Log in

Numerical simulation and experimental investigation of manufacturing route of directional casting super slab

  • Original Paper
  • Published:
Journal of Iron and Steel Research International Aims and scope Submit manuscript

Abstract

We proposed a new technique route of directional solidification for the manufacture of super slab. A 7-t laboratory-scale thick slab was casted and characterised for trial. To further understand the process, the evolution of the multiple physical fields during the directional solidification was simulated and verified. Similar to the convectional ingot casting, a negative segregated cone of equiaxed grains was formed at the bottom, and a seriously positive segregated region was formed beneath the top surface of the slab. Specific measures on the lateral walls, base plate, and free surface were strongly recommended to ensure that the slab is relatively directionally casted. A water-cooling copper base plate accelerates the solidification rate and the columnar growth along the vertical direction. It inhibits the sedimentation of equiaxed grains and enlarges the columnar zone. Based on the simulation analysis, it can be concluded that the directional solidification technique route is promising to manufacture super slab with lower segregation level, and less porosities and inclusions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price includes VAT (Spain)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. F. Wang, J. Appl. Sci. 13 (2013) 2151–2155.

    Article  Google Scholar 

  2. N. Yang, C. Su, X.F. Wang, F. Bai, J. Constr. Steel Res. 122 (2016) 213–225.

    Article  Google Scholar 

  3. S. Wang, B.X. Liu, C.X. Chen, J.H. Feng, F.X. Yin, J. Alloy. Compd. 766 (2018) 517–526.

    Article  Google Scholar 

  4. C. Li, J. Dong, K. Li, X. Tu, Y. Song, Mater. Sci. Eng. A 804 (2021) 140565.

    Article  Google Scholar 

  5. J.X. Song, Z.Z. Cai, F.Y. Piao, M.Y. Zhu, J. Iron Steel Res. Int. 21 (2014) 1–9.

    Article  Google Scholar 

  6. J. Campbell, Steel Res. Int. 88 (2017) 1600093.

    Article  Google Scholar 

  7. B.G. Thomas, Steel Res. Int. 89 (2018) 1700312.

    Article  Google Scholar 

  8. S. He, Z. Li, Z. Chen, T. Wu, Q. Wang, Steel Res. Int. 90 (2019) 1800424.

    Article  Google Scholar 

  9. Z. Niu, F. Du, J. Jiang, H. Yu, Metall. Mater. Trans. B 54 (2023) 1900–1916.

    Article  Google Scholar 

  10. Z.Y. Liu, L.H. Zhang, C. Ji, M.Y. Zhu, C.J. Wang, J. Iron Steel Res. Int. 30 (2023) 1769–1781.

    Article  Google Scholar 

  11. W. Shen, G. Cheng, C. Zhang, S. Pan, L. Dai, X. Liu, Steel Res. Int. 94 (2023) 2300164.

    Article  Google Scholar 

  12. R.S. Chu, Z.J. Li, J.G. Liu, Y. Fan, Y. Liu, C.W. Ma, J. Iron Steel Res. Int. 28 (2021) 272–278.

    Article  Google Scholar 

  13. C. Ji, Z.Z. Cai, W.L. Wang, M.Y. Zhu, Y. Sahai, Ironmak. Steelmak. 41 (2014) 360–368.

    Article  Google Scholar 

  14. N. Yang, C. Su, X.F. Wang, F. Bai, Steel Compos. Struct. 21 (2016) 517–536.

    Article  Google Scholar 

  15. L. Zhang, B.G. Thomas, Metall. Mater. Trans. B 37 (2006) 733–761.

    Article  Google Scholar 

  16. C. Zhang, Y. Bao, M. Wang, L. Zhang, Arch. Foundry Eng. 16 (2016) 27–32.

    Article  Google Scholar 

  17. P. Lan, J.Q. Zhang, Ironmak. Steelmak. 41 (2014) 598–606.

    Article  Google Scholar 

  18. H. Ge, F. Ren, J. Li, Q. Hu, M. **a, J. Li, J. Mater. Process. Technol. 252 (2018) 362–369.

    Article  Google Scholar 

  19. J. Li, X.W. Xu, N. Ren, M.X. **a, J.G. Li, J. Iron Steel Res. Int. 29 (2022) 1901–1914.

    Article  Google Scholar 

  20. M. Wu, A. Ludwig, Metall. Mater. Trans. A 37 (2006) 1613–1631.

    Article  Google Scholar 

  21. M. Wu, A. Ludwig, Acta Mater. 57 (2009) 5621–5631.

    Article  Google Scholar 

  22. Y.J. Liu, C.L. Peng, W.M. Li, X.L. Zhu, M.G. Shen, X.W. Liao, K. Liu, C.Y. Wei, Y.A. Yusuf, J. Yang, C.Y. Cai, J. Iron Steel Res. Int. 29 (2022) 1951–1960.

    Article  Google Scholar 

  23. J. Li, M. Wu, J. Hao, A. Kharicha, A. Ludwig, Comput. Mater. Sci. 55 (2012) 419–429.

    Article  Google Scholar 

  24. N. Ren, J. Li, C. Panwisawas, M. **a, H. Dong, J. Li, Acta Mater. 206 (2021) 116620.

    Article  Google Scholar 

  25. J. Li, M. Wu, J. Hao, A. Ludwig, Comput. Mater. Sci. 55 (2012) 407–418.

    Article  Google Scholar 

  26. H.B. Dong, P.D. Lee, Acta Mater. 53 (2005) 659–668.

    Article  Google Scholar 

  27. A. Ludwig, M. Wu, Metall. Mater. Trans. A 33 (2002) 3673–3683.

    Article  Google Scholar 

  28. H. Combeau, M. Založnik, S. Hans, P.E. Richy, Metall. Mater. Trans. B 40 (2009) 289–304.

    Article  Google Scholar 

  29. J.A. Spittle, Int. Mater. Rev. 51 (2006) 247–269.

    Article  Google Scholar 

  30. Z. Chen, H. Shen, Int. J. Miner. Metall. Mater. 27 (2020) 200–209.

    Article  Google Scholar 

  31. W.S. Li, H.F. Shen, B.C. Liu, Int. J. Miner. Metall. Mater. 19 (2012) 787–794.

    Article  Google Scholar 

  32. M.G. Worster, Annual Review of Fluid Mechanics 29 (1997) 91–122.

    Article  Google Scholar 

  33. C.Y. Wang, S. Ahuja, C. Beckermann, H.C. de Groh, Metall. Mater. Trans. B 26 (1995) 111–119.

    Article  Google Scholar 

  34. J. Li, M. Wu, A. Ludwig, A. Kharicha, Int. J. Heat Mass Transf. 72 (2014) 668–679.

    Article  Google Scholar 

  35. M. Wu, A. Ludwig, A. Bührig-Polaczek, M. Fehlbier, P.R. Sahm, Int. J. Heat Mass Transf. 46 (2003) 2819–2832.

    Article  Google Scholar 

  36. H. Ge, F. Ren, J. Li, X. Han, M. **a, J. Li, Metall. Mater. Trans. A Phys. Metall. Mater. Sci. 48 (2017) 1139–1150.

    Article  Google Scholar 

  37. R. Guan, C. Ji, M. Zhu, S. Deng, Metall. Mater. Trans. B 49 (2018) 2571–2583.

    Article  Google Scholar 

  38. Z. Deng, Z. Liu, M. Zhu, L. Huo, ISIJ Int. 61 (2021) 1–15.

    Article  Google Scholar 

  39. D. Cai, F. Ren, H. Ge, H.S. Kim, J. Li, J. Li, Metall. Mater. Trans. A 50 (2019) 1323–1332.

    Article  Google Scholar 

  40. J. Zhang, C. Wu, C. Ji, Y. Chen, M. Zhu, Steel Res. Int. 93 (2022) 2000601.

    Article  Google Scholar 

  41. H. Liu, Z.Z. Huang, D.J. Yu, D.L. Hu, H.G. Zhong, Q.J. Zhai, J.X. Fu, J. Iron Steel Res. Int. 26 (2019) 973–982.

    Article  Google Scholar 

  42. J.C. Ma, Y.S. Yang, W.H. Tong, Y. Fang, Y. Yu, Z.Q. Hu, Mater. Sci. Eng. A 444 (2007) 64–68.

    Article  Google Scholar 

  43. H.G. Li, S.B. Zheng, S.J. **e, L.W. Wang, Q. Zheng, Q.J. Zhai, G.C. Jiang, Ironmak. Steelmak. 36 (2009) 29–32.

    Article  Google Scholar 

  44. H. Pan, Z. Zhang, J. **e, Metall. Mater. Trans. A 47 (2016) 2277–2285.

    Article  Google Scholar 

  45. N. Tsuji, K. Tsuzaki, T. Maki, ISIJ Int. 34 (1994) 1008–1017.

    Article  Google Scholar 

  46. H. Ge, F. Ren, D. Cai, J. Hao, J. Li, J. Li, J. Mater. Process. Technol. 262 (2018) 232–238.

    Article  Google Scholar 

  47. H. Ge, J. Li, Q. Guo, F. Ren, M. **a, J. Yao, J. Li, Metall. Mater. Trans. B 52 (2021) 2992–3003.

    Article  Google Scholar 

Download references

Acknowledgements

The work is sponsored by the National Natural Science Foundation of China (No. 52074182) and Joint Funds of the National Natural Science Foundation of China (No. U23A20612).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Neng Ren or Jun Li.

Ethics declarations

Conflict of interest

The authors claim no potential conflict of interest.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, M., Fu, J., Ren, N. et al. Numerical simulation and experimental investigation of manufacturing route of directional casting super slab. J. Iron Steel Res. Int. (2024). https://doi.org/10.1007/s42243-024-01235-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s42243-024-01235-0

Keywords

Navigation