/0379-6779(83)90092-9

    Article  CAS  Google Scholar 

  21. Nakajima T, Ino T, Watanabe N, Takenaka H (1988) Preparation, structure, and electrical conductivity of fluorine-graphite intercalation compound. Carbon 26:397–401. https://doi.org/10.1016/0008-6223(88)90232-1

    Article  CAS  Google Scholar 

  22. Vaknin D, Palchan I, Davidov D, Selig H, Moses D (1986) Resistivity and E.S.R. studies of graphite HOPG/fluorine intercalation compound. Synth Met 16:349–365. https://doi.org/10.1016/0379-6779(86)90172-4

    Article  CAS  Google Scholar 

  23. Shofner ML, Khabashesku VN, Barrera EV (2006) Processing and mechanical properties of fluorinated single-wall carbon nanotube-polyethylene composites. Chem Mater 18:906–913. https://doi.org/10.1021/cm051475y

    Article  CAS  Google Scholar 

  24. Lee KM, Lee SE, Lee YS (2017) Improved mechanical and electromagnetic interference shielding properties of epoxy composites through the introduction of oxyfluorinated multiwalled carbon nanotubes. J Ind Eng Chem 56:435–442. https://doi.org/10.1016/j.jiec.2017.08.001

    Article  CAS  Google Scholar 

  25. Li J, Kim JK, Sham ML (2005) Conductive graphite mamoplatelet/epoxy nanocomposites: effects of exfoliation and UV/ozone treatment of graphite. Scr Mater 53:235. https://doi.org/10.1016/j.scriptamat.2005.03.034

    Article  CAS  Google Scholar 

  26. Laurenzi S, Botti S, Rufoloni A, Santonicola MG (2014) Fracture mechanisms in epoxy composites reinforced with carbon nanotubes. Procedia Eng 88:157. https://doi.org/10.1016/j.proeng.2014.11.139

    Article  CAS  Google Scholar 

  27. Park SJ, Cho KS, Ryo SK (2003) Filter-elastomer interactions: influence of oxygen plasma treatment on surface and mechanical properties of carbon black/rubber composites. Carbon 41:1437. https://doi.org/10.1016/S0008-6223(03)00088-5

    Article  CAS  Google Scholar 

  28. Choi YJ, Lee KM, Kang DH, Han JI, Lee YS (2019) Oxyfluorination of expanded graphite: improving the thermal properties of epoxy composites through interfacial interaction. Carbon Lett 29:401. https://doi.org/10.1007/s42823-019-00054-8

    Article  Google Scholar 

  29. Nakajima T, Kawaguchi M, Watanabe N (1983) Electrical conductivity and chemical bond of graphite intercalation compound with fluorine and metal fluorine. Solid State Ion 11:65–69. https://doi.org/10.1016/0167-2738(83)90064-4

    Article  CAS  Google Scholar 

  30. Lee JM, Kim SJ, Kim JW, Kang PH, Nho YC, Lee YS (2009) A high resolution XPS study of sidewall functionalized MWCNTs by fluorination. J Ind Eng Chem 15:66–71. https://doi.org/10.1016/j.jiec.2008.08.010

    Article  CAS  Google Scholar 

  31. Crassous I, Groult H, Lantelme F, Devilliers D, Tressaud A, Labrugère C, Dubois M, Belhomme C, Colisson A, Morel B (2009) Study of the fluorination of carbon anode in molten KF-2HF by XPS and NMR investigations. J Fluor Chem 130:1080–1085. https://doi.org/10.1016/j.jfluchem.2009.07.022

    Article  CAS  Google Scholar 

  32. Hwang HC, Woo JS, Park SY (2018) Flexible carbonized cellulose/single-walled carbon nanotube films with high conductivity. Carbohydr Polym 196:168–175. https://doi.org/10.1016/j.carbpol.2018.05.013

    Article  CAS  Google Scholar 

  33. Lee MH, Kim HY, Oh SM, Kim BC, Bang DS, Han JT, Woo JS (2018) Structural optimization of graphite for high-performance fluorinated ethylene-propylene composites as bipolar plates. Int J Hydrog Energy 43:21918–21927. https://doi.org/10.1016/j.ijhydene.2018.09.104

    Article  CAS  Google Scholar 

  34. Wong SC, Sutherland EM, Uhl FM (2006) Materials processes of graphite nanostructured composites using ball milling. Mater Manuf Process 20:159–166. https://doi.org/10.1081/AMP-200068659

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This study was supported by the National Research Foundation (NRF-2016M1A2A2937163), the Korea Evaluation Institute of Industrial Technology (KEIT-10077710) and the Korea Institute of Energy Technology Evaluation and Planning (KETEP-20163010032040).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Young-Seak Lee or Jong Seok Woo.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 383 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lee, M.H., Kim, H.Y., Kim, J. et al. Influence of oxyfluorinated graphite on fluorinated ethylene–propylene composites as bipolar plates. Carbon Lett. 30, 345–352 (2020). https://doi.org/10.1007/s42823-019-00103-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42823-019-00103-2

Keywords

Navigation