Log in

Negative permittivity behavior in silver nanowire-assisted polyaniline metacomposites induced by the low-frequency plasmonic oscillation

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

In this paper, silver nanowires/polyaniline (Ag/PANI) composites were prepared by an in situ synthesis method. Interestingly, the permittivity changed from positive to negative along with the formation of percolation network. The plasma oscillations of free electrons from the network made a dominant effect on the negative permittivity behavior. Further investigation revealed that the composites with negative permittivity presented inductive character. The polymer-based epsilon-negative composites can be applied to electromagnetic shielding, flexible electronic devices, and stretchable sensors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. D.R. Smith, W.J. Padilla, D.C. Vier, S.C. Nemat-Nasser, S. Schultz, Phys. Rev. Lett. 84, 4184–4187 (2000)

    Article  CAS  Google Scholar 

  2. G. Fan, Z. Wang, Z. Wei, Y. Liu, R. Fan, Compos. A-Appl. Sci. Manuf. 139, 106132 (2020)

    Article  CAS  Google Scholar 

  3. G. Chen, L. Zhang, X. Fan, H. Wu, J. Colloid Interface Sci. 588, 813–825 (2021)

    Article  CAS  Google Scholar 

  4. J. Liu, L. Zhang, H. Wu, J. Phys. D. Appl. Phys. 54, 203001 (2021)

    Article  Google Scholar 

  5. J.B. Pendry, A.J. Holden, W.J. Stewart, I.I. Youngs, Phys. Rev. Lett. 76, 4773–4776 (1996)

    Article  CAS  Google Scholar 

  6. W.J. Padilla, D.N. Basov, D.R. Smith, Mater. Today 9, 28–35 (2006)

    Article  CAS  Google Scholar 

  7. D. Estevez, F. Qin, Y. Luo, L. Quan, Y. Mai, L. Panina, H. Peng, Compos. Sci. Technol. 171, 206–217 (2019)

    Article  CAS  Google Scholar 

  8. Y. Luo, D. Estevez, F. Scarpa, L. Panina, H. Peng, Research 2019, 3239879 (2019)

    Article  CAS  Google Scholar 

  9. Z. Shi, R. Fan, Z. Zhang, L. Qian, M. Gao, M. Zhang, L. Zheng, X. Zhang, L. Yin, Adv. Mater. 24, 2349–2352 (2012)

    Article  CAS  Google Scholar 

  10. T. Tsutaoka, T. Kasagi, S. Yamamoto, H. Kenichi, Appl. Phys. Lett. 102, 181904 (2013)

    Article  Google Scholar 

  11. G. Fan, Z. Wang, H. Ren, Y. Liu, R. Fan, Scr. Mater. 190, 1–6 (2021)

    Article  CAS  Google Scholar 

  12. Z. Wang, K. Sun, P. **e, Q. Hou, Y. Liu, Q. Gu, R. Fan, Acta Mater. 185, 412–419 (2020)

    Article  CAS  Google Scholar 

  13. K. Sun, J. Qin, Z. Wang, Y. An, X. Li, B. Dong, X. Wu, Z. Guo, R. Fan, Surf. Interfaces 21, 100735 (2020)

    Article  CAS  Google Scholar 

  14. Z. Wang, K. Sun, P. **e, Y. Liu, Q. Gu, R. Fan, Compos. Sci. Technol. 188, 107969 (2020)

    Article  CAS  Google Scholar 

  15. C. Nan, Y. Shen, J. Ma, Annu. Rev. Mater. Res. 40, 131–151 (2010)

    Article  CAS  Google Scholar 

  16. K. Sun, J. Dong, Z. Wang, G. Fan, Q. Hou, L. An, M. Dong, R. Fan, Z. Guo, J. Phys. Chem. C 123, 23635–23642 (2019)

    Article  CAS  Google Scholar 

  17. K. Sun, L. Wang, Z. Wang, X. Wu, G. Fan, Z. Wang, C. Cheng, R. Fan, M. Dong, Z. Guo, Phys. Chem. Chem. Phys. 22, 5114–5122 (2020)

    Article  CAS  Google Scholar 

  18. X. Yao, X. Kou, J. Qiu, M. Moloney, J. Phys. Chem. C 120, 4937–4944 (2016)

    Article  CAS  Google Scholar 

  19. K. Pan, Y. Shi, J. Qiu, Compos. Commun. 27, 100820 (2021)

    Article  Google Scholar 

  20. J. Dai, H. Luo, M. Moloney, J. Qiu, A.C.S. Appl, Mater. Interfaces 12(2020), 22019–22022 (2028)

    Google Scholar 

  21. J. Ni, R. Zhan, J. Qiu, J. Fan, B. Dong, Z. Guo, J. Mater. Chem. C 8, 11748–11759 (2020)

    Article  CAS  Google Scholar 

  22. M. Chen, Y. Wang, L. Geng, K. Sun, ECS J. Solid State Sci. Technol. 10, 083001 (2021)

    Article  CAS  Google Scholar 

  23. H. Luo, Y. Lu, J. Qiu, Carbon 183, 34–44 (2021)

    Article  CAS  Google Scholar 

  24. R. Yin, W. Zhao, L. Qian, Compos. Commun. 19, 16–19 (2020)

    Article  Google Scholar 

  25. X. Xu, Q. Fu, H. Gu, Y. Guo, H. Zhou, J. Zhang, D. Pan, S. Wu, M. Dong, Z. Guo, Polymer 188, 122129 (2020)

    Article  CAS  Google Scholar 

  26. G. Fan, Z. Wang, K. Sun, Y. Liu, R. Fan, J. Mater. Chem. C 8, 11610–11617 (2020)

    Article  CAS  Google Scholar 

  27. K. Sun, J. **n, Y. Li, Z. Wang, Q. Hou, X. Li, X. Wu, R. Fan, K.L. Choy, J. Mater. Sci. Technol. 35, 2463–2469 (2019)

    Article  Google Scholar 

  28. Y. Qing, Q. Wen, F. Luo, W. Zhou, J. Mater. Chem. C 4, 4853–4862 (2016)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors sincerely thank the Innovation Program of Shanghai Municipal Education Commission (2019-01-07-00-10-E00053) and Shanghai Engineering Technology Research Centre of Deep Offshore Material (19DZ2253100) for their financial supports.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Kai Sun or Zhongyang Wang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tian, J., Sun, K., Fan, R. et al. Negative permittivity behavior in silver nanowire-assisted polyaniline metacomposites induced by the low-frequency plasmonic oscillation. J Mater Sci: Mater Electron 32, 26851–26856 (2021). https://doi.org/10.1007/s10854-021-07061-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-021-07061-4

Navigation