Log in

Radio-frequency broadband epsilon-near-zero response in biocompatible silver nanoparticles/polystyrene films with three-dimensional honeycomb-like superstructures

  • Research
  • Published:
Advanced Composites and Hybrid Materials Aims and scope Submit manuscript

Abstract

Epsilon-near-zero (ENZ) metamaterials have aroused considerable research due to the unique electromagnetic characteristics. In this work, for the first time, the non-solvent induced phase separation self-assembly method is developed to construct the honeycomb-like superstructures consisting of silver (Ag) nanoparticles and polystyrene (PS) matrix. Most neighboring Ag nanoparticles are separated by a thin PS layer, and only a few neighboring Ag nanoparticles form weak touching. These structures with different characteristics can contribute to positive permittivity response by surface plasmon resonance (SPR) effect and plasma-type negative permittivity response, respectively. These two different dielectric responses cancel each other and thereby the broadband ENZ property is obtained in the superstructures at radio-frequency range, among which the huge enhancement of positive permittivity owing to SPR effect plays the dominant role. The first principles density functional theory demonstrates that the electrical difference between Ag and PS leads to the interfacial polarization by the accumulation of free electrons. The finite-difference time-domain simulations demonstrate that the SPR effect contributes to significant near-field enhancement and thus the enhanced positive permittivity response in the superstructure. This work offers the theoretical foundation and guidance for designing ENZ properties in biocompatible metal/dielectrics composites by SPR effect.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data availability statement

Data can be made available on request to the corresponding authors.

References

  1. Liu M, Plum E, Li H, Li S, Xu Q, Zhang X, Zhang C, Zou C, ** B, Han J (2021) Temperature-controlled optical activity and negative refractive index. Adv Funct Mater 31:2010249. https://doi.org/10.1002/adfm.202010249

    Article  Google Scholar 

  2. Krishnamoorthy HN, Jacob Z, Narimanov E, Kretzschmar I, Menon VM (2012) Topological transitions in metamaterials. Science 336:205–209. https://doi.org/10.1126/science.1219171

    Article  Google Scholar 

  3. Huang L, Zhang S, Zentgraf T (2018) Metasurface holography: from fundamentals to applications. Nanophotonics 7:1169–1190. https://doi.org/10.1515/nanoph-2017-0118

    Article  Google Scholar 

  4. Silva A, Monticone F, Castaldi G, Galdi V, Alù A, Engheta N (2014) Performing mathematical operations with metamaterials. Science 343:160–163. https://doi.org/10.1126/science.1242818

    Article  Google Scholar 

  5. Kinsey N, DeVault C, Boltasseva A, Shalaev VM (2019) Near-zero-index materials for photonics. Nat Rev Mater 4:742–760. https://doi.org/10.1038/s41578-019-0133-0

    Article  Google Scholar 

  6. Caligiuri V, Palei M, Biffi G, Artyukhin S, Krahne R (2019) A semi-classical view on epsilon-near-zero resonant tunneling modes in metal/insulator/metal nanocavities. Nano Lett 19:3151–3160. https://doi.org/10.1021/acs.nanolett.9b00564

    Article  Google Scholar 

  7. Cheng C, Lu Y, Zhang D, Ruan F, Li G (2020) Gain enhancement of terahertz patch antennas by coating epsilon-near-zero metamaterials. Superlattices Microstruct 139:106390. https://doi.org/10.1016/j.spmi.2020.106390

    Article  Google Scholar 

  8. Engheta N (2007) Circuits with light at nanoscales: optical nanocircuits inspired by metamaterials. Science 317:1698–1702. https://doi.org/10.1126/science.113326

    Article  Google Scholar 

  9. Meng X, Li Y, AlMasoud N, Wang W, Alomar TS, Li J, Ye X, Algadi H, Seok I, Li H, Xu BB, Lu N, El-Bahy ZM, Guo Z (2023) Compatibilizing and toughening blends of recycled acrylonitrile-butadiene-styrene/recycled high impact polystyrene blends via styrene-butadiene-glycidyl methacrylate terpolymer. Polymer 272:125856. https://doi.org/10.1016/j.polymer.2023.125856

    Article  Google Scholar 

  10. Li T, Wei H, Zhang Y, Wan T, Cui D, Zhao S, Zhang T, Ji Y, Algadi H, Guo Z, Chu L, Cheng B (2023) Sodium alginate reinforced polyacrylamide/xanthan gum double network ionic hydrogels for stress sensing and self-powered wearable device applications. Carbohydr Polym 309:120678. https://doi.org/10.1016/j.carbpol.2023.120678

    Article  Google Scholar 

  11. Smith DR, Padilla WJ, Vier D, Nemat-Nasser SC, Schultz S (2000) Composite medium with simultaneously negative permeability and permittivity. Phys Rev Lett 84:4184. https://doi.org/10.1103/PhysRevLett.84.4184

    Article  Google Scholar 

  12. Huang X, Lai Y, Hang ZH, Zheng H, Chan CT (2011) Dirac cones induced by accidental degeneracy in photonic crystals and zero-refractive-index materials. Nat Mater 10:582–586. https://doi.org/10.1038/nmat3030

    Article  Google Scholar 

  13. Gao F, Liu Y, Jiao C, El Bahy SM, Shao Q, El Bahy ZM, Li H, Wasnik P, Algadi H, Xu BB, Wang N, Yuan Y, Guo Z (2023) Fluorine-phosphate copolymerization waterborne acrylic resin coating with enhanced anticorrosive performance. J Polym Sci 61:2677–2687. https://doi.org/10.1002/pol.20230108

  14. Kadhim IAU, Sallal HA, Al-Khafaji ZSA (2023) A review in investigation of marine biopolymer (chitosan) for bioapplications. ES Mater Manuf 21:828. https://doi.org/10.30919/esmm5f828

  15. **e P, Shi Z, Feng M, Sun K, Liu Y, Yan K, Liu C, Moussa TAA, Huang M, Meng S, Liang G, Hou H, Fan R, Guo Z (2022) Recent advances in radio-frequency negative dielectric metamaterials by designing heterogeneous composites. Adv Compos Mater 5:679–695. https://doi.org/10.1007/s42114-022-00479-2

    Article  Google Scholar 

  16. Maas R, Parsons J, Engheta N, Polman A (2013) Experimental realization of an epsilon-near-zero metamaterial at visible wavelengths. Nat Photon 7:907–912. https://doi.org/10.1038/nphoton.2013.256

    Article  Google Scholar 

  17. Lan D, Wang Y, Wang Y, Zhu X, Li H, Guo X, Ren J, Guo Z, Wu G (2023) Impact mechanisms of aggregation state regulation strategies on the microwave absorption properties of flexible polyaniline. J Colloid Interface Sci 651:494–503. https://doi.org/10.1016/j.jcis.2023.08.019

    Article  Google Scholar 

  18. Chen S, Bai L, Wang X, Li H, Xu BB, Algadi H, Guo Z (2023) Effect of hydrophobic nano-silica/β-nucleating agent on the crystallization behavior and mechanical properties of polypropylene random copolymers. Polym Int. https://doi.org/10.1002/pi.6575

    Article  Google Scholar 

  19. Gong X, Liu Y, Ibrahim MM, Zhang H, Amin MA, Ma Y, Xu BB, Algadi H, Wasnik P, El-Bahy ZM, Guo Z (2023) Activation of inert triethylene tetramine-cured epoxy by sub-critical water decomposition. React Funct Polym 193:105746. https://doi.org/10.1016/j.reactfunctpolym.2023.105746

  20. Lu H, Wang Y, Wang Y, Liang W, Yao J (2015) Adjusting phase transition of titania-based nanotubes via hydrothermal and post treatment. RSC Adv 5:89777–89782. https://doi.org/10.1039/C5RA17692A

    Article  Google Scholar 

  21. Zhang H, Yu C, Li X, Wang L, Huang J, Tong J, Lin Y, Min Y, Liang Y (2022) Recent developments of nanocellulose and its applications in polymeric composites. ES Food Agrofor 9:1–14. https://doi.org/10.30919/esfaf768

  22. Reshef O, De Leon I, Alam MZ, Boyd RW (2019) Nonlinear optical effects in epsilon-near-zero media. Nat Rev Mater 4:535–551. https://doi.org/10.1038/s41578-019-0120-5

    Article  Google Scholar 

  23. Wang B, Lin F, Li X, Zhang Z, Xue X, Liu S, Ji X, Yu Q, Yuan Z, Chen X, Luo J (2018) Isothermal crystallization and rheology properties of isotactic polypropylene/bacterial cellulose composite. Polymers 10:1284. https://doi.org/10.3390/polym10111284

    Article  Google Scholar 

  24. Zhi L, Shi X, Zhang E, Gao C, Gai H, Wang H, Liu Z, Zhang T (2022) Synthesis and performance of double-chain quaternary ammonium salt glucosamide surfactants. Molecules 27:2149. https://doi.org/10.3390/molecules27072149

    Article  Google Scholar 

  25. Guo P, Schaller RD, Ketterson JB, Chang RP (2016) Ultrafast switching of tunable infrared plasmons in indium tin oxide nanorod arrays with large absolute amplitude. Nat Photon 10:267–273. https://doi.org/10.1038/nphoton.2016.14

    Article  Google Scholar 

  26. Guo P, Schaller RD, Ocola LE, Diroll BT, Ketterson JB, Chang RP (2016) Large optical nonlinearity of ITO nanorods for sub-picosecond all-optical modulation of the full-visible spectrum. Nat Commun 7:12892. https://doi.org/10.1038/ncomms12892

    Article  Google Scholar 

  27. Naik GV, Shalaev VM, Boltasseva A (2013) Alternative plasmonic materials: beyond gold and silver. Adv Mater 25:3264–3294. https://doi.org/10.1002/adma.201205076

    Article  Google Scholar 

  28. Wang Z, Sun K, Wu H, Qu Y, Tian J, Ju L, Fan R (2022) Epsilon-near-zero response derived from collective oscillation in the metacomposites with ultralow plasma frequency. Compos Sci Technol 227:109600. https://doi.org/10.1016/j.compscitech.2022.109600

    Article  Google Scholar 

  29. Li J, Liu CY, **e Z (2011) Synthesis and surface plasmon resonance properties of carbon-coated Cu and Co nanoparticles. Mater Res Bull 46:743–747. https://doi.org/10.1016/j.materresbull.2011.01.014

    Article  Google Scholar 

  30. Yuan G, Wan T, BaQais A, Mu Y, Cui D, Amin MA, Li X, Xu BB, Zhu X, Algadi H, Li H, Wasnik P, Lu N, Guo Z, Wei H, Cheng B (2023) Boron and fluorine Co-doped laser-induced graphene towards high-performance micro-supercapacitors. Carbon 212:118101. https://doi.org/10.1016/j.carbon.2023.118101

    Article  Google Scholar 

  31. Zhi C, Yang W (2021) Improvement of Mo-do** on sulfur-poisoning of Ni catalyst: activity and selectivity to CO methanation. Comput Theor Chem 1197:113140. https://doi.org/10.1016/j.comptc.2020.113140

    Article  Google Scholar 

  32. Zhao X, Pei L, Fan H, Zhang Y, Liu B, Gao X, Wei Y (2021) Synergic coordination and precipitation effects induced by free carboxyl for separation of iron(III) and nickel(II) in zirconium-metal-organic framework. J Solid State Chem 302:122460. https://doi.org/10.1016/j.jssc.2021.122460

    Article  Google Scholar 

  33. Mao SD, Lin F, Zhao Y, Li X, Zhang Y, Dong Y, Zhao J, Zhang H, Wang B (2022) Preparation of the polyvinyl alcohol thermal energy storage film containing the waste fly ash based on the phase change material. Polym Eng Sci 62:3433–3440. https://doi.org/10.1002/pen.26115

    Article  Google Scholar 

  34. He N, Liu M, Qi J, Tong J, Sao W, Yang X, Shi L, Tong G (2019) Plasmon resonance strategy to enhance permittivity and microwave absorbing performance of Cu/C core-shell nanowires. Chem Eng J 378:122160. https://doi.org/10.1016/j.cej.2019.122160

    Article  Google Scholar 

  35. Shin B, Mondal S, Lee M, Kim S, Huh Y-I, Nah C (2021) Flexible thermoplastic polyurethane-carbon nanotube composites for electromagnetic interference shielding and thermal management. Chem Eng J 418:129282. https://doi.org/10.1016/j.cej.2021.129282

    Article  Google Scholar 

  36. Zou L, Hou CC, Wang Q, Wei YS, Liu Z, Qin JS, Pang H, Xu Q (2020) A honeycomb-like bulk superstructure of carbon nanosheets for electrocatalysis and energy storage. Angew Chem Int Ed 59:19627–19632. https://doi.org/10.1002/anie.202004737

    Article  Google Scholar 

  37. Sun K, Fan R, Yin Y, Guo J, Li X, Lei Y, An L, Cheng C, Guo Z (2017) Tunable negative permittivity with fano-like resonance and magnetic property in percolative silver/yittrium iron garnet nanocomposites. J Phys Chem C 121:7564–7571. https://doi.org/10.1021/acs.jpcc.7b02036

    Article  Google Scholar 

  38. Wang Z, Sun K, **e P, Liu Y, Gu Q, Fan R, Wang J (2020) Epsilon-negative BaTiO3/Cu composites with high thermal conductivity and yet low electrical conductivity. J Materiomics 6:145–151. https://doi.org/10.1016/j.jmat.2020.01.007

    Article  Google Scholar 

  39. Wang Z, Sun K, **e P, Hou Q, Liu Y, Gu Q, Fan R (2020) Design and analysis of negative permittivity behaviors in barium titanate/nickel metacomposites. Acta Mater 185:412–419. https://doi.org/10.1016/j.actamat.2019.12.034

    Article  Google Scholar 

  40. Qu Y, Wu Y, Wu J, Sun K, Fan R (2020) Simultaneous epsilon-negative and mu-negative property of Ni/CaCu3Ti4O12 metacomposites at radio-frequency region. J Alloys Compd 847:156526. https://doi.org/10.1016/j.jallcom.2020.156526

    Article  Google Scholar 

  41. Qu Y, Fan G, Liu D, Gao Y, Xu C, Zhong J, **e P, Liu Y, Wu Y, Fan R (2018) Functional nano-units prepared by electrostatic self-assembly for three-dimension carbon networks hosted in CaCu3Ti4O12 ceramics towards radio-frequency negative permittivity. J Alloys Compd 743:618–625. https://doi.org/10.1016/j.jallcom.2018.02.024

    Article  Google Scholar 

  42. Cheng C, Fan R, Wang Z, Shao Q, Guo X, **e P, Yin Y, Zhang Y, An L, Lei Y (2017) Tunable and weakly negative permittivity in carbon/silicon nitride composites with different carbonizing temperatures. Carbon 125:103–112. https://doi.org/10.1016/j.carbon.2017.09.037

    Article  Google Scholar 

  43. **e P, Sun W, Liu Y, Du A, Zhang Z, Wu G, Fan R (2018) Carbon aerogels towards new candidates for double negative metamaterials of low density. Carbon 129:598–606. https://doi.org/10.1016/j.carbon.2017.12.009

    Article  Google Scholar 

  44. Sun K, Duan W, Lei Y, Wang Z, Tian J, Yang P, He Q, Chen M, Wu H, Zhang Z (2022) Flexible multi-walled carbon nanotubes/polyvinylidene fluoride membranous composites with weakly negative permittivity and low frequency dispersion. Compos Part A Appl Sci Manuf 156:106854. https://doi.org/10.1016/j.compositesa.2022.106854

    Article  Google Scholar 

  45. Liu M, Wu H, Wu Y, **e P, Pashameah RA, Abo-Dief HM, El-Bahy SM, Wei Y, Li G, Li W (2022) The weakly negative permittivity with low-frequency-dispersion behavior in percolative carbon nanotubes/epoxy nanocomposites at radio-frequency range. Adv Compos Mater 5:2021–2030. https://doi.org/10.1007/s42114-022-00541-z

    Article  Google Scholar 

  46. Wang Z, Yin K, Zhang Y, Sun K, **e L, Cong M, Cao S, Lei Y, Li X, Fan R (2022) Two-dimensional Ti3C2Tx/carbonized wood metacomposites with weakly negative permittivity. Adv Compos Mater 5:2369–2377. https://doi.org/10.1007/s42114-022-00442-1

    Article  Google Scholar 

  47. **e P, Wang Z, Sun K, Cheng C, Liu Y, Fan R (2017) Regulation mechanism of negative permittivity in percolating composites via building blocks. Appl Phys Lett 111:112903. https://doi.org/10.1063/1.4994234

    Article  Google Scholar 

  48. Wang Z, Sun K, **e P, Liu Y, Gu Q, Fan R (2020) Permittivity transition from positive to negative in acrylic polyurethane-aluminum composites. Compos Sci Technol 188:107969. https://doi.org/10.1016/j.compscitech.2019.107969

    Article  Google Scholar 

  49. **e P, Wang Z, Zhang Z, Fan R, Cheng C, Liu H, Liu Y, Li T, Yan C, Wang N (2018) Silica microsphere templated self-assembly of a three-dimensional carbon network with stable radio-frequency negative permittivity and low dielectric loss. J Mater Chem C 6:5239–5249. https://doi.org/10.1039/C7TC05911F

    Article  Google Scholar 

  50. Lv H, Guo Y, Wu G, Ji G, Zhao Y, Xu ZJ (2017) Interface polarization strategy to solve electromagnetic wave interference issue. ACS Appl Mater Interfaces 9:5660–5668. https://doi.org/10.1021/acsami.6b16223

    Article  Google Scholar 

  51. Zhi L, Li X, Wang H, Xue Y, Zhang Q, Wang X (2019) Dynamic surface properties of eco-friendly cationic saccharide surfactants at the water/air interface. Tenside Surfactants Deterg 56:473–483. https://doi.org/10.3139/113.110650

    Article  Google Scholar 

  52. Sun H, Wang X, Li H, Bi J, Yu J, Liu X, Zhou H, Rong Z (2020) Selenium modulates cadmium-induced ultrastructural and metabolic changes in cucumber seedlings. RSC Adv 10:17892–17905. https://doi.org/10.1039/D0RA02866E

    Article  Google Scholar 

  53. Li X, He J, Liu M, Bai J, Bai Z, Li W (2022) Interaction between coal and biomass during co-gasification: a perspective based on the separation of blended char. Processes 10:286. https://doi.org/10.3390/pr10020286

    Article  Google Scholar 

  54. Mao S, Zhang M, Lin F, Li X, Zhao Y, Zhang Y, Gao Y, Luo J, Chen X, Wang B (2022) Attapulgite structure reset to accelerate the crystal transformation of isotactic polybutene. Polymers 14:3820. https://doi.org/10.3390/polym14183820

  55. Ding SY, Yi J, Li JF, Ren B, Wu DY, Panneerselvam R, Tian ZQ (2016) Nanostructure-based plasmon-enhanced Raman spectroscopy for surface analysis of materials. Nat Rev Mater 1:1–16. https://doi.org/10.1038/natrevmats.2016.21

    Article  Google Scholar 

  56. Sayed M, Yu J, Liu G, Jaroniec M (2022) Non-noble plasmonic metal-based photocatalysts. Chem Rev 122:10484–10537. https://doi.org/10.1021/acs.chemrev.1c00473

    Article  Google Scholar 

  57. Zhang D, Peng L, Shang X, Zheng W, You H, Xu T, Ma B, Ren B, Fang J (2020) Buoyant particulate strategy for few-to-single particle-based plasmonic enhanced nanosensors. Nat Commun 11:2603. https://doi.org/10.1038/s41467-020-16329-y

    Article  Google Scholar 

  58. Kang ES, Kk S, Jeon I, Kim J, Chen S, Kim KH, Kim KH, Lee HS, Westerlund F, Jonsson MP (2022) Organic anisotropic excitonic optical nanoantennas. Adv Sci 9:2201907. https://doi.org/10.1002/advs.202201907

    Article  Google Scholar 

  59. Lu H, Zhao B, Zhang D, Lv Y, Shi B, Shi X, Wen J, Yao J, Zhu Z (2013) Room temperature aqueous solution synthesis of pinacol (C6) by photocatalytic Csingle bondC coupling of isopropanol. J Photoch Photobio A 272:1–5. https://doi.org/10.1016/j.jphotochem.2013.08.021

    Article  Google Scholar 

  60. Lu H, Yao J (2014) Recent advances in liquid-phase heterogeneous photocatalysis for organic synthesis by selective oxidation. Curr Org Chem 18:1365–1372. https://doi.org/10.2174/1385272819666140424214347

    Article  Google Scholar 

  61. Ma Y, Tan H, Wang Y, Hao X, Feng X, Zang H, Li Y (2015) Polyoxometalate-based metal–organic coordination networks for heterogeneous catalytic desulfurization. CrystEngComm 17:7938. https://doi.org/10.1039/C5CE01533B

    Article  Google Scholar 

  62. Pan R, Jia M, Li Y, Li X, Dou T (2014) In situ delamination of ferrierite zeolite and its performance in the catalytic cracking of C4 hydrocarbons. Chinese J Chem Eng 22:1237–1242. https://doi.org/10.1016/j.cjche.2014.09.006

    Article  Google Scholar 

  63. Lu H, Zhao B, Pan R, Yao J, Qiu J, Luo L, Liu Y (2014) Safe and facile hydrogenation of commercial Degussa P25 at room temperature with enhanced photocatalytic activity. RSC Adv 4:1128. https://doi.org/10.1039/C3RA44493G

    Article  Google Scholar 

Download references

Acknowledgements

The researchers would like to acknowledge Deanship of Scientific Research, Taif University for funding this work.

Funding

This research study was supported by the National Natural Science Foundation of China (52101176), Natural Science Foundation of Shandong Province (ZR2020QE006).

Author information

Authors and Affiliations

Authors

Contributions

All authors have made contributions to this study work. Haikun Wu, Chong Wang, **aodong Liu, Peitao **e, and Yao Liu wrote the manuscript. Haikun Wu, Zheng Zhang, Chong Wang, Qing Hou, Rui Yin, Khamael M. Abualnaja, Hala M. Abo-Dief, and Hassan Algadi all made contributions to experiment, data collection, and data analysis. Peitao **e and Yao Liu gave financial support for this work. All authors read and approved the final manuscript.

Corresponding authors

Correspondence to Chong Wang, **aodong Liu, Peitao **e or Yao Liu.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 808 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wu, H., Zhang, Z., Wang, C. et al. Radio-frequency broadband epsilon-near-zero response in biocompatible silver nanoparticles/polystyrene films with three-dimensional honeycomb-like superstructures. Adv Compos Hybrid Mater 6, 206 (2023). https://doi.org/10.1007/s42114-023-00787-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s42114-023-00787-1

Keywords

Navigation