Log in

A Local Analogue of the Ghost Conjecture of Bergdall–Pollack

  • Original Article
  • Published:
Peking Mathematical Journal Aims and scope Submit manuscript

Abstract

We formulate a local analogue of the ghost conjecture of Bergdall and Pollack, which essentially relies purely on the representation theory of \({{\,\textrm{GL}\,}}_2({\mathbb {Q}}_p)\). We further study the combinatorial properties of the ghost series as well as its Newton polygon, in particular, giving a characterization of the vertices of the Newton polygon and proving an integrality result of the slopes. In a forthcoming sequel, we will prove this local ghost conjecture under some mild hypothesis and give arithmetic applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Andreatta, F., Iovita, A., Pilloni, V.: Le halo spectral. Ann. Sci. Éc. Norm. Supér. (4) 51(3), 603–655 (2018)

    Article  MathSciNet  Google Scholar 

  2. Barthel, L., Livné, R.: Irreducible modular representations of \({\rm GL}_2\) of a local field. Duke Math. J. 75(2), 261–292 (1994)

    Article  MathSciNet  Google Scholar 

  3. Bergdall, J.: Upper bounds for constant slope \(p\)-adic families of modular forms. Selecta Math. (N.S.) 25(4), 59 (2019)

    Article  MathSciNet  Google Scholar 

  4. Bergdall, J., Levin, B.: Reductions of some two-dimensional crystalline representations via Kisin modules. Int. Math. Res. Not. IMRN 2022(4), 3170–3197 (2022)

    Article  MathSciNet  Google Scholar 

  5. Bergdall, J., Pollack, R.: Slopes of modular forms and the ghost conjecture. Int. Math. Res. Not. IMRN 2019(4), 1125–1244 (2019)

    Article  MathSciNet  Google Scholar 

  6. Bergdall, J., Pollack, R.: Slopes of modular forms and the ghost conjecture, II. Trans. Am. Math. Soc. 372(1), 357–388 (2019)

    Article  MathSciNet  Google Scholar 

  7. Bergdall, J., Pollack, R.: Slopes of modular forms and reducible Galois representations: an oversight in the ghost conjecture. Proc. Am. Math. Soc. Ser. B 9, 432–444 (2022)

    Article  MathSciNet  Google Scholar 

  8. Berger, L., Li, H., Zhu, J.: Construction of some families of \(2\)-dimensional crystalline representations. Math. Ann. 329(2), 365–377 (2004)

    Article  MathSciNet  Google Scholar 

  9. Bhattacharya, S., Ghate, E.: Reductions of Galois representations for slopes in \((1,2) \). Doc. Math. 20, 943–987 (2015)

    Article  MathSciNet  Google Scholar 

  10. Bhattacharya, S., Ghate, E., Rozensztajn, S.: Reduction of Galois representations of slope \(1\). J. Algebra 508, 98–156 (2018)

    Article  MathSciNet  Google Scholar 

  11. Breuil, C: Representations of Galois and of GL\(_2\) in characteristic \(p\). Cours à l’université de Columbia, automne 2007, https://www.imo.universite-paris-saclay.fr/~christophe.breuil/PUBLICATIONS/New-York.pdf (2007)

  12. Breuil, C.: Sur quelques représentations modulaires et \(p\)-adiques de \({\rm GL}_2({{\mathbb{Q} }}_p)\). II. J. Inst. Math. Jussieu 2(1), 23–58 (2003)

    Article  MathSciNet  Google Scholar 

  13. Breuil, C., Hellmann, E., Schraen, B.: Une interprétation modulaire de la variété trianguline. Math. Ann. 367(3–4), 1587–1645 (2017)

    Article  MathSciNet  Google Scholar 

  14. Breuil, C., Paškūnas, V.: Towards a modulo \(p\) Langlands correspondence for \({\rm GL}_2\). Mem. Am. Math. Soc. 216(2016) (2012)

  15. Buzzard, K.: On \(p\)-adic families of automorphic forms. In: Modular Curves and Abelian Varieties. Progr. Math., vol. 224, pp. 23–44. Birkhäuser, Basel (2004)

  16. Buzzard, K.: Questions about slopes of modular forms. Astérisque 298, 1–15 (2005)

    MathSciNet  Google Scholar 

  17. Buzzard, K.: Eigenvarieties. In: L-functions and Galois Representations. London Math. Soc. Lecture Note Ser., vol. 320, pp. 59–120. Cambridge University Press, Cambridge (2007)

  18. Buzzard, K., Calegari, F.: A counterexample to the Gouvêa–Mazur conjecture. C. R. Math. Acad. Sci. Paris 338(10), 751–753 (2004)

    Article  MathSciNet  Google Scholar 

  19. Buzzard, K., Gee, T.: Explicit reduction modulo \(p\) of certain \(2\)-dimensional crystalline representations, II. Bull. Lond. Math. Soc. 45(4), 779–788 (2013)

    Article  MathSciNet  Google Scholar 

  20. Buzzard, K., Gee, T.: Slopes of modular forms. In: Families of Automorphic Forms and the Trace Formula, Simons Symposia, pp. 93–109. Springer, Berlin (2016)

  21. Buzzard, K., Kilford, L.: The 2-adic eigencurve at the boundary of weight space. Compos. Math. 141(3), 605–619 (2005)

    Article  MathSciNet  Google Scholar 

  22. Calegari, F., Emerton, M.: Completed cohomology—a survey. In: Non-abelian Fundamental Groups and Iwasawa Theory, London Math. Soc. Lecture Note Ser., vol. 393, pp. 239–257. Cambridge University Press, Cambridge (2012)

  23. Caraiani, A., Emerton, M., Gee, T., Geraghty, D., Paškūnas, V., Shin, S.W.: Patching and the \(p\)-adic local Langlands correspondence. Camb. J. Math. 4(2), 197–287 (2016)

    Article  MathSciNet  Google Scholar 

  24. Clay, L.: Some conjectures about the slopes of modular forms, Ph.D. thesis. Northwestern University, Evanston, IL (2005)

  25. Coleman, R., Mazur, B.: The eigencurve. In: Galois Representations in Arithmetic Algebraic Geometry (Durham, 1996). London Math. Soc. Lecture Note Ser., vol. 254, pp. 1–113. Cambridge University Press, Cambridge (1998)

  26. Colmez, P.: Fonctions d’une variable \(p\)-adique. Astérisque 330, 13–59 (2010)

    MathSciNet  Google Scholar 

  27. Davis, C., Wan, D., **ao, L.: Newton slopes for Artin–Schreier–Witt towers. Math. Ann. 364(3–4), 1451–1468 (2016)

    Article  MathSciNet  Google Scholar 

  28. Emerton, M.: \(2\)-adic modular forms of minimal slope, Ph.D. Thesis. Harvard University, Cambridge, MA (1998)

  29. Emerton, M.: On the interpolation of systems of eigenvalues attached to automorphic Hecke eigenforms. Invent. Math. 164(1), 1–84 (2006)

    Article  ADS  MathSciNet  Google Scholar 

  30. Emerton, M.: Ordinary parts of admissible representations of \(p\)-adic reductive groups I. Definition and first properties. Astérisque 331, 355–402 (2010)

    MathSciNet  Google Scholar 

  31. Emerton, M., Gee, T.: A geometric perspective on the Breuil–Mézard conjecture. J. Inst. Math. Jussieu 13(1), 183–223 (2014)

    Article  MathSciNet  Google Scholar 

  32. Fontaine, J.-M., Laffaille, G.: Construction de représentations \(p\)-adiques. Ann. Sci. Éc. Norm. Supér. (4) 15(4), 547–608 (1982)

    Article  Google Scholar 

  33. Ganguli, A., Ghate, E.: Reductions of Galois representations via the mod \(p\) Local Langlands Correspondence. J. Number Theory 147, 250–286 (2015)

    Article  MathSciNet  Google Scholar 

  34. Gee, T., Newton, J.: Patching and the completed homology of locally symmetric spaces. J. Inst. Math. Jussieu 21(2), 395–458 (2022)

    Article  MathSciNet  Google Scholar 

  35. Gee, T., Kisin, M.: The Breuil–Mézard conjecture for potentially Barsotti–Tate representations. Forum Math. Pi 2, e1 (2014)

    Article  Google Scholar 

  36. Gouvêa, F.: Where the slopes are. J. Ramanujan Math. Soc. 16(1), 75–99 (2001)

    MathSciNet  Google Scholar 

  37. Gouvêa, F., Mazur, B.: Families of modular eigenforms. Math. Comput. 58(198), 793–805 (1992)

    Article  ADS  MathSciNet  Google Scholar 

  38. Jacobs, D.: Slopes of compact Hecke operators, Ph.D. Thesis. Imperial College of Science, Technology and Medicine, London (2004)

  39. Kedlaya, K.: \(p\)-adic Differential Equations, Cambridge Studies in Advanced Mathematics, vol. 125. Cambridge University Press, Cambridge (2010)

    Book  Google Scholar 

  40. Kilford, L.J.P.: On the slopes of the \(U_5\) operator acting on overconvergent modular forms. J. Théor. Nombres Bordeaux 20(1), 165–182 (2008)

    Article  MathSciNet  Google Scholar 

  41. Kilford, L.J.P., McMurdy, K.: Slopes of the \(U_7\) operator acting on a space of overconvergent modular forms. LMS J. Comput. Math. 15, 113–139 (2012)

    Article  MathSciNet  Google Scholar 

  42. Kisin, M.: The Fontaine–Mazur conjecture for \({\rm GL}_2\). J. Am. Math. Soc. 22(3), 641–690 (2009)

  43. Lazard, M.: Groupes analytiques \(p\)-adiques. Inst. Hautes Études Sci. Publ. Math. 26, 389–603 (1965)

  44. Liu, R., Wan, D., **ao, L.: The eigencurve over the boundary of the weight space. Duke Math. J. 166(9), 1739–1787 (2017)

    Article  MathSciNet  Google Scholar 

  45. Loeffler, D.: Spectral expansions of overconvergent modular functions. Int. Math. Res. Not. IMRN 2007(16), Art. ID rnm050 (2007)

  46. Loeffler, D.: Overconvergent algebraic automorphic forms. Proc. Lond. Math. Soc. (3) 102(2), 193–228 (2011)

    Article  MathSciNet  Google Scholar 

  47. Newton, J.: Completed cohomology of Shimura curves and a \(p\)-adic Jacquet–Langlands correspondence. Math. Ann. 355(2), 729–763 (2013)

    Article  MathSciNet  Google Scholar 

  48. Paškūnas, V.: Coefficient systems and supersingular representations of \(\rm {GL}_2(F)\). Mém. Soc. Math. Fr. (N.S.) (99), vi+84 (2004)

  49. Paškūnas, V.: The image of Colmez’s Montreal functor. Publ. Math. Inst. Hautes Études Sci. 118, 1–191 (2013)

    Article  MathSciNet  Google Scholar 

  50. Paškūnas, V.: On the Breuil–Mézard conjecture. Duke Math. J. 164(2), 297–359 (2015)

    Article  MathSciNet  Google Scholar 

  51. Pilloni, V.: Overconvergent modular forms. Ann. Inst. Fourier (Grenoble) 63(1), 219–239 (2013)

    Article  MathSciNet  Google Scholar 

  52. Reduzzi, D.: Reduction mod \(p\) of cuspidal representations of \({\rm GL}_2({{\mathbb{F} }}_{p^n})\) and symmetric powers. J. Algebra 324(12), 3507–3531 (2010)

    Article  MathSciNet  Google Scholar 

  53. Ren, R.: The slope-invariant of local ghost series under direct sum. ar**v:2207.12145 (2022)

  54. Roe, D.: The \(3\)-adic Eigencurve at the boundary of weight space. Int. J. Number Theory 10(7), 1791–1806 (2014)

    Article  MathSciNet  Google Scholar 

  55. Schneider, P., Teitelbaum, J.: Banach space representations and Iwasawa theory. Isr. J. Math. 127, 359–380 (2002)

    Article  MathSciNet  Google Scholar 

  56. Serre, J.-P.: Galois Cohomology, Springer Monographs in Mathematics. Springer, Berlin (1997)

    Book  Google Scholar 

  57. Wan, D.: Dimension variation of classical and \(p\)-adic modular forms. Invent. Math. 133(2), 449–463 (1998)

    Article  ADS  MathSciNet  Google Scholar 

Download references

Acknowledgements

This paper will not be possible without the great idea from the work of John Bergdall and Robert Pollack [5, 6]. Many proofs are inspired by their numerical evidences. We especially thank them for sharing ideas and insights at an early stage and for many interesting conversations. We thank Matthew Emerton and Yongquan Hu for multiple helpful discussions. We also thank Jiawei An, Christophe Breuil, Keith Conrad, Toby Gee, Bao Le Hung, Álvaro Lozano-Robledo, Vincent Pilloni, and Rufei Ren for their interest in the project and inspiring comments. We thank all the people contributing to the SAGE software, as lots of our argument rely on first testing by a computer simulation. R. Liu is partially supported by the National Natural Science Foundation of China under Agreement No. NSFC-11725101 and the Tencent Foundation. N. Truong is partially supported by L. **ao’s NSF under Grant DMS-1752703. L. **ao is partially supported by Simons Collaboration under Grant #278433, and NSF under Grant DMS-1502147 and DMS-1752703, the Chinese NSF grant NSFC-12071004, Recruitment Program of Global Experts of China, and a grant from the Chinese Ministry of Education. B. Zhao is partially supported by AMS-Simons Travel Grant.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bin Zhao.

Ethics declarations

Conflict of interest

Ruochuan Liu is an editor for Peking Mathematical Journal and was not involved in the editorial review or the decision to publish this article. All authors declare that there are no competing interests.

Appendices

Appendix A: Recollection of Representation Theory of \({\mathbb {F}}[{{\,\textrm{GL}\,}}_2({\mathbb {F}}_p)]\)

In this appendix, we recall some basic facts on (right) \({\mathbb {F}}\)-representations of \({{\,\textrm{GL}\,}}_2({\mathbb {F}}_p)\). Our main references are [11] and [48] which work with left representations. Our convention will be the corresponding right representation given by transpose.

A.1 Setup

Throughout this appendix, we fix an odd prime number p. We set

$$\begin{aligned} {\bar{\textrm{G}}}= & {} {{\,\textrm{GL}\,}}_2({\mathbb {F}}_p), \quad {\bar{\textrm{U}}} = {\begin{pmatrix}1&{}{\mathbb {F}}_p\\ 0&{} 1\end{pmatrix}}, \quad \text {and }\ {\bar{\textrm{B}}} = {\begin{pmatrix}{\mathbb {F}}_p^\times &{}{\mathbb {F}}_p\\ 0&{} {\mathbb {F}}_p^\times \end{pmatrix}}.\\ {\bar{\textrm{T}}}= & {} {\begin{pmatrix}{\mathbb {F}}_p^\times &{}0\\ 0&{} {\mathbb {F}}_p^\times \end{pmatrix}}, \quad {\bar{\textrm{U}}}^- = {\begin{pmatrix}1&{}0\\ {\mathbb {F}}_p&{} 1\end{pmatrix}}, \quad \text {and }\ {\bar{\textrm{B}}}^- = {\begin{pmatrix}{\mathbb {F}}_p^\times &{}0\\ {\mathbb {F}}_p&{} {\mathbb {F}}_p^\times \end{pmatrix}}. \end{aligned}$$

The coefficient field will be a finite extension \({\mathbb {F}}\) of \({\mathbb {F}}_p\). Write \(\omega : {\mathbb {F}}_p^\times \rightarrow {\mathbb {F}}^\times \) for the character induced by inclusion. For a character \(\chi _{a,b}:=\omega ^a \times \omega ^b\) and an \({\mathbb {F}}\)-representation V of \({\bar{\textrm{G}}}\), we write \(V(\chi )\) for the subspace of V on which \({\bar{\textrm{T}}}\) acts by \(\chi \).

Let \({\bar{s}}={\big ({\begin{matrix}0&{}1\\ 1&{} 0\end{matrix}} \big )}\) represent the nontrivial element in the Weyl group of \({\bar{\textrm{G}}}\). If \(\chi \) is a character of \({\bar{\textrm{T}}}\), we use \(\chi ^s\) to denote the character defined by

$$\begin{aligned} \chi ^s({\bar{t}})=\chi ({\bar{s}}^{-1}{\bar{t}}{\bar{s}}), \quad \text {for all }{\bar{t}}\in {\bar{\textrm{T}}}. \end{aligned}$$

For a pair of non-negative integers (ab), we use \(\sigma _{a,b}\) to denote the right \({\mathbb {F}}\)-representation \({{\,\textrm{Sym}\,}}^a{\mathbb {F}}^{\oplus 2} \otimes \textrm{det}^b\) of \({\bar{\textrm{G}}}\) (in particular, b is taken modulo \(p-1\)). The right action is the transpose of the left action in [11, 48]; explicitly, it is, realized on the space of homogeneous polynomials of degree a

$$\begin{aligned} h(X, Y) \big |_{{\big ({{\begin{matrix}{\bar{\alpha }}&{}{}{\bar{\beta }}\\ {\bar{\gamma }}&{}{} {\bar{\delta }}\end{matrix}}} \big )}}: = h({\bar{\alpha }} X + {\bar{\beta }} Y, {\bar{\gamma }} X + {\bar{\delta }} Y) \quad \text{ for } {\bigg ({\begin{matrix}{\bar{\alpha }}&{}{}{\bar{\beta }}\\ {\bar{\gamma }}&{}{} {\bar{\delta }}\end{matrix}} \bigg )} \in {\bar{\text {G}}}. \end{aligned}$$

When \(a \in \{0, \dots , p-1\}\) and \(b \in \{0, \dots , p-2\}\), \(\sigma _{a,b}\) is irreducible. These representations exhaust all irreducible (right) \({\mathbb {F}}\)-representations of \({{\,\textrm{GL}\,}}_2({\mathbb {F}}_p)\), and are called Serre weights. We use \(\textrm{Proj}_{a,b}\) to denote the projective envelope of \(\sigma _{a,b}\) as a (right) \({\mathbb {F}}[{{\,\textrm{GL}\,}}_2({\mathbb {F}}_p)]\)-module.

Lemma A.2

The projective envelope \(\textrm{Proj}_{a,b}\) can be described explicitly as follows.

  1. (1)

    For any b, \(\textrm{Proj}_{0,b}\) is of dimension p over \({\mathbb {F}}\), and admits a socle filtration

    figure f

    where the \(\sigma _{0,b}\) on the left represents the socle, the \(\sigma _{0,b}\) on the right represents the cosocle, and each line represents a (unique up to isomorphism) nontrivial extension between the two Jordan–Hölder factors.

  2. (2)

    When \(1 \le a \le p-2\), \(\textrm{Proj}_{a,b}\) is of dimensional 2p over \({\mathbb {F}}\), and admits a socle filtration

    figure g

    where the \(\sigma _{a,b}\) on the left represents the socle, the \(\sigma _{a,b}\) on the right represents the cosocle, and each line represents a (unique up to isomorphism) nontrivial extension between the two factors. (Here, when \(a=p-2\), the term \(\sigma _{p-3-a, a+b+1}\) is interpreted as 0.)

  3. (3)

    For any b, the Serre weight \(\sigma _{p-1,b}\) is projective, i.e., \(\textrm{Proj}_{p-1,b} = \sigma _{p-1,b}\). In particular, \(\dim _{\mathbb {F}}\textrm{Proj}_{p-1,b} = p\).

Moreover, in either case \(\textrm{Proj}_{a,b}\) is also the injective envelope of \(\sigma _{a,b}\) as an \({\mathbb {F}}\)-representation of \({{\,\textrm{GL}\,}}_2({\mathbb {F}}_p)\).

Proof

The dimensions of the projective envelopes follow from [48, Lemma 4.1.7]. The socle filtrations of the projective envelopes in (1) and (2) follow from [14, Lemma 3.4, Lemma 3.5]. Part (3) follows from [48, Corollary 4.2.22]. \(\square \)

A.3 Induced Representations

Consider the following character \(\eta \) of \({\bar{\textrm{B}}}\):

$$\begin{aligned} \eta : {\bar{\text {B}}}\rightarrow {\mathbb {F}}^\times ,\quad {\bigg ({\begin{matrix}{\bar{\alpha }}&{}{}{\bar{\beta }}\\ 0&{}{} {\bar{\delta }}\end{matrix}} \bigg )} \mapsto {\bar{\alpha }}. \end{aligned}$$

For \(k \in {\mathbb {Z}}\), we have an induced representation

$$\begin{aligned} {{\,\text {Ind}\,}}_{{\bar{\text {B}}}}^{{\bar{\text {G}}}}(\eta ^k): = \big \{f: {\bar{\text {G}}} \rightarrow {\mathbb {F}}\, \big |\, f({\bar{b}} {\bar{g}}) = \eta ^k({\bar{b}})f({\bar{g}}), \text{ for } \text{ all } {\bar{b}} \in {\bar{\text {B}}}\big \},\end{aligned}$$

which we equip with the right action given by

$$\begin{aligned} f|_{{\bar{h}}}({\bar{g}}): = f({\bar{g}} {\bar{h}}^\textrm{T}), \quad \text {for } {\bar{g}}, {\bar{h}} \in {\bar{\textrm{G}}}. \end{aligned}$$

This is the transpose of the usual left action.

Lemma A.4

  1. (1)

    For any integer \(1\le k\le p-1\), we have an exact sequence of \({\bar{\textrm{G}}}\)-representations

    $$\begin{aligned} 0\rightarrow \sigma _{k,0}\rightarrow {{\,\textrm{Ind}\,}}_{{\bar{\textrm{B}}}}^{{\bar{\textrm{G}}}}\eta ^{k}\rightarrow \sigma _{p-1-k, k}\rightarrow 0.\end{aligned}$$
    (A.4.1)

    The above exact sequence splits if and only if \(k=p-1\).

  2. (2)

    Taking \({\bar{U}}\)-invariants of (A.4.1) gives an exact sequence of \({\bar{\textrm{U}}}\)-invariants

    $$\begin{aligned} 0\rightarrow \sigma _{k,0}^{{\bar{\textrm{U}}}}\rightarrow \big ({{\,\textrm{Ind}\,}}_{{\bar{\textrm{B}}}}^{{\bar{\textrm{G}}}}\eta ^{k}\big )^{{\bar{\textrm{U}}}}\rightarrow \sigma _{p-1-k, k}^{{\bar{\textrm{U}}}}\rightarrow 0. \end{aligned}$$
  3. (3)

    In the description of \(\textrm{Proj}_{a,b}\) of Lemma A.2 (2), the extensions

    figure h

    are twists of induced representations \({{\,\textrm{Ind}\,}}_{{\bar{\textrm{B}}}}^{{\bar{\textrm{G}}}}\eta ^{a} \otimes \textrm{det}^b\) and \({{\,\textrm{Ind}\,}}_{{\bar{\textrm{B}}}}^{{\bar{\textrm{G}}}}\eta ^{p-1-a} \otimes \textrm{det}^{a+b}\), respectively.

Proof

(1) follows from [48, Proposition 3.2.2, Lemma 4.1.3]. (2) follows from [48, Lemma 3.1.11]. (3) follows from [48, Lemma 4.1.1]. \(\square \)

Lemma A.5

When \(1 \le a\le p-2\), in terms of the socle filtration in Lemma A.2 (2), the \({\bar{\textrm{U}}}\)-invariant subspace of \(\textrm{Proj}_{a,b}\) is a 2-dimensional subspace given by

$$\begin{aligned} (\textrm{Proj}_{a,b})^{{\bar{\textrm{U}}}} \cong \sigma _{a,b}^{{\bar{\textrm{U}}}} \oplus \sigma _{p-1-a, a+b}^{{\bar{\textrm{U}}}}, \end{aligned}$$

where the first term is the \(\sigma _{a,b}\) in the socle. In particular, the actions of \({\bar{\textrm{T}}}\) on these two 1-dimensional subspaces are given by the characters

$$\begin{aligned} \omega ^{b} \times \omega ^{a+b} \quad \text{ and } \quad \omega ^{a+b} \times \omega ^{b}, \quad \text {respectively}.\end{aligned}$$

Proof

Since \(\textrm{Proj}_{a,b}\) is a free module over \({\mathbb {F}}[{\bar{\textrm{U}}}]\), we know that \(\dim (\textrm{Proj}_{a,b})^{{\bar{\textrm{U}}}} = 2\). However, \({{\,\textrm{Ind}\,}}_{{\bar{\textrm{B}}}}^{{\bar{\textrm{G}}}}\eta ^a \otimes \textrm{det}^b\) is a subrepresentation of \(\textrm{Proj}_{a,b}\) by Lemma A.4 (3) and has already 2-dimensional \({\bar{\textrm{U}}}\)-invariants by Lemma A.4 (2). Therefore, we have

$$\begin{aligned} (\textrm{Proj}_{a,b})^{{\bar{\textrm{U}}}} \cong \big ({{\,\textrm{Ind}\,}}_{{\bar{\textrm{B}}}}^{{\bar{\textrm{G}}}}\eta ^{a}\big )^{{\bar{\textrm{U}}}} \otimes \textrm{det}^b \cong \sigma _{a,b}^{{\bar{\textrm{U}}}} \oplus \sigma _{p-1-a, a+b}^{{\bar{\textrm{U}}}}. \end{aligned}$$

\(\square \)

Lemma A.6

For any integer \(k\ge p+1\), we have an exact sequence of \({\bar{\textrm{G}}}\)-represent-ations

$$\begin{aligned} 0\rightarrow \sigma _{k-(p+1),1}\xrightarrow {i} \sigma _{k,0}\xrightarrow {\pi } {{\,\textrm{Ind}\,}}_{{\bar{\textrm{B}}}}^{{\bar{\textrm{G}}}}\eta ^{k}\rightarrow 0. \end{aligned}$$

Proof

This is [52, Proposition 2.4]. For the convenience of the readers, we recall the definition of the two maps. The map i is given by multiplication by the homogeneous polynomial \( f_p(X,Y)=X^pY-XY^p\) of degree \(p+1\). It is straightforward to check that i is \({\bar{\textrm{G}}}\)-equivariant and injective. The map \(\pi \) comes from adjunction

$$\begin{aligned} {{\,\textrm{Hom}\,}}_{{\bar{\textrm{G}}}}(\sigma _{k,0}, {{\,\textrm{Ind}\,}}_{{\bar{\textrm{B}}}}^{{\bar{\textrm{G}}}}\eta ^k) \cong {{\,\textrm{Hom}\,}}_{{\bar{\textrm{B}}}^-}(\sigma _{k,0}, \eta ^k). \end{aligned}$$

(Note that both \(\sigma _{k,0}\) and the induced representations are right representations, coming from the transpose of the natural left action.) The vector \(X^k \in \sigma _{k,0}\) is \({\bar{\textrm{U}}}^-\)-invariants and is an eigenvector of \({\bar{\textrm{T}}}\) with eigencharacter \(\eta ^k\). \(\square \)

We conclude the appendix with the following result that is claimed in Remark 2.23(2).

Proposition A.7

Let \({\bar{\rho }} = {\big ({\begin{matrix}\omega _1^{a+b+1}&{}*\ne 0\\ 0&{} \omega _1^b\end{matrix}} \big )}\) with \(1\le a \le p-4\) and \(0 \le b \le p-2\) be as in Definition 2.22 and let \({\widetilde{\textrm{H}}}\) is a primitive \({\mathcal {O}}\llbracket \textrm{K}_p\rrbracket \)-projective augmented module of type \({\bar{\rho }}\). In particular, \({\overline{\textrm{H}}} = {\widetilde{\textrm{H}}} / (\varpi , \textrm{I}_{1+p\textrm{M}_2({\mathbb {Z}}_p)})\) is isomorphic to \(\textrm{Proj}_{a,b}\) as a right \({\mathbb {F}}[{{\,\textrm{GL}\,}}_2({\mathbb {F}}_p)]\)-module. Then, \(\textrm{S}_2^\textrm{Iw}(\omega ^b\times \omega ^{a+b})\) is of rank 1 over \({\mathcal {O}}\), and the \(U_p\)-action on this space is invertible (over \({\mathcal {O}}\)); in particular, the \(U_p\)-slope on this space is zero.

Proof

By Proposition 4.1, \(\textrm{S}_2^\textrm{Iw}(\omega ^b\times \omega ^{a+b})\) is free of rank 1 over \({\mathcal {O}}\).

Consider three characters \(\varepsilon =1\times \omega ^a\), \(\varepsilon '=\omega ^a\times 1\) and \(\psi =\omega ^a\times \omega ^a\). By Corollary 4.4 and Proposition 4.7, we have \(d_{p+1-a}^\textrm{Iw}(\psi )=2\) and \(d_{p+1-a}^\textrm{ur}(\psi )=0\). We choose a set \(\{\tilde{u}_j={\big ({{\begin{matrix}1&{}{}0\\ j&{}{} 1\end{matrix}}} \big )},j=0,\dots , p-1,\tilde{u}_\infty ={\big ({{\begin{matrix}0&{}{}1\\ 1&{}{} 0\end{matrix}}} \big )} \}\) of coset representatives of \(\textrm{Iw}_p\setminus \textrm{K}_p\). The formula

$$\begin{aligned} \text {pr}(\varphi )(m)=\sum _{j=0,\dots ,p-1,\infty }\varphi (m\tilde{u}_j^{-1})|_{\tilde{u}_j},\quad \varphi \in \text {S}_{p+1-a}^\text {Iw}(\psi ),\ m\in \tilde{\text {H}} \end{aligned}$$

defines a map \(\textrm{pr}:\textrm{S}_{p+1-a}^\textrm{Iw}(\psi )\rightarrow \textrm{S}_{p+1-a}^\textrm{ur}(\psi )\). Here \((\cdot )|_{\tilde{u}_j}\) in the above formula is the right action of \(\textrm{K}_p\) defined in (2.20.1). On the other hand, a straightforward computation gives an equality of operators \(\textrm{AL}_{p+1-a,\psi }\circ \textrm{pr}-\textrm{AL}_{p+1-a,\psi }=U_p\) on \(\textrm{S}_{p+1-a}^\textrm{Iw}(\psi )\). Since \(\textrm{S}_{p+1-a}^\textrm{ur}(\psi )=0\), we actually have \(\textrm{U}_p=-\textrm{AL}_{p+1-a,\psi }\) on \(\textrm{S}_{p+1-a}^\textrm{Iw}(\psi )\). Therefore, by Proposition 3.12, the \(U_p\)-slopes on \(\textrm{S}_{p+1-a}^\textrm{Iw}(\psi )\) are \(\frac{p-1-a}{2}\) with multiplicity 2. By Proposition 3.10, we have \(v_p(c_1^{(\varepsilon ')}(w_{p+1-a}))\ge \frac{p-1-a}{2}>1\). Since \(c_1^{(\varepsilon ')}(w)\in {\mathcal {O}}\llbracket w\rrbracket \) and \(v_p(w_{p+1-a})\ge 1\), \(v_p(w_2)\ge 1\), we have \(v_p(c_1^{(\varepsilon ')}(w_2))\ge 1\). Since \(d_2^\textrm{Iw}(\varepsilon ')=1\), by Proposition 3.10 and Proposition 3.12, we see that the \(U_p\)-slope on \(\textrm{S}_2^\textrm{Iw}(\varepsilon ')\) is exactly 1. Now, by Proposition 3.12, the \(U_p\)-slope on \(\textrm{S}_2^\textrm{Iw}(\varepsilon )\) is 0.

\(\square \)

Appendix B: Errata for [44]

We include some errata for [44] here.

B.1 [44, Proposition 3.4]

This is just a bad convention, the action \(||_{\delta _p}^{[\cdot ]}\) is a right action; however, [44, Proposition 3.4] uses the column vector convention. Ideally, one should swap the indices of \(P_{m,n}(\delta _p)\). This does not create an mathematical error.

B.2 [44, §5.4]

In [44, (5.4.1)], we defined a closed subspace

$$\begin{aligned} {{\,\text {Ind}\,}}_{B^\text {op}({\mathbb {Z}}_p)}^{\text {Iw}_q}([\cdot ]')^{\text {mod}} = \widehat{\bigoplus \limits _{n \ge 0}}\ T^n \Lambda ^{>1/p}\cdot \left( {\begin{array}{c}z\\ n\end{array}}\right) \end{aligned}$$

of the space of continuous functions \({\mathcal {C}}^0({\mathbb {Z}}_p; \Lambda ^{>1/p})\). Unfortunately, as stated, this subspace is not stable under the \({\textbf{M}}_1\)-action. If one insists on having an \({\textbf{M}}_1\)-action, one has to replace the completed direct sum above with direct product, then the rest of the estimate stays valid, except that the space \(S_{\textrm{int}}^{D, \dagger , 1}\) is not a Banach module over \(\Lambda ^{>1/p}\) in the usual sense; it is the \(\Lambda ^{>1/p}\)-linear dual of a Banach module over \(\Lambda ^{>1/p}\). The compactness of \(U_p\) needs be interpreted otherwise.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, R., Truong, N.X., **ao, L. et al. A Local Analogue of the Ghost Conjecture of Bergdall–Pollack. Peking Math J 7, 247–344 (2024). https://doi.org/10.1007/s42543-023-00063-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42543-023-00063-7

Keywords

Mathematics Subject Classification

Navigation