Log in

Comparison of Susceptibility-Weighted Imaging and Perfusion-Weighted Imaging in the Estimation of the Amount of Reversible Ischemic Tissue (Penumbra)

  • Original Paper
  • Published:
SN Comprehensive Clinical Medicine Aims and scope Submit manuscript

Abstract

MRI imaging is a method of choice for diagnosis of stroke and able to recognize the area of preventable infarct which selected for reperfusion therapy. Ischemic tissue could be reversed if perfusion is improved as the penumbra. Perfusion-diffusion mismatch was accepted as the standard tool for the evaluation of penumbra. We conducted a recent cross-sectional study to assess the accuracy of SWI-DWI mismatch as noninvasive and available alternative in the detection of penumbra. We determined ischemic tissue via diffusion-weighted images and detection of asymmetric hypointense vein (AHV) on ischemic region in the SWI sequences. After injection of contrast media, perfusion images were performed and finally we determined PWI-DWI and SWI-DWI mismatch values and evaluated the correlation between them. We also determined accuracy of SWI-DWI mismatch and cutoff values of SWI-DWI for detecting optimal PWI-DWI mismatch. Patients with ischemic stroke who were referred to our neuroimaging center and underwent an MRI within 48 h from the onset of symptoms are included in this study. Patients were imaged with stroke protocols including T1, T2 FLAIR, PWI, SWI, and DWI. AHVs were also determined for detection of ischemia in SWI sequences. A total of 30 cases are enrolled and 15 cases were excluded. There was a positive and significant correlation between SWI-DWI and PWI-DWI mismatch ratio (r = 0.34, p = 0.047). The sensitivity, specificity, and accuracy of SWI-DWI for detecting penumbra were 94%, 69%, and 76%. Our results indicated SWI-DWI mismatch is better alternative tool for detection of penumbra and predicting potentially viable brain tissue.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Data Availability

The data that support the findings of the study are available from the corresponding author in SPSS form upon reasonable request.

Code Availability

Not applicable.

References

  1. Saini M, Butcher K. Advanced imaging in acute stroke management-Part II: magnetic resonance imaging. Neurol India. 2009;57(5):550.

    Article  PubMed  Google Scholar 

  2. Lou M, Chen Z, Wan J, Hu H, Cai X, Shi Z, et al. Susceptibility-diffusion mismatch predicts thrombolytic outcomes: a retrospective cohort study. Am J Neuroradiol. 2014;35(11):2061–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Nouby MAE, Darwish EAF, Geneidi EAS. The role of susceptibility weighted imaging (SWI) in evaluation of acute stroke. Egyptian J Hospital Med. 2018;72(10):5398–402.

    Article  Google Scholar 

  4. Ma L, Gao P-Y, Lin Y, Xue J, Wang X-C, Wang Y-J, et al. Can baseline magnetic resonance angiography (MRA) status become a foremost factor in selecting optimal acute stroke patients for recombinant tissue plasminogen activator (rt-PA) thrombolysis beyond 3 hours? Neurol Res. 2009;31(4):355–61.

    Article  PubMed  Google Scholar 

  5. Harrer JU. Clinical applicability and the perfusion–diffusion mismatch theory: not yet a perfect match. Neurology. 2010;75(12):1034–5.

    Article  PubMed  Google Scholar 

  6. Thulborn KR, Gindin TS, Davis D, Erb P. Comprehensive MR imaging protocol for stroke management: tissue sodium concentration as a measure of tissue viability in nonhuman primate studies and in clinical studies. Radiology. 1999;213(1):156–66.

    Article  CAS  PubMed  Google Scholar 

  7. Santosh C, Brennan D, McCabe C, Macrae IM, Holmes WM, Graham DI, et al. Potential use of oxygen as a metabolic biosensor in combination with T2*-weighted MRI to define the ischemic penumbra. J Cereb Blood Flow Metab. 2008;28(10):1742–53.

    Article  CAS  PubMed  Google Scholar 

  8. Jensen-Kondering U, Baron J-C. Oxygen imaging by MRI: can blood oxygen level-dependent imaging depict the ischemic penumbra? Stroke. 2012;43(8):2264–9.

    Article  PubMed  Google Scholar 

  9. Tong KA, Ashwal S, Obenaus A, Nickerson J, Kido D, Haacke E. Susceptibility-weighted MR imaging: a review of clinical applications in children. Am J Neuroradiol. 2008;29(1):9–17.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Wessels T, Wessels C, Ellsiepen A, Reuter I, Trittmacher S, Stolz E, et al. Contribution of diffusion-weighted imaging in determination of stroke etiology. Am J Neuroradiol. 2006;27(1):35–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Paciaroni M, Caso V, Agnelli G. The concept of ischemic penumbra in acute stroke and therapeutic opportunities. Eur Neurol. 2009;61(6):321–30.

    Article  PubMed  Google Scholar 

  12. Guadagno J, Calautti C, Baron J. Progress in imaging stroke: emerging clinical applications. Br Med Bull. 2003;65(1):145–57.

    Article  CAS  PubMed  Google Scholar 

  13. Murphy B, Fox A, Lee D, Sahlas D, Black S, Hogan M, et al. Identification of penumbra and infarct in acute ischemic stroke using computed tomography perfusion–derived blood flow and blood volume measurements. Stroke. 2006;37(7):1771–7.

    Article  CAS  PubMed  Google Scholar 

  14. Schlaug G, Benfield A, Baird A, Siewert B, Lövblad K, Parker R, et al. The ischemic penumbra operationally defined by diffusion and perfusion MRI. Neurology. 1999;53(7):1528.

    Article  CAS  PubMed  Google Scholar 

  15. Kidwell CS, Alger JR, Saver JL. Beyond mismatch: evolving paradigms in imaging the ischemic penumbra with multimodal magnetic resonance imaging. Stroke. 2003;34(11):2729–35.

    Article  PubMed  Google Scholar 

  16. Heiss W-D. The concept of the penumbra: can it be translated to stroke management? Int J Stroke. 2010;5(4):290–5.

    Article  PubMed  Google Scholar 

  17. Luby M, Ku KD, Latour LL, Merino JG, Hsia AW, Lynch JK, et al. Visual perfusion–diffusion mismatch is equivalent to quantitative mismatch. Stroke. 2011;42(4):1010–4.

    Article  PubMed  PubMed Central  Google Scholar 

  18. Campbell BC, Christensen S, Foster SJ, Desmond PM, Parsons MW, Butcher KS, et al. Visual assessment of perfusion-diffusion mismatch is inadequate to select patients for thrombolysis. Cerebrovasc Dis. 2010;29(6):592–6.

    Article  PubMed  Google Scholar 

  19. Kesavadas C, Santhosh K, Thomas B. Susceptibility weighted imaging in cerebral hypoperfusion—can we predict increased oxygen extraction fraction? Neuroradiology. 2010;52(11):1047–54.

    Article  PubMed  Google Scholar 

  20. Huang P, Chen C-H, Lin W-C, Lin R-T, Khor G-T, Liu C-K. Clinical applications of susceptibility weighted imaging in patients with major stroke. J Neurol. 2012;259(7):1426–32.

    Article  PubMed  Google Scholar 

  21. Barber PA, Demchuk AM, Zhang J, Buchan AM, Group AS. Validity and reliability of a quantitative computed tomography score in predicting outcome of hyperacute stroke before thrombolytic therapy. The Lancet. 2000;355(9216):1670–4.

    Article  Google Scholar 

  22. Santhosh K, Kesavadas C, Thomas B, Gupta A, Thamburaj K, Kapilamoorthy TR. Susceptibility weighted imaging: a new tool in magnetic resonance imaging of stroke. Clin Radiol. 2009;64(1):74–83.

    Article  CAS  PubMed  Google Scholar 

  23. Kidwell CS, Saver JL, Villablanca JP, Duckwiler G, Fredieu A, Gough K, et al. Magnetic resonance imaging detection of microbleeds before thrombolysis: an emerging application. Stroke. 2002;33(1):95–8.

    Article  PubMed  Google Scholar 

  24. Wu X, Luo S, Wang Y, Chen Y, Liu J, Bai J, et al. Use of susceptibility-weighted imaging in assessing ischemic penumbra: a case report. Medicine. 2017;96(6):e6091. https://doi.org/10.1097/MD.0000000000006091.

  25. Davis SM, Donnan GA, Parsons MW, Levi C, Butcher KS, Peeters A, et al. Effects of alteplase beyond 3 h after stroke in the Echoplanar Imaging Thrombolytic Evaluation Trial (EPITHET): a placebo-controlled randomised trial. Lancet Neurology. 2008;7(4):299–309.

    Article  PubMed  Google Scholar 

  26. Fiebach JB, Hopt A, Vucic T, Brunecker P, Nolte CH, Doege C, et al. Inverse mismatch and lesion growth in small subcortical ischaemic stroke. Eur Radiol. 2010;20(12):2983–9.

    Article  PubMed  Google Scholar 

  27. Polan R, Poretti A, Huisman T, Bosemani T. Susceptibility-weighted imaging in pediatric arterial ischemic stroke: a valuable alternative for the noninvasive evaluation of altered cerebral hemodynamics. Am J Neuroradiol. 2015;36(4):783–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Kao H-W, Tsai FY, Hasso AN. Predicting stroke evolution: comparison of susceptibility-weighted MR imaging with MR perfusion. Eur Radiol. 2012;22(7):1397–403.

    Article  PubMed  Google Scholar 

  29. Luo S, Yang L, Wang L. Comparison of susceptibility-weighted and perfusion-weighted magnetic resonance imaging in the detection of penumbra in acute ischemic stroke. J Neuroradiol. 2015;42(5):255–60.

    Article  CAS  PubMed  Google Scholar 

  30. Kesavadas C, Thomas B, Pendharakar H, Sylaja P. Susceptibility weighted imaging: does it give information similar to perfusion weighted imaging in acute stroke? J Neurol. 2011;258(5):932–4.

    Article  CAS  PubMed  Google Scholar 

  31. Viallon M, Altrichter S, Pereira VM, Nguyen D, Sekoranja L, Federspiel A, et al. Combined use of pulsed arterial spin-labeling and susceptibility-weighted imaging in stroke at 3T. Eur Neurol. 2010;64(5):286–96.

    Article  PubMed  Google Scholar 

  32. Liu H, Mei W, Li Y, Huang Y, Ruan S, Zhang Q, et al. Susceptibility-diffusion mismatch: an effective method by which to detect perfusion-diffusion mismatch in acute ischemic stroke. Int J Clin Exp Med. 2016;9(10):19691–9.

    Google Scholar 

  33. Fujioka M, Okuchi K, Iwamura A, Taoka T, Siesjö BK. A mismatch between the abnormalities in diffusion-and susceptibility-weighted magnetic resonance imaging may represent an acute ischemic penumbra with misery perfusion. J Stroke Cerebrovasc Dis. 2013;22(8):1428–31.

    Article  PubMed  Google Scholar 

  34. Fustier A, Naggara O, Tisserand M, Touzé E, Mellerio C, Edjlali M, et al. Total mismatch in anterior circulation stroke patients before thrombolysis. J Neuroradiol. 2013;40(3):158–63.

    Article  PubMed  Google Scholar 

  35. Copen WA, Schaefer PW, Wu O. MR perfusion imaging in acute ischemic stroke. Neuroimaging Clinics. 2011;21(2):259–83.

    Article  PubMed  Google Scholar 

  36. Schellinger P, Bryan R, Caplan L, Detre J, Edelman R, Jaigobin C, et al. Evidence-based guideline: the role of diffusion and perfusion MRI for the diagnosis of acute ischemic stroke: report of the Therapeutics and Technology Assessment Subcommittee of the American Academy of Neurology. Neurology. 2010;75(2):177–85.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Butcher K, Parsons M, MacGregor L, Barber P, Chalk J, Bladin C, et al. Refining the perfusion–diffusion mismatch hypothesis. Stroke. 2005;36(6):1153–9.

    Article  CAS  PubMed  Google Scholar 

  38. Bandera E, Botteri M, Minelli C, Sutton A, Abrams KR, Latronico N. Cerebral blood flow threshold of ischemic penumbra and infarct core in acute ischemic stroke: a systematic review. Stroke. 2006;37(5):1334–9.

    Article  PubMed  Google Scholar 

  39. Ebinger M, Brunecker P, Jungehülsing GJ, Malzahn U, Kunze C, Endres M, et al. Reliable perfusion maps in stroke MRI using arterial input functions derived from distal middle cerebral artery branches. Stroke. 2010;41(1):95–101.

    Article  PubMed  Google Scholar 

Download references

Funding

This study was funded by the Hamadan University of Medical Sciences, Iran.

Author information

Authors and Affiliations

Authors

Contributions

MS, FG and MK developed the original idea and the protocol, abstracted, and prepared the manuscript. FG and AP participated in the study design and analyzed the data. FG and MS contributed to the study design and data gathering. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Farideh Gharekhanloo.

Ethics declarations

Ethics Approval

The study was approved by the Ethics Board of Hamadan University of Medical sciences.

Consent for Publication

Written and informed consent was obtained from the patients.

Conflict of Interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is part of the Topical Collection on Imaging

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 70 KB)

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sheikhbabaei, M., Gharekhanloo, F., Khazaei, M. et al. Comparison of Susceptibility-Weighted Imaging and Perfusion-Weighted Imaging in the Estimation of the Amount of Reversible Ischemic Tissue (Penumbra). SN Compr. Clin. Med. 5, 36 (2023). https://doi.org/10.1007/s42399-022-01274-2

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s42399-022-01274-2

Keywords

Navigation