Log in

A Novel Control Technique for Longitudinal Off-Corner Depressions on Wide Faces of Continuous Casting Slabs: Effect of the Mold Design on Controlling LOCDs

  • Original Research Article
  • Published:
Metallurgical and Materials Transactions B Aims and scope Submit manuscript

Abstract

Associated with uneven heat transfer in molds, longitudinal off-corner depressions (LOCDs) have been identified as a general defect on wide–thick slabs during continuous casting. Additionally, the concurrent surface and subsurface cracks accompanying LOCDs consistently undermine the quality of high-end steel production. To control LOCDs and crack defects, a multibody and multifield coupling model is developed, upon which a convex-structure mold (CSM) is designed and optimized. In this work, the model is extended to cover the mold, secondary cooling zones, and reduction segments. Thus, the shell deformation can be described during the full process of continuous casting. Based on the model, the CSM is thoroughly compared with a traditional flat-plate mold (FPM) in terms of contact status, air gap expansion, interfacial heat transfer, shell growth, shell deformation, and LOCD formation. The results show that shell shrinkage in the FPM causes a larger contact gap at the corners. Consequently, thick slag layers and air gaps forming around shell corners lead to a hot (thin) spot at the wide face off-corner. With the corner gaps being closed in the CSM, the shell growth at the off-corner is homogenized, and the local hot spot disappears. In secondary cooling zones, the solidifying shell cast by the FPM undergoes larger deformation due to the thin spot. However, uniform shell growth in the CSM could avoid concentrated stress and increase the resistance to deformation. Therefore, the width and depth of the LOCD are greatly reduced throughout the continuous casting process. At the end of mechanical reduction, the depths of the LOCDs in the FPM and CSM cases are 1.77 and 1.1 mm, which correspond to heavy and slight defect levels, respectively. Through these numerical comparisons, the advantages of CSMs in controlling LOCDs are finally confirmed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18

Similar content being viewed by others

References

  1. B.G. Thomas: Steel Res. Int., 2018, vol. 89, p. 1700312.

    Article  Google Scholar 

  2. P. Presoly, R. Pierer, and C. Bernhard: Metall. Mater. Trans. A, 2013, vol. 44A, pp. 5377–88.

    Article  Google Scholar 

  3. J.K. Brimacombe, F. Weinberg, and E.B. Hawbolt: Metall. Trans. B, 1979, vol. 10, pp. 279–92.

    Article  Google Scholar 

  4. M.L.S. Zappulla and B.G. Thomas: Mater. Sci. Forum, 2018, vol. 941, pp. 112–17.

    Article  Google Scholar 

  5. E. Wang and J. He: Sci. Technol. Adv. Mater., 2001, vol. 2, pp. 257–63.

    Article  CAS  Google Scholar 

  6. W.R. Storkman, and B.G. Thomas:Modeling of Casting and Welding Processes, Palm Coast, FL, 1988, Minerals, Metals & Materials Society, Warrendale, PA, 1988, pp. 287–97.

  7. P.H. Dauby: Rev. Métall., 2012, vol. 109, pp. 113–36.

    Article  Google Scholar 

  8. B. Thomas and X. Huang: Metall. Trans. B, 1994, vol. 25B, pp. 527–47.

    Article  CAS  Google Scholar 

  9. X. Huang and B.G. Thomas: Can. Metall. Q., 1998, vol. 37, pp. 197–212.

    Article  CAS  Google Scholar 

  10. L. Xu, E. Wang, C. Karcher, A. Deng, and X. Xu: Metall. Mater. Trans. B, 2018, vol. 49B, pp. 2779–93.

    Article  Google Scholar 

  11. S.M. Cho and B.G. Thomas: JOM, 2020, vol. 72, pp. 3610–27.

    Article  CAS  Google Scholar 

  12. W.H. Lee and K.W. Yi: Met. Mater. Int., 2021, vol. 27, pp. 4168–81.

    Article  CAS  Google Scholar 

  13. R.B. Mahapatra, J.K. Brimacombe, and I.V. Samarasekera: Metall. Mater. Trans. B, 1991, vol. 22B, pp. 875–78.

    Article  CAS  Google Scholar 

  14. S. Pelak, R. Misicko, D. Fedáková, and J. Bidulská: Mater. Eng., 2009, vol. 16, pp. 21–28.

    Google Scholar 

  15. M.L.S. Zappulla, and B.G. Thomas:TMS 2017 146th Annual Meeting & Exhibition Supplemental Proceedings, San Diego, CA, USA, 2017, Springer Cham, 2017, pp. 501–10.

  16. M.L.S. Zappulla: Mechanisms of Longitudinal Depression Formation in Steel Continuous Casting, Ph.D. Thesis, Colorado School of Mines, Ann Arbor, MI, 2020.

  17. Y. Yashima: Tetsu-to-Hagane, 1984, vol. 70, p. S901.

    Google Scholar 

  18. B.G. Thomas, W.R. Storkman, and A. Moitra:Proc. 6th Int. Iron and Steel Congress, Nagoya, Japan, 1990, Iron and Steel Institute of Japan, Tokyo, 1990, pp. 348–55.

  19. N. Yamasaki, S. Shima, K. Tsunenari, S. Hayashi, M. Doki, Y. Kato, D. Miki, and T. Nakanishi: Nippon Steel & Sumitomo Metal Technical Report, 2016, vol. 112, pp. 64–70.

    Google Scholar 

  20. S.V. Filatov, A.I. Dagman, V.N. Karavaev, V.P. Glebov, G.N. Kononykhin, A.B. Kotel’nikov, and A.A. Vopneruk: Metallurgist, 2018, vol. 62, pp. 58-61.

  21. J. Yang and M. Zhu: ISIJ Int., 2016, vol. 56, pp. 2191–98.

    Article  CAS  Google Scholar 

  22. J. Kim, S. Kim, D. Kim, Y. Lee, J. Eum, and E. Lee: Steelmaking Conference Proceedings, 1995, pp. 333–39.

  23. C.B. Shi, M.D. Seo, J.W. Cho, and S.H. Kim: Metall. Mater. Trans. B, 2014, vol. 45B, pp. 1081–97.

    Article  Google Scholar 

  24. C. Ji, Y. Cui, Z. Zeng, Z. Tian, C. Zhao, and G.-S. Zhu: J. Iron Steel Res. Int., 2015, vol. 22, pp. 53–56.

    Article  Google Scholar 

  25. H. Cui, K. Zhang, Z. Wang, B. Chen, B. Liu, J. Qing, and Z. Li: Metals, 2019, vol. 9(2), p. 204.

  26. W. Qian, L. Yongjian, H. Yuming, H. Bing, X. Yincheng, and Z. Jianguo: China Metall., 2012, vol. 22, pp. 22–27.

    Google Scholar 

  27. B.G. Thomas, A. Moitra, and R. McDavid: ISS Trans., 1996, vol. 23, pp. 57–70.

    Google Scholar 

  28. Z. Zhenyi, Z. Yongliang, and W. Kezhong: 2019 National Conference on Application of High Efficiency Continuous Casting Technology and Quality Control of Casting Billets, Yangzhou, 2019, Hebei Metals Society, pp. 241-44.

  29. Y. Lu, Q. Wang, Y. Li, and S. He: Contin. Cast., 2011, vol. 2011, pp. 33–37.

    Google Scholar 

  30. Z. Niu, F. Du, J. Jiang, and H. Yu: Unpublished Research, Yanshan University, Qinhuangdao, Hebei, 2022.

  31. Z. Niu, Z. Cai, and M. Zhu: Metall. Mater. Trans. B, 2021, vol. 52B, pp. 1556–73.

    Article  Google Scholar 

  32. Z. Niu, Z. Cai, and M. Zhu: Metall. Mater. Trans. B, 2021, vol. 52B, pp. 2737–52.

    Article  Google Scholar 

  33. Z. Niu, Z. Cai, and M. Zhu: ISIJ Int., 2019, vol. 59, pp. 283–92.

    Article  CAS  Google Scholar 

  34. Z. Niu, Z. Cai, and M. Zhu: Ironmak. Steelmak., 2020, vol. 47, pp. 1135–47.

    Article  CAS  Google Scholar 

  35. Z. Liu, B. Li, A. Vakhrushev, M. Wu, and A. Ludwig: Steel Res. Int., 2019, vol. 90, p. 1800117.

    Article  Google Scholar 

  36. C. Wu, C. Ji, and M. Zhu: Metall. Mater. Trans. B, 2018, vol. 49B, pp. 1346–59.

    Article  Google Scholar 

  37. S. Yu, M. Long, H. Chen, D. Chen, T. Liu, H. Duan, and J. Cao: Metall. Mater. Trans. B, 2018, vol. 49B, pp. 866–76.

    Article  Google Scholar 

  38. Y. Meng and B.G. Thomas: Metall. Mater. Trans. B, 2003, vol. 34B, pp. 685–705.

    Article  CAS  Google Scholar 

  39. Q. Qin, S. Shang, D. Wu, and Y. Zang: Adv. Mech. Eng., 2014, vol. 6, 942719.

    Article  Google Scholar 

  40. X. Liu and M. Zhu: ISIJ Int., 2006, vol. 46, pp. 1652–59.

    Article  CAS  Google Scholar 

  41. Z. Niu, Z. Cai, and M. Zhu: Ironmak. Steelmak., 2019, vol. 47, pp. 1–3.

    Google Scholar 

  42. M.L.S. Zappulla, G. Zhu, and B.G. Thomas: AISTech 2019—Proceedings of the Iron & Steel Technology Conference, 2019, pp. 6–9.

  43. M.S.C. Marc: Theory and User Information, MSC Software Corporation, Newport Beach, 2016.

    Google Scholar 

  44. ANSYS: Fluent Theory Guide, ANSYS Inc., Canonsburg, PA, 2015.

  45. MpCCI: Documentation, Fraunhofer Institute for Algorithms and Scientific Computing (SCAI), Sankt Augustin, Germany, 2015.

  46. A. Yamanaka, K. Nakajima, and K. Okamura: Ironmak. Steelmak., 1995, vol. 22, pp. 508–12.

    CAS  Google Scholar 

  47. Y.M. Won, T.J. Yeo, D.J. Seol, and K.H. Oh: Metall. Mater. Trans. B, 2000, vol. 31B, pp. 779–94.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was financially supported by the National Natural Science Foundation of China (51975510).

Conflict of interest

On behalf of all authors, the corresponding author states that there are no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhenyu Niu.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Niu, Z., Du, F., Jiang, J. et al. A Novel Control Technique for Longitudinal Off-Corner Depressions on Wide Faces of Continuous Casting Slabs: Effect of the Mold Design on Controlling LOCDs. Metall Mater Trans B 54, 1900–1916 (2023). https://doi.org/10.1007/s11663-023-02803-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11663-023-02803-7

Navigation