Log in

Performance Analysis of AlGaN MOSHEMT Based Biosensors for Detection of Proteins

  • Regular Paper
  • Published:
Transactions on Electrical and Electronic Materials Aims and scope Submit manuscript

Abstract

Proteins are existing in different condensations in samples of various origins and knowing their focus is especially important as there are different techniques to detect them [1]. In this work, AlGaN metal-oxide-semiconductor high-electron-mobility transistor (MOSHEMT) based biosensors has been presented for rapid detection of specific proteins such as dry, albumin, casein and zein, each one has related it by the value of permittivity that effects the electrical performance of biosensors which can be used as a sensing metric to detect different proteins. The simulation results have been obtained with atlas-technology computer aided design (Atlas-TCAD) device simulation tool and the sensor performance parameters analysis to detect proteins was performed through drain current, transconductance, output conductance, gate-to-drain capacitance, and sensitivity. The AlGaN MOSHEMT based biosensors have been optimized, to improve the biosensor sensitivity. The maximum sensitivity obtained is 82.5% for zein protein detection compared to other proteins which are 65.11% for casein, 55.81% for albumin and 52.32% for dry.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. B.L. Bouvier, L.J. Blum, Biosensors for protein detection: A Review, Anal. Lett. 38, 1491–1517 (2005). https://doi.org/10.1081/AL-200065780

    Article  CAS  Google Scholar 

  2. D. Vasudevan, K. Vaidyanathan, Chapter-04 proteins: structure and function. 38–55 (2017). https://doi.org/10.5005/jp/books/13014-5

  3. S. Shafura, A. Karim, S. Nadzirah, J. Kazmi, R.A. Rahim, C.F. Dee, A.A. Hamzah, and M.A. Mohamed, Zinc oxide nanorods-based immuno-field-effect transistor for human serum albumin detection. J. Mater. Sci. 56, 15344–15353 (2021). https://doi.org/10.1007/s10853-02106288-0 

    Article  Google Scholar 

  4. M.Y. Bhat, T.A. Dar, L. Rajendra, K. Singh, Casein proteins: structural and functional aspects. 1–18 (2016). https://doi.org/10.5772/64187

  5. D.R. Holding, B.A. Larkins, The development and importance of zein protein bodies in maize endosperm. Maydica 51, 243–254 (2006)

    Google Scholar 

  6. S. Verma, S.A. Loan, M. Rafat, A. Rahman, M. Alamoud, S.A. Abbasi, A Normally-OFF GaN CAVET and its thermal and trap analysis. J. Comput. Electron. 8(3), 941–950 (2019). https://doi.org/10.1007/s10825-019-01360-0

    Article  CAS  Google Scholar 

  7. S. Verma, S.A. Loan, A.G. Alharbi, Polarization engineered enhancement mode GaN HEMT: design and investigation. Superlattices Microstruct. 119, 181–193 (2018). https://doi.org/10.1016/j.spmi.2018.04.041

    Article  CAS  Google Scholar 

  8. S.A. Loan, S. Verma, A.R.M. Alamoud, High performance charge plasma based normally-off GaN MOSFET. IET Electron. Lett. 52(8), 656–658 (2016). https://doi.org/10.1049/el.2015.4517

    Article  CAS  Google Scholar 

  9. P. Pal, Y. Pratap, M. Gupta, S. Kabra, H.D. Sehgal, Performance analysis of ScAlN/GaN High Electron Mobility Transistor (HEMT) for biosensing application, 5th International Conference on Devices, Circuits and Systems (ICDCS), (2020) https://doi.org/10.1109/ICDCS48716.2020.243581

  10. A. Varghese, C. Periasamy, L. Bhargava, Analytical modeling and simulation based investigation of AlGaN/AlN/GaN Bio-HEMT sensor for C-erbB-2 detection. IEEE Sens. J. 18, 9595–9602 (2018). https://doi.org/10.1109/JSEN.2018.2871718

    Article  CAS  Google Scholar 

  11. K.H. Chen, B.S. Kang, H.T. Wang, T.P. Lele, F. Ren, Y.L. Wang, C.Y. Chang, S.J. Pearton, D.M. Dennis, J.W. Johnson, P. Rajagopal, J.C. Roberts, E.L. Piner, K.J. Linthicum, C-erbB-2 sensing using AlGaN/GaN High Electron mobility transistors for breast cancer detection. Appl. Phys. Lett. 92(1-192103-3), 192103 (2008). https://doi.org/10.1063/1.2926656

  12. B.S. Kang, H.T. Wang, T.P. Lele, Y. Tseng, F. Ren, S.J. Pearton, J.W. Johnson, P. Rajagopal, J.C. Roberts, E.L. Piner, and K. J. Linthicum. Prostate specific antigen detection using high electron mobility transistors. Appl. Phys. Lett. 91, 112106 (2007). https://doi.org/10.1063/1.2772192

    Article  CAS  Google Scholar 

  13. A.M. Bhat, N. Shafi, C. Sahu, C. Periasamy, Algan/gan hemt ph sensor simulation model and its maximum transconductance considerations for improved sensitivity. IEEE Sens. J 21(18), 19753–19761 (2021). https://doi.org/10.1109/JSEN.2021.3100475

    Article  CAS  Google Scholar 

  14. A.M. Bhat, C. Periasamy et al., Investigation of algan/gan hemt for ph sensing applications and sensitivity optimization. Superlattices Microstruct 160, 107067 (2021). https://doi.org/10.1016/j.spmi.2021.107067

    Article  CAS  Google Scholar 

  15. S.J. Pearton, C.R. Abernathy. F. Ren, Gallium Nitride Processing for Electronics, Sensors and Spintronics (Springer-Verlag, London, 2006), p. 385

    Book  Google Scholar 

  16. A.M. Bhat, A. Varghese, N. Shafi, C. Periasamy, A dielectrically modulated GaN/AlN/AlGaN MOSHEMT with a nanogap embedded cavity for biosensing applications. IETE J. Res. 67, 1–10 (2021). https://doi.org/10.1080/03772063.2020.1869593

    Article  Google Scholar 

  17. A. Varghese, C. Periasamy, L. Bhargava, Fabrication and charge deduction based sensitivity analysis of GaN MOS-HEMT device for glucose, MIG, C-erbB-2, KIM-1 and PSA detection. IEEE Trans. Nanotechnol 18, 747–755 (2019). https://doi.org/10.1109/TNANO.2019.2928308

    Article  CAS  Google Scholar 

  18. P. Dwivedi, A. Kranti, Applicability of transconductance-to-current ratio (gm/Ids) as a sensing metric for tunnel FET biosensors. IEEE SENS. J. 17(4), 1030–1036 (2017). https://doi.org/10.1109/JSEN.2016.2640192

    Article  CAS  Google Scholar 

  19. M. Waleed Shinwari, M. Jamal Deen, D. Landheer, Study of the electrolyte-insulator-semiconductor field-effect transistor (EISFET) with applications in biosensor design. Microelectron. Reliab 47, 2025–2057 (2007). https://doi.org/10.1016/j.microrel.2006.10.003

    Article  Google Scholar 

  20. U.G. Manual, Atlas, Version 5.12.0.R./USA (Silvaco Inc, 2013)

  21. S.N. Mishra, R. Saha, K. Jena, Normally-off AlGaN/GaN MOS-HEMT as lebel free biosensor. ECS J. Solid State Sci. Technol. 9(6), 065002 (2020). https://doi.org/10.1149/2162-8777/aba1cd

    Article  CAS  Google Scholar 

  22. A. Muhamed, K. Jochen, Variations in proteins dielectric constants. Chem. Open 9, 691–694 (2020). https://doi.org/10.1002/open.202000108

    Article  CAS  Google Scholar 

  23. R.L. Elizabeth, Dielectric properties of some solid proteins at wave lengths 1.7 meters and 3.2 centimeters. Cana J. Phys. 30, 663–669 (1952). https://doi.org/10.1139/p52-063

    Article  Google Scholar 

  24. Y.H. Jung, H. Zhang, S.J. Cho, Z. Ma, Flexible and stretchable microwave microelectronic devices and circuits. IEEE Trans. Electron. Devices 64, 1881–1893 (2017). https://doi.org/10.1109/TED.2016.2646361

    Article  CAS  Google Scholar 

  25. Y. Pratap, M. Kumar, S. Kabra, S. Haldar, R.S. Gupta, M. Gupta, Analytical modeling of gate-all-around junctionless transistor-based biosensors for detection of neutral biomolecule species. J. Comput. Electron. 17, 288–296 (2018). https://doi.org/10.1007/s10825-017-1041-4

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Abdellah Bouguenna.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bouguenna, A., Bouguenna, D., Stambouli, A.B. et al. Performance Analysis of AlGaN MOSHEMT Based Biosensors for Detection of Proteins. Trans. Electr. Electron. Mater. 24, 188–193 (2023). https://doi.org/10.1007/s42341-023-00434-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42341-023-00434-y

Keywords

Navigation