Log in

High Energy Spine Injury Alternate Multiple Fractures Observational Retrospective Study

  • Surgery
  • Published:
SN Comprehensive Clinical Medicine Aims and scope Submit manuscript

Abstract

Multiple alternate fractures are those that present injuries at several levels of the spine separated by at least one healthy vertebral body. A posttraumatic prevalence of up to 23% is reported.3–5 There are no reports in Argentina. The purpose of this study is to report the prevalence of multiple alternate spine fractures in five hospitals of the City of Buenos Aires, Argentina, and evaluate its connection to other relevant characteristics. Inclusion criteria involve acute fractures of the spine. Classifications used were the following: cervical subaxial8 and thoracolumbar9 AO, Anderson for odontoids,15, 16 Effendi Laurin17 and Geweiler,18, 19 ASIA,20, 21 and Frankel.22 Statistical analysis consists of two groups: “Alternate” and “Contiguous.” Sample distribution, Shapiro-Wilk or Kolmogorov Smirnov test, was used. In comparison of continuous variables, “Student’s t-test or the Mann-Whitney U test” was used. To compare the categorical variables, Chi2 test or Fisher’s exact test was used. In data analysis, IBM SPSS Macintosh software, version 24.0 (IBM Corp., Armonk, NY, USA), was used. From the five hospitals of Buenos Aires, 514 medical records were reviewed, and 120 patients included, from April 2007 to April 2017. Of the total of spine fractures, 56 (46.7%) were simple, 35 (29.2%) were multiple contiguous, and 29 (24.1%) were multiple alternate. Fifty-four (45%) patients were women, average age of the sample: 40 years old. Within the group of multiple alternate fractures, the cervical area was the most affected in 16 (55.1%) patients. Fractures of nine (31%) patients of the Alternate group were related to a labor accident (9.9% contiguous, significant p = 0.02). Fourteen (48.3%) patients of the Alternate group presented an associated injury (23 patients [25.3%] of the contiguous fractures, with significance p = 0.02). As regards the International Publications, the prevalence of multiple alternate fractures was 24.1% (17 or 19%)4, 5, 23, 24 with similar production mechanism, male predominance, and an average of 40 years old.3, 5, 23 The location was similar: cervico-thoracic 24.1%. One in four patients admitted in our centers, with a spine fracture, had at least other vertebrae fractured at a distance. These were associated with neurological alterations, extra-spinal injuries, and labor accidents.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Image 1
Image 2

Similar content being viewed by others

References

  1. Kewalramani LS, Taylor RG. Multiple non-contiguous injuries to the spine. Acta Orthop Scand. 1976;47:52.

    Article  CAS  Google Scholar 

  2. Korres DS, Katsaros A, Pantazopoulos T, Hartofilakidis-Garofalidis G. Double or multiple level fractures of the spine. Injury. 1981;13:147–52.

    Article  CAS  Google Scholar 

  3. Dai LY, Jia LS. Multiple non-contiguous injuries of the spine. Injury. 1996;8:573–5.

    Article  Google Scholar 

  4. Miller CP, Brubacher JW, Biswas D, Lawrence BD, Whang PG, Grauer JN. The incidence of non-contiguous spinal fractures and other traumatic injuries associated with cervical spine fractures: a 10-year experience at an academic medical center. Spine (Phila Pa 1976). 2011;36:1532–40.

    Article  Google Scholar 

  5. Nelson DW, Do MJM, Martin ND, Beekley A. Evaluation of the risk of non-continuous fractures of the spine in blunt trauma. J Trauma Acute Care Surg. 2013;75(1):135–9.

    Article  Google Scholar 

  6. Henderson, Saboe. Multiple non-contiguous spine fractures. Spine. 1991;16:128.

    Article  CAS  Google Scholar 

  7. Sarotto, Aníbal J, Steverlynck, Alejandro, Castelli, Roberto, Sobrero, Diego, Soto, Estela, Carrioli, Gabriel, Astiasarán, Jorge P. Lesiones Asociadas de la Columna Cervical. Preliminar report. Presented in the XLIIII Argentine Congress of Orthopedics and Traumatology. Free Topics Cession for a Prize. Mar del Plata Argentina. 2007.

  8. Vaccaro AR, Koerner JD, Radcliff KE, Oner FC, Reinhold M, Schnake KJ, et al. AOSpine subaxial cervical spine injury classification system. Eur Spine J. https://doi.org/10.1007/s00586-015-3831-3 Received: 29 October 2014 / Revised: 19 February 2015 / Accepted: 19 February 20.

    Article  Google Scholar 

  9. Aebi M. AO spine classification system for thoracolumbar fractures. Eur. Spine J 2013 Oct;22(10):2147–8.

    Article  Google Scholar 

  10. Argenson C, Lovet J, Sanouiller J, de Peretti F. Traumatic rotatory displacement of the lower cervical spine. Spine. 1988;13:767–73.

    Article  CAS  Google Scholar 

  11. Argenson C, de Peretti F., Ghabris A. Classification et indications therapeutiques pour les fractures du rachis cervical inferieur (C3-C7). Rachis Cervical Dégénérative et traumatique. Cahiers d’enseignemente de la SOFCO. Expansion Scientifique Francaise (1994); 48:100–112.

  12. Louis R. Traumatismes du rachis cervical. 1, Entornes et hernies discales, pp. 1843-1849. 2. Fractures et luxations, pp. 1931-1937. Nouv. Presse Med. 1979;8:22.

    Google Scholar 

  13. Mc Lain RF, et al. Sub-axial cervical dissociation. Anatomic and biomechanical principles of stabilization. Spine. 1994;19:653–9.

    Article  CAS  Google Scholar 

  14. Argenson C., de Peretti F., Schlatterer B, Hovorka I et Eude P. Traumatisme du rachis cervical – Encycl. Med. Chir. (Elsevier Paris- France), Appareil locomoteur. 1998;15-825-A-10, 20 p.

  15. Anderson LD, D'Alonzo RT. Fractures of the odontoid process of the axis. J Bone Joint Surg Am. 1974;56:1663–74.

    Article  CAS  Google Scholar 

  16. Roy-Camile R, Saillant G, Judet T, et al. Fracteurs de mauvaise prognostic dans les fractures de l’apophyse odontoides. Rev Chir Orthop Reparatrice Appr Mot. 1980;66:183–6.

    Google Scholar 

  17. Effendi B, Roy D, Cornish B, Dussault RG, Laurin CA. Fractures of the ring of the axis: a classification based on the analysis of 131 cases. J Bone Joint Surg (Br). 1981;63B:319–27.

    Article  Google Scholar 

  18. Gehweiler JA Jr, Clark WM, Schaaf RE, Powers B, Miller MD. Cervical spine trauma: The common combined conditions. Radiology. 1979;130(1):77–86.

    Article  Google Scholar 

  19. Gleizes V, Jacquot FP, Signoret F, Feron JM. Combined injuries in the upper cervical spine: clinical and epidemiological data over a 14-year period. Eur Spine J. 2000;9(5):386–92.

    Article  CAS  Google Scholar 

  20. American Spinal Injury Association. Standards for neurological classification of spinal injury patients. Chicago: American Spinal Injury Association; 1984.

    Google Scholar 

  21. Masry E, Wagih SMB, et al. Validation of the American Spinal Injury Association (ASIA) Motort Score and the National Acute Spinal Cord Injury Study (NACSIS) Motor Score. Spine. 1996;21(5):614–9.

    Article  Google Scholar 

  22. Frankel HL, Hancock DO, Hyslop G, Melzak J, Michaelis LS, Ungar GH, et al. The value of postural reduction in the initial management of closed injuries of the spine with paraplegia and tetraplegia. Paraplegia. 1969;7(3):179–92.

    CAS  PubMed  Google Scholar 

  23. H. Wang, Q. **ang, C. Li, Y. Zhou. Multiple level non-contiguous spinal fractures, difference between young and the elderly. J Spinal Disord Tech. 2013. Vol 26, num 7; 272:276.

  24. Kanna RM, Gaike CV, Mahesh A, Shetty AP, Rajasekaran S. Multilevel non-contiguous spinal injuries: incidence and patterns based on whole spine MRI. Eur Spine J. 2016;25:1163–9.

    Article  Google Scholar 

  25. Robinson GW, Smith RA. Antero-lateral disc removal and interbody fusion for cervical disc syndrome. Bull Johns Hopkins Hosp. 1955;96:223–4.

    Google Scholar 

  26. Cloward RB. Treatment of fractures and fracture dislocation of the cervical spine by vertebral body fusion. J Neurosurg. 1961;18:201–9.

    Article  CAS  Google Scholar 

  27. André Sicard. Chirurgie du Rachis. Monographies Chirurgicales (Collection Henri Mondor). Paris, Masson et Cie, 1959.

  28. Mourelo FM, et al. Actualización en lesión medular aguda postraumática. Parte 2. Med Int. 2017;41(5):306–15.

    Google Scholar 

  29. Steverlynck A., Castelli R., Sarotto A.J. - Sistema de Instrumentación Vertebral Coligne. Rev Asoc Argent Ortop Traumatol 2009; 74(4):347–354.

Download references

Acknowledgments

Paula Goñi, Technical Scientific Literary English Translator, and Adriana Mateos, Technical Scientific Literary English Translator.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aníbal José Sarotto.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict(s) of interest.

Ethical Approval

This study was evaluated and accepted by the ethics committee of the “Sociedad Argentina de Patología de la Columna Vertebral,” according to the current national regulations.

Informed Consent

The informed consent of the patients was not necessary given the retrospective nature of the study.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Level of Evidence

IV (case series)

This article is part of the Topical Collection on Surgery

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sarotto, A.J., Astiasarán, J.P., Steverlynck, A. et al. High Energy Spine Injury Alternate Multiple Fractures Observational Retrospective Study. SN Compr. Clin. Med. 2, 75–81 (2020). https://doi.org/10.1007/s42399-019-00212-z

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42399-019-00212-z

Keywords

Navigation