Log in

Stochastic Simulation of Continuous Time Random Walks: Minimizing Error in Time-Dependent Rate Coefficients for Diffusion-Limited Reactions

  • Original Article
  • Published:
Journal of Statistical Theory and Practice Aims and scope Submit manuscript

Abstract

A reaction limited by standard diffusion is simulated stochastically to illustrate how the continuous time random walk (CTRW) formalism can be implemented with minimum statistical error. A step-by-step simulation of the diffusive random walk in one dimension reveals the fraction of surviving reactants P(t) as a function of time, and the time-dependent unimolecular reaction rate coefficient K(t). Accuracy is confirmed by comparing the time-dependent simulation to results from the analytical master equation, and the asymptotic solution to that of Fickian diffusion. An early transient feature is shown to arise from higher spatial harmonics in the Fourier distribution of walkers between reaction sites. Statistical ‘shot’ noise in the simulation is quantified along with the offset error due to the discrete time derivative, and an optimal simulation time interval \(\Delta t_0\) is derived to achieve minimal error in the finite time-difference estimation of the reaction rate. The number of walkers necessary to achieve a given error tolerance is derived, and \(W = 10^7\) walkers is shown to achieve an accuracy of \(\pm 0.2\%\) when the survival probability reaches \(P(t) \sim \frac{1}{3}\). The stochastic method presented here serves as an intuitive basis for understanding the CTRW formalism, and can be generalized to model anomalous diffusion-limited reactions to prespecified precision in regimes where the governing wait-time distributions have no analytical solution.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Shlesinger MF (2017) Origins and applications of the Montroll–Weiss continuous time random walk. Eur Phys J B 90:93. https://doi.org/10.1140/epjb/e2017-80008-9

    Article  MathSciNet  Google Scholar 

  2. Scher H, Montroll EW (1975) Anomalous transit-time dispersion in amorphous solids. Phys Rev B 12:2455. https://doi.org/10.1103/PhysRevB.12.2455

    Article  Google Scholar 

  3. Shlesinger MF, Montroll EW (1984) On the Williams–Watts function of dielectric relaxation. PNAS 81:1280–1283. https://doi.org/10.1073/pnas.81.4.1280

    Article  MathSciNet  Google Scholar 

  4. Ngai KL, Liu F-S (1981) Dispersive diffusion transport and noise, time-dependent diffusion coefficient, generalized Einstein–Nernst relation, and dispersive diffusion-controlled unimolecular and bimolecular reactions. APS Phys 24:1049. https://doi.org/10.1103/PhysRevB.24.1049

    Article  Google Scholar 

  5. Shlesinger MF (2017) Origins and applications of the Montroll–Weiss continuous time random walk. Eur Phys J B 90:93. https://doi.org/10.1140/epjb/e2017-80008-9

    Article  MathSciNet  Google Scholar 

  6. Shlesinger MF (1979) Electron scavenging in glasses. J Chem Phys 70:4813. https://doi.org/10.1063/1.437370

    Article  Google Scholar 

  7. Kenkre VM, Montroll EW, Shlesinger MF (1973) Generalized master equations for continuous-time random walks. J Stat Phys 9:45–50. https://doi.org/10.1007/BF01016796

    Article  Google Scholar 

  8. Montroll EW, Scher H (1973) Random walks on lattices. IV. continuous-time walks and influence of absorbing boundaries. J Stat Phys 9:101–135. https://doi.org/10.1007/BF01016843

    Article  Google Scholar 

  9. Montroll EW, Weiss GH (1965) Random walks on lattices II. J Math Phys 6:167. https://doi.org/10.1063/1.1704269

    Article  MathSciNet  MATH  Google Scholar 

  10. Laidler KJ, Meiser JH (1982) Physical chemistry. Benjamin/Cummings, Menlo Park, CA

    Google Scholar 

  11. Karaman MM, Sui Y, Wang H, Magin RL, Li Y, Zhou XJ (2016) Differentiating low- and high-grade pediatric brain tumors using a continuous-time random-walk diffusion model at high b-values. Mag Reson Med 76:1149. https://doi.org/10.1002/mrm.26012

    Article  Google Scholar 

  12. Berezhkovskii A, Weiss GH (2008) Propagators and related descriptors for non-Markovian asymmetric random walks with and without boundaries. J Chem Phys 128:044914. https://doi.org/10.1063/1.2830254

    Article  Google Scholar 

  13. Metzler R, Klafter J (2000) The random Walk’s guide to anomalous diffusion: a fractional dynamics approach. Phys Rep 339:1–77

    Article  MathSciNet  MATH  Google Scholar 

  14. Montroll EW (1964) Random walks on lattices. Am Math Soc 16:193–220. https://doi.org/10.1090/psapm/0161378

    Article  MathSciNet  MATH  Google Scholar 

  15. Klafter J, Sokolov IM (2011) First steps in random walks. Oxford University Press, New York

    Book  MATH  Google Scholar 

  16. Montroll EW, Shlesinger MF (1984) On the wonderful world of random walks. In: Lebowitz JL, Montroll EW (eds) Studies in statistical mechanics, vol 11. Elsevier Science Pub. Co., New York, pp 46–116

    Google Scholar 

  17. Scher H, Lax M (1973) Stochastic transport in a disordered solid. I. Theory. Phys Rev B 7:4491. https://doi.org/10.1103/PhysRevB.7.4491

    Article  MathSciNet  Google Scholar 

  18. Montroll EW (1969) Random walks on lattices III. Calculation of first? Passage times with application to exciton trap** on photosynthetic units. J Math Phys 10:753. https://doi.org/10.1063/1.1664902

    Article  MATH  Google Scholar 

  19. Hemenger RP, Pearlstein RM, Lakatos-Lindenberg K (1972) Incoherent exciton quenching on lattices. J Math Phys 13:1056. https://doi.org/10.1063/1.1666085

    Article  Google Scholar 

  20. Gentle JE (2003) Random number generation and Monte Carlo methods. Springer, New York. https://doi.org/10.1007/b97336

  21. Zorn R (2002) Logarithmic moments of relaxation time distributions. J Chem Phys 116:3204. https://doi.org/10.1063/1.1446035

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported in part by NSF Grants DMREF-1729016, DMR-1720139, and ECCS-1912694, with additional support provided by Leslie and Mac McQuown.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Matthew A. Grayson.

Ethics declarations

Conflict of interest

The authors declare that there are no conflicts of interest that are directly or indirectly related to the work submitted for publication. All data in the manuscript is freely available from the authors upon request.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix: Continuum Limit for Survival Probability Distribution

Appendix: Continuum Limit for Survival Probability Distribution

The continuum expressions for the diffusion-limited reaction are detailed below. Using the following definition of the Fourier transform,

$$\begin{aligned} \widetilde{p}(k,t) = \frac{1}{\sqrt{2\pi }}\int {p}(x,t)e^{-ikx} dx \end{aligned}$$
(53)

Eq. (33) can be expressed as

$$\begin{aligned} \widetilde{p}(k,t) = \sum _{j = -\infty }^{\infty } (-1)^j \left[ \frac{1}{\sqrt{2\pi }}\int G\left( x-j {x_\textrm{tr}},t\right) e^{-ikx} dx\right] \end{aligned}$$
(54)

Taking advantage of the translation property of Fourier transforms, this can be written as

$$\begin{aligned} \begin{aligned} \widetilde{p}(k,t)&= \sum _{j = -\infty }^{\infty } (-1)^j e^{-ij{x_\textrm{tr}}k}\widetilde{G}\left( k,t\right) \\&= \widetilde{G}\left( k,t\right) \left[ \sum _{j = -\infty }^{\infty } e^{i{2jx_\textrm{tr}}k} - \sum _{j = -\infty }^{\infty } e^{i{(2j-1)x_\textrm{tr}}k}\right] \\&= \widetilde{G}\left( k,t\right) \left( 1-e^{-i{x_\textrm{tr}}k}\right) \sum _{j = -\infty }^{\infty } e^{i2j{x_\textrm{tr}}k}~. \end{aligned} \end{aligned}$$
(55)

where the Fourier transform of G(xt) is:

$$\begin{aligned} \begin{aligned} \widetilde{G}(k,t)&= \frac{1}{\sqrt{2\pi }}\int _{-\infty }^{\infty }(4 \pi D t)^{-\frac{1}{2}} \exp {\left( -\frac{x^2}{4 D t}\right) }e^{-i k x}dx \\&= \frac{1}{\sqrt{2\pi }}e^{-k^2 D t}~. \end{aligned} \end{aligned}$$
(56)

Applying the Poisson summation formula, yields

$$\begin{aligned} \sum _{j = -\infty }^{\infty } e^{i{2jx_\textrm{tr}}k} = \frac{\pi }{{x_\textrm{tr}}}\sum _{\nu = -\infty }^{\infty } \delta \left( k-\frac{\pi \nu }{{x_\textrm{tr}}}\right) . \end{aligned}$$
(57)

Inverting the Fourier transform and using Eqs. (55) and (57), the final expression for the time-dependent probability distribution becomes,

$$\begin{aligned} {p^\dagger }(x,t)&=\frac{1}{\sqrt{2\pi }}\int \frac{1}{\sqrt{2\pi }}e^{-k^2 D t}e^{ikx} \left( 1-e^{-i{x_\textrm{tr}}k}\right) \nonumber \\&~~~~~\times \frac{\pi }{{x_\textrm{tr}}}\sum _{\nu = -\infty }^{\infty } \delta \left( k-\frac{\pi \nu }{{x_\textrm{tr}}}\right) dk \end{aligned}$$
(58)
$$\begin{aligned}&=\frac{1}{{2x_\textrm{tr}}}\sum _{\nu =-\infty }^{\infty } \exp {\left[ -\nu ^2\left( \frac{\pi }{{x_\textrm{tr}}}\right) ^2Dt\right] }\nonumber \\&~~~~~\times \exp {\left[ i\nu \left( \frac{\pi }{{x_\textrm{tr}}}\right) x\right] }\left[ 1-\exp {\left( -i\nu \pi \right) }\right] \end{aligned}$$
(59)
$$\begin{aligned}&=\frac{1}{{x_\textrm{tr}}}\sum _{\nu \text { odd}}\exp {\left[ -\nu ^2\left( \frac{\pi }{{x_\textrm{tr}}}\right) ^2Dt\right] }\nonumber \\&~~~~~\times \exp {\left[ i\nu \left( \frac{\pi }{{x_\textrm{tr}}}\right) x\right] } \end{aligned}$$
(60)
$$\begin{aligned}&=\frac{{2}}{{x_\textrm{tr}}}\sum _{\nu =0}^{\infty } \exp {\bigg \{-\left[ \frac{\pi (2\nu +1)}{{x_\textrm{tr}}}\right] ^2Dt\bigg \}}\nonumber \\&~~~~~\times \cos {\bigg \{\left[ \frac{\pi (2\nu +1)}{{x_\textrm{tr}}}\right] x\bigg \}}. \end{aligned}$$
(61)

Spatial integration will then determine the survival probability as a function of time,

$$\begin{aligned} {P^\dagger }(t)&= \int _{-x_\textrm{tr}/2}^{x_\textrm{tr}/2} {p^\dagger }(x,t) dx\end{aligned}$$
(62)
$$\begin{aligned}&=\frac{{2}}{{x_\textrm{tr}}}\sum _{\nu =0}^{\infty }\exp {\bigg \{-\left[ \frac{\pi (2\nu +1)}{{x_\textrm{tr}}}\right] ^2Dt\bigg \}}\nonumber \\&~~~~~\times \int _{-x_\textrm{tr}/2}^{x_\textrm{tr}/2} \cos {\bigg \{\left[ \frac{\pi (2\nu +1)}{{x_\textrm{tr}}}\right] x\bigg \}}dx&\end{aligned}$$
(63)
$$\begin{aligned}&=\frac{{2}}{{x_\textrm{tr}}}\sum _{\nu =0}^{\infty }\exp {\bigg \{-\left[ \frac{\pi (2\nu +1)}{{x_\textrm{tr}}}\right] ^2Dt\bigg \}}\nonumber \\&~~~~~\times \left[ \frac{{2x_\textrm{tr}}}{\pi (2\nu +1)}(-1)^{\nu }\right]&\end{aligned}$$
(64)
$$\begin{aligned}&=\frac{4}{\pi }\sum _{\nu =0}^{\infty }\frac{(-1)^{\nu }}{2\nu +1} \exp {\bigg \{-\left[ \frac{\pi (2\nu +1)}{{x_\textrm{tr}}}\right] ^2Dt\bigg \}} . \end{aligned}$$
(65)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Grayson, M.A., Kangabire, A., Aygen, C. et al. Stochastic Simulation of Continuous Time Random Walks: Minimizing Error in Time-Dependent Rate Coefficients for Diffusion-Limited Reactions. J Stat Theory Pract 17, 46 (2023). https://doi.org/10.1007/s42519-023-00343-6

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s42519-023-00343-6

Keywords

Navigation