Log in

Ecotoxicological and Human Health Risks of Pesticides in the Waters of Azagny Area (Grand Lahou, Cote d’Ivoire)

  • Original Article
  • Published:
Chemistry Africa Aims and scope Submit manuscript

Abstract

The scope of this study is to know the level of contamination of pesticide residues and the related ecotoxicological risks in the waters of the Azagny area. So, 46 water samples from Azagny area were analysed, using high performance liquid chromatography (HPLC) coupled with UV/Visible detector, to assess level of nine triazines, twelve phenylureas, three organophosphates, two chlorocetanilides, two carbamates, one dicarboximides and one pyrimide, frequently used in this area. The results showed that the concentrations of pesticide active ingredients oscillated from nd to 373.1 µg/L in the Bandama, followed by nd to 438.2 µg/L in the Azagny canal, then from nd to 120 µg/L in the ANP, then from nd to 8.9 µg/L in the mangroves and finally from nd to 73.2 µg/L in the estuary. Risk quotients (RQ) were also calculated to estimate the risks at these pesticide residue levels. The results indicated a poor ecological state of these waters of Azagny and the negative risks on aquatic organics are high. And the concentrations of pesticides in these waters are likely to pose health risks to children aged 0–12 years.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Data Availability

Not applicable.

Code Availability

Not applicable.

References

  1. Djédjé GJM, Kpan Kpan KG, Yapi DAC, Kouamé KV, Tidou AS (2022) Impact of glyphosate and 2,4-D used in agriculture on the quality of Chrysichthys nigrodigitatus (Lacépède, 1803) from the Sassandra River in Guessabo (Côte D’ivoire). World J Adv Res Reviews 14(01):212–222. https://doi.org/10.30574/wjarr.2022.14.1.0298

    Article  CAS  Google Scholar 

  2. Moschet C, Vermeirssen ELM, Singer H, Stamm C, Hollender J (2015) Evaluation of in-situ calibration of chemcatcher passive samplers for micropollutants in agricultural and urban affected rivers. Water Res 71:306–317. https://doi.org/10.1016/j.watres.2014.12.043

    Article  CAS  PubMed  Google Scholar 

  3. Sorensen JPR, Lapworth DJ, Nkhuwa DCW, Stuart ME, Goody DC, Bell RA, Chirwa M, Kabika J, Liemisa M, Chibesa M, Pedley S (2015) Emerging contaminants in urban groundwater sources in Africa. Water Res 72:51–63. https://doi.org/10.1016/j.watres.2014.08.002

    Article  CAS  PubMed  Google Scholar 

  4. Herrero-Hernández E, Rodríguez-Cruz MS, Pose-Juan E, Sánchez-González S, Andrades MS, Sánchez-Martín MJ (2017) Seasonal distribution of herbicide and insecticide residues in the water resources of the vineyard region of La Rioja (Spain). Sci Total Environ 609:161–171. https://doi.org/10.1016/j.scitotenv.2017.07.113

    Article  CAS  PubMed  Google Scholar 

  5. Konstantinou IK, Hela DG, Albanis TA (2006) The status of pesticide pollution in surface waters (rivers and lakes) of Greece. Part I. Review on occurrence and levels. Environ Pollut 141:555–570

    Article  CAS  PubMed  Google Scholar 

  6. Reichenberger S, Bach M, Skitschak A, Frede HG (2007) Mitigation strategies to reduce pesticide inputs into ground- and surface water and their effectiveness; a review. Sci Total Environ 384:1–35. https://doi.org/10.1016/j.scitotenv.2007.04.046

    Article  CAS  PubMed  Google Scholar 

  7. Ccanccapa A, Masiá A, Andreu V, Picó Y (2016a) Spatio-temporal patterns of pesticide residues in the Turia and Júcar rivers (Spain). Sci Total Environ 540:200–210. https://doi.org/10.1016/j.scitotenv.2015.06.063

    Article  CAS  PubMed  Google Scholar 

  8. Arisekar U, Shakila RJ, Shalini R, Jeyasekaran G, Keerthana M, Arumugam N, Perumal K (2022) Distribution and ecological risk assessment of heavy metals using geochemical normalization factors in the aquatic sediments. Chemosphere 294:133708

    Article  CAS  PubMed  Google Scholar 

  9. Lefrancq M, Jadas-Hécart A, La Jeunesse I, Landry D, Payraudeau S (2017) High frequency monitoring of pesticides in runoff water to improve understanding of their transport and environmental impacts. Sci Total Environ 587588:7586. https://doi.org/10.1016/j.scitotenv.2017.02.022

    Article  CAS  Google Scholar 

  10. Novic AJ, O’Brien DS, Kaserzon SL, Hawker DW, Lewis SE, Mueller JF (2017) Monitoring herbicide concentrations and loads during a flood event: a comparison of grab sampling with passive sampling. Environ Sci Technol 51:3880–3891. https://doi.org/10.1021/acs.est.6b02858

    Article  CAS  PubMed  Google Scholar 

  11. Papadakis EN, Tsaboula A, Kotopoulou A, Kintzikoglou K, Vryzas Z, Papadopoulou-Mourkidou E (2015a) Pesticides in the surface waters of Lake Vistonis Basin, Greece: occurrence and environmental risk assessment. Sci Total Environ 536:793–802. https://doi.org/10.1016/j.scitotenv.2015.07.099

    Article  CAS  PubMed  Google Scholar 

  12. Ulaganathan A, Robinson JS, Rajendran S, Geevaretnam J, Natarajan A, Abdulrahman I, Almansour Muruganantham K, Karthikeyan P (2022) Bioaccumulation of organochlorine pesticide residues (OCPs) at different growth stages of pacific white leg shrimp (Penaeus vannamei): first report on ecotoxicological and human health risk assessment. Chemosphere. https://doi.org/10.1016/j.chemosphere.2022.136459

    Article  Google Scholar 

  13. Liess M, Von Der Ohe PC (2005) Analyzing effects of pesticides on invertebrate communities in streams. Environ Toxicol Chem 24:954–965. https://doi.org/10.1897/03-652.1

    Article  CAS  PubMed  Google Scholar 

  14. Kang M, **n H, Yuan J, Ali ST, Liang Z, Zhang J, Wu P (2022) Transmission dynamics and epidemiological characteristics of SARS-CoV-2 delta variant infections in Guangdong, China, May to June 2021. Eurosurveillance 27(10):2100815

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Malaga E, Von der Ohe PC, Grote M, Kühne R, Mondy CP, Usseglio-Polatera P, Brack W, Schäfer RB (2014) Organic chemicals jeopardize the health of freshwater ecosystems on the continental scale. Proc Natl Acad Sci USA 111:9549–9554. https://doi.org/10.1073/pnas.1321082111

    Article  CAS  Google Scholar 

  16. Rasmussen JJ, Wiberg-Larsen P, Batture-Pedersen A, Friberg N, Kronvang B (2012) Stream habitat structure influences macroinvertebrate response to pesticides. Environ Pollut 164:142–149. https://doi.org/10.1016/j.envpol.2012.01.007

    Article  CAS  PubMed  Google Scholar 

  17. Szöcs E, Brinke M, Karaoglan B, Schäfer RB (2017) Large scale risks from agricultural pesticides in small streams. Environ Sci Technol 51:7378–7385. https://doi.org/10.1021/acs.est.7b00933

    Article  CAS  PubMed  Google Scholar 

  18. Tokatli C (2022) Comparisons of diatoms and fishes as toxic metal bioindicator: a case study of an A—class wetland in northwest Turkey under effect of an intensive paddy cultivation stress. Environ Sci Pollut Res. https://doi.org/10.1007/s11356-022-21903-6

    Article  Google Scholar 

  19. Olisah C, Rubidge G, Human LRD, Adam JB (2023) Tissue distribution, dietary intake and human health risk assessment of organophosphate pesticides in common fish species from South African estuaries. Mar Pollut Bull. https://doi.org/10.1016/j.marpolbul.2022.114466

    Article  PubMed  Google Scholar 

  20. Tabb MM, Blumberg B (2006) New modes of action for endocrine-disrupting chemicals. Mol Endocrinol 20:475–482

    Article  CAS  PubMed  Google Scholar 

  21. Staller C, Schuler J, Zander P (2006) Determination of trade off functions to analyse provision of agricultural non commodities. Int J Agric Resour Gov Ecol 5:2–3

    Google Scholar 

  22. Olisah C, Rubidge G, Human LRD, Adams JB (2022) Organophosphate pesticides in south african eutrophic estuaries: spatial distribution, seasonal variation, and ecological risk assessment. Environ Pollut 306:119446

    Article  CAS  PubMed  Google Scholar 

  23. Pan H, Geng J, Qin Y, Tou F, Zhou J, Liu M, Yang Y (2016) PCBs and OCPs in fish along coastal fisheries in China: distribution and health risk assessment. Mar Pollut Bull. https://doi.org/10.1016/j.marpolbul.2016.06.064

    Article  PubMed  Google Scholar 

  24. Robinson T, Ali U, Mahmood A, Chaudhry MJI, Li J, Zhang G, Jones KC, Malik RN (2016) Concentrations and patterns of organochlorines (OCs) in various fish species from the Indus River, Pakistan: a human health risk assessment. Sci Total Environ 541:1232–1242. https://doi.org/10.1016/j.scitotenv.2015.10.002

    Article  CAS  PubMed  Google Scholar 

  25. Akpo KS, Coulibaly LS, Coulibaly L, Savané I (2016) Temporal evolution of the pesticide use in tropical agriculture in the Marahoué watershed, Côte d’Ivoire. Int J Innov Appl Stud 14(1):121–131. http://www.ijias.issr-journals.org/

    Google Scholar 

  26. Traoré KS (2008) Use of pesticides and pharmaceutical products in agricultural regions of Côte d’Ivoire: Monitoring, health risks and remediation, Doctoral thesis in Environmental Sciences and Management, University of Abobo Adjamé, 284p

  27. Traoré A, Ahoussi K, Aka N, Traoré A, Soro N (2015) Level of pesticide contamination in the waters of Aghien and Potou lagoons (South-East of Ivory Coast). Int J Pure Appl Biosci 3(4):312–322

    Google Scholar 

  28. Traoré SK, Mamadou K, Dembélé A, Lafrance P, Mazellier P, Houénou P (2006) Groundwater contamination by pesticides in agricultural regions of Côte d’Ivoire (center, south and south-west). Afr J Environ Sci 1:1–9

    Google Scholar 

  29. Coulibaly L, Coulibaly S, Kamagaté B, Sékongo N, Savané I, Gourène G (2012) Distribution of pesticides of agricultural origin and assessment of water resources vulnerability in a transboundary catchment area: case of Comoé, Côte d’Ivoire. Eur J Sci Res 76(4):601–613

    Google Scholar 

  30. Koné S, Yao KM, Gnonsoro UP, Trokourey A (2021) Transboundary River water pesticide pollution in historical agriculture areas in West Africa: a case study in the Comoe, Bia, and Tanoe rivers (Cote d’Ivoire). Arab J Geosci. https://doi.org/10.1007/s12517-021-08294-7

    Article  Google Scholar 

  31. Gnonsoro UP, Yao KM, Sangare NS, Trokourey A (2022) Health risks of triazine and phenylurea herbicides in sediments of M’Badon Bay, Abidjan (Cote d’Ivoire). Chem Afr. https://doi.org/10.1007/s42250-022-00394-5

    Article  Google Scholar 

  32. Hampoh AH, Ehouman AGS, Brou K, Traoré KS, Koné M, Dembélé A (2014) Level of polychlorinated biphenyls (PCB) contamination in fresh fish caught in Grand Lahou lagoon (Côte d’Ivoire). Eur Sci J 10(27):116–131

    Google Scholar 

  33. Bleu KKN, Koffi KM, Ouattara A, Gourène G (2011) Lead contamination of Sarotherodon melanotheron (Rüpell, 1852) and Tilapia guineensis (Günther, 1862) at the Grand-Lahou Lagoon System (Côte d’Ivoire), European Journal of Scientific Research ISSN 1450-216X Vol.65 No.3 (2011), p. 342–349

  34. Ouattara AA, Yao KM, Soro MP, Diaco T, Trokourey A (2018) Arsenic and trace metals in three west african rivers: concentrations, partitioning, and distribution in particle-size fractions. Arch Environ Contam Toxicol. https://doi.org/10.1007/s00244-018-0543-9

    Article  PubMed  Google Scholar 

  35. Gnagbo A, Kouame D, Adou YCY (2016) Diversity of vascular epiphytes in the lower stratum of plant formations in the Azagny National Park (southern Côte d’Ivoire). J Anim plant Sci 28:4366–4386

    Google Scholar 

  36. LEloeuf P, Marshall J, Kothias A (1998) Environment and aquatic resources of Côte d’Ivoire, volume i. The marine environment. ORSTOM, Paris, p 588

    Google Scholar 

  37. Togbe AMO, Kouamé KV, Yao KM, Ouattara AA, Tidou AS, Atsé BC (2019) Evaluation of the contamination of the waters of the Ebrié lagoon (zones IV and V), Ivory Coast in arsenic, lead and cadmium: spatio-temporal variations and health risks. Int J Biol Chem Sci 13(2):1162–1179. https://doi.org/10.4314/ijbcs.v13i2.45

    Article  CAS  Google Scholar 

  38. John RC (2008) Sampling for Pesticide Residue Analysis, Natural Resources Institute, University of Greenwich at Medway, Central Avenue, Chatham Maritime, Kent ME4 4 TB, UK, pp 125–147

  39. Murcia F, Menach K, Pardon P (2010) Multi-residue approach for monitoring pesticides in different compartments (water, sediment, oysters) of the aquatic environment of the Arcachon Basin Laboratory. In “IFREMER DEL/AR” Quai du commandant Silhouettes, 33120 Arc chon, French University of Bordeaux 1

  40. Topuz S, Özhan G, Alpertunga B (2003) Simultaneous determination of various pesticides in fruit juices by HPLC-DAD. Food Control 16:87–92. https://doi.org/10.1016/j.foodcont.2003.11.012

    Article  CAS  Google Scholar 

  41. Kaonga CC, Takeda K, Sakugawa H (2015) Diuron, Irgarol 1051 and fenitrothion contamination for a river passing through an agricultural and urban area in Higashi Hiroshima City, Japan. Sci Total Environ. https://doi.org/10.1016/j.scitotenv.2015.03.022

    Article  PubMed  Google Scholar 

  42. Vryzas Z, Vassiliou G, Alexoudis C, Papadopoulou-Mourkidou E (2009) Spatial and temporal distribution of pesticide residues in surface waters in northeastern Greece. Water Res 43:1–10. https://doi.org/10.1016/j.watres.2008.09.021

    Article  CAS  PubMed  Google Scholar 

  43. Palma P, Köck-Schulmeyer M, Alvarenga P, Ledo L, Barbosa IR, López de Alda M, Barceló D (2014) Risk assessment of pesticides detected in surface water of the Alqueva reservoir (Guadiana basin, southern of Portugal). Sci Total Approx 488–489:208–219. https://doi.org/10.1016/j.scitotenv.2014.04.088

    Article  CAS  Google Scholar 

  44. Papadakis EN, Tsaboula A, Vryzas Z, Kotopoulou A, Kintzikoglou K, Papadopoulou–Mourkidou E (2018) Pesticides in Tehe Rivers and streams of two rivers basins in northern Greece. Sci Total Environ 624:732–743

    Article  CAS  PubMed  Google Scholar 

  45. Sun QH, Horton RM, Bader DA, Jones B, Zhou L, Li TT (2019) Projections of temperature-related non-accidental mortality in Nan**g, China. Biomed About Sci 32(2):134–139. https://doi.org/10.3967/bes2019.01

    Article  Google Scholar 

  46. Vryzas Z, Alexoudis C, Vassiliou G, Galanis K, Papadopoulou-Mourkidou E (2011) Determination and aquatic risk assessment of pesticides residues in riparian drainage channel in northeastern Greece. Ecotoxicol Environ Saf 74:174–181. https://doi.org/10.1016/ j. ecoenv.2010.04.011

    Article  CAS  PubMed  Google Scholar 

  47. Sultan M, Hamid N, Junaid M, **-**g Duan JJ, Pei D (2023) Organochlorine pesticides (OCPs) in freshwater resources of Pakistan: a review on occurrence, spatial distribution and associated human health and ecological risk assessment. Ecotoxicol Environ. https://doi.org/10.1016/j.ecoenv.2022.114362

    Article  Google Scholar 

  48. De Jesus GV, Almeida CMM, Rodrigues A, Ferreira E, Benoliel MJ, Cardoso VV (2015) Occurrence of pharmaceuticals in a water supply system and related human health risk assessment. Water Res 72:199–208. https://doi.org/10.1016/j.watres.2014.10.027

    Article  CAS  Google Scholar 

  49. Sharma BM, Bečanová J, Scheringer M, Sharma A, Bharat GK, Whitehead PG, Klánová J, Nizzetto L (2019) Health and ecological risk assessment of emerging contaminants (pharmaceuticals, personal care products, and artificial sweeteners) in surface and groundwater (drinking water) in the Ganges River Basin, India. Sci Total Environ 646:1459–1467. https://doi.org/10.1016/j.scitotenv.2018.07.235

    Article  CAS  PubMed  Google Scholar 

  50. Labad F, Ginebreda A, Criollo R, Vazquez-Suné E, Perez S, Jurado A (2023) Occurrence, data-based modelling, and risk assessment of emerging contaminants in an alluvial aquifer polluted by river recharge. Environ Pollut 316:120504. https://doi.org/10.1016/j.envpol.2022.120504

    Article  CAS  PubMed  Google Scholar 

  51. EPA. United States Environmental Protection Agency (US EPA) (2011) Handbook of Exposure Factors. Washington, DC. http://www.epa.gov/ncea/efh/pdfs/efh-complete.pdf. Accessed 17 Feb 2022

  52. Loewy RM, Monza LB, Kirs VE, Savini MC (2011) Pesticide distribution in an agricultural environment in Argentina. J Environ Sci Health Part B 46:662–670

    CAS  Google Scholar 

  53. Ouattara Y, Guiguemde I, Diendere F, Diarra J, Bary A (2012) Pollution des eaux dans le bassin du nakambe: cas du barrage de Ziga. Int J Biol Chem Sci 6(6):8034–8050

    Google Scholar 

  54. Tamaye AY, Bassirou A, Adamou EA (2021) Level of pesticide contamination and ecotoxicological risks in two aquatic ecosystems in Niger: Lake Guidimouni and Mare de Tabalak, Africa science, 18(2):1–13

  55. Cruzeiro C, Pardal MA, Rodrigues-Oliveira N, Castro LF, Rocha E, Rocha MJ (2016b) Multi-matrix quantification and risk assessment of pesticides in the longest river of the Iberian peninsula. Sci Total Environ 572:263–272

    Article  CAS  PubMed  Google Scholar 

  56. Schriks M, Heringa MB, Van der Kooi MME, De Voogt P, Van Wezel AP (2010) Toxicological relevance of emerging contaminants for drinking water quality. Water Res 44:461–476. https://doi.org/10.1016/j.watres.2009.08.023

    Article  CAS  PubMed  Google Scholar 

  57. Yao KS, Atsé BC, Trokourey A (2020) Evaluation of the impact of pesticide contamination of waters, on fish and human health, of sectors IV and V of the Ebrié lagoon (Cote d’Ivoire). RAMReS Sci Struct Matter 2:59–74

    Google Scholar 

Download references

Funding

None of the authors did not receive any fund from any person or organization or society.

Author information

Authors and Affiliations

Authors

Contributions

YKM and N’KG defined and designed the work and the experiment. EHNN’ and GUP realized the experience and wrote the manuscript. EHNN’, GUP, N’KG and BIM revised the manuscript critically. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Gnonsoro Urbain Paul.

Ethics declarations

Conflict of Interest

The authors declare that they have no competing interests.

Ethics approval and consent to participate

Not applicable.

Consent for publication

Not applicable.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

N’dohou, E.H.N., Paul, G.U., Marcelle, B.I. et al. Ecotoxicological and Human Health Risks of Pesticides in the Waters of Azagny Area (Grand Lahou, Cote d’Ivoire). Chemistry Africa 6, 2151–2163 (2023). https://doi.org/10.1007/s42250-023-00631-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42250-023-00631-5

Keywords

Navigation