Log in

Generalized Mori-Tanaka Approach in Peridynamic Micromechanics of Multilayered Composites of Random Structure

  • Research
  • Published:
Journal of Peridynamics and Nonlocal Modeling Aims and scope Submit manuscript

Abstract

The basic feature of the peridynamics (PD) is a continuum description of material behavior as the integrated nonlocal force interactions between material points. Besides the conventional local theory, the PD equation of motion introduced by Silling (J Mech Phys Solids 48: 175-209, 2000) has no spatial derivatives of displacement. A linearized bond-based PD model is used for the analysis of random structure CMs subjected to the remote volumetric homogeneous boundary conditions. Effective properties are expressed through the local stress polarization tensor averaged over the external interaction interface of inclusions rather than in an entire space. Any spatial derivatives of displacement fields are not required. Inclusions are considered as identical aligned layers with a statistically homogeneous distribution in the space. For one infinite layer in the infinite homogeneous matrix, 3D PD equilibrium equation is reduced to the 1D integral equation with 1D micromodulus obtained by integrations of the original 3D micromodulus over the cross-sections (parallel to layers) of a horizon region. One estimates the average strain and stress fields in the extended layer by the use of averaging displacement and traction over the external interaction interface. Effective moduli for PD multilayered CM are estimated in the matrix form representations usually used in locally elastic multilayered CM and based on the consideration of the normal and tangential parts of the effective moduli matrix.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Availability of Data and Materials

No any datasets used.

References

  1. Silling S (2000) Reformulation of elasticity theory for discontinuities and long-range forces. J Mech Phys Solids 48:175–209

    Article  ADS  MathSciNet  Google Scholar 

  2. Bobaru F, Foster J, Geubelle P, Silling S (eds) (2016) Handbook of Peridynamic Modeling. CRC Press, Boca Raton, FL

    Google Scholar 

  3. Javili A, Morasata R, Oterkus E (2019) Peridynamics review. Math Mech Solids 24:3714–3739

    Article  MathSciNet  Google Scholar 

  4. Madenci E, Oterkus E (2014) Peridynamic Theory and Its Applications. Springer, NY

    Book  Google Scholar 

  5. Silling SA, Lehoucq RB (2008) Convergence of peridynamics to classical elasticity theory. J Elasticity 93:13–37

    Article  MathSciNet  Google Scholar 

  6. Silling S (2010) Linearized theory of peridynamic states. J Elast 99:85–111

    Article  MathSciNet  Google Scholar 

  7. Silling SA, Lehoucq RB (2010) Peridynamic theory of solid mechanics. Adv Appl Mech 44:73–168

    Article  Google Scholar 

  8. Silling SA, Epton M, Weckner O, Xu J, Askari E (2007) Peridynamic states and constitutive modeling. J Elasticity 88:151–184

  9. Aguiar AR, Fosdick R (2014) A constitutive model for a linearly elastic peridynamic body. Math Mech Solids 19:502–523

    Article  MathSciNet  Google Scholar 

  10. Buryachenko VA (2014) Some general representations in thermoperidynamics of random structure composites. Int J Multiscale Comput Eng 12:331–350

    Article  Google Scholar 

  11. Buryachenko VA (2017) Effective properties of thermoperidynamic random structure composites: some background principles. Math Mech Solids 22:366–1386

    Article  Google Scholar 

  12. Buryachenko VA (2022) Local and Nonlocal Micromechanics of Heterogeneous Materials. Springer, NY

    Book  Google Scholar 

  13. Buryachenko VA (2007) Micromechanics of Heterogeneous Materials. Springer, NY

    Book  Google Scholar 

  14. Buryachenko V (2015) General integral equations of micromechanics of heterogeneous materials. J Multiscale Comput Eng 13:11–53

  15. Buryachenko VA (2023) Linearized ordinary state-based peridynamic micromechanics of composites. J Mater Struct 18:445–477

  16. Buryachenko VA (2023) Second moment of displacement state in peridynamic micromechanics of random structure composites. J Peridyn Nonlocal Model 5. https://doi.org/10.1007/s42102-023-00107-7

  17. Bakhvalov NS, Panasenko GP (1984) Homogenisation: Averaging Processes in Periodic Media. Nauka, Moscow (in Russian; English translation: Kluwer, 1989)

  18. Fish J (2014) Practical Multiscaling. John Wiley & Sons, Chichester

    Google Scholar 

  19. Kalamkarov AL, Kolpakov AG (1997) Analysis, design and optimization of composite structures. John Wiley & Sons, Chichester

    Google Scholar 

  20. Suquet P-M (1985) Local and global aspects in the mathematical theory of plasticity. In: Sawczuk A et al (eds) Plasticity Today. Elsevier, London, New York, pp 279–309

    Google Scholar 

  21. Kouznetsova VG, Brekelmans WAM, Baaijens FPT (2001) An approach to micro-macro modeling of heterogeneous materials. Comput Mech 27:37–48

    Article  Google Scholar 

  22. Miehe C, Koch A (2002) Computational micro-to-macro transition of discretized microstructures undergoing small strain. Arch Appl Mech 72:300–317

    Article  Google Scholar 

  23. Matouš K, Geers MGD, Kouznetsova VG, Gillman A (2017) A review of predictive nonlinear theories for multiscale modeling of heterogeneous materials. J Comput Physi 330:192–220

    Article  ADS  MathSciNet  Google Scholar 

  24. Terada K, Kikuchi N (2001) A class of general algorithms for multi-scale analyses of heterogeneous media. Comput Methods Appl Mech Eng 190:5247–5464

    Article  MathSciNet  Google Scholar 

  25. Chatzigeorgiou G (2022) Study of multilayered composites through periodic homogenization and Mori-Tanaka methods. Mech Mater 164:10411

    Article  Google Scholar 

  26. Dvorak GJ (2013) Micromechanics of Composite Materials. Springer, Dordrecht

    Book  Google Scholar 

  27. Fish J, Chen W (2001) Higher-order homogenization of initial/boundary-value problem. J Eng Mech 127:1223–1230

    Article  Google Scholar 

  28. Qu J, Cherkaoui M (2006) Fundamentals of Micromechanics of Solids. Wiley, New Jersey

    Book  Google Scholar 

  29. Öchsner (2021) Foundations of Classical Laminate Theory. Springer, NY

  30. Otero JA, Rodríguez-Ramos R, Monsivais G, Pérez-Alvarez R (2005) Dynamical behavior of a layered piezocomposite using the asymptotic homogenization method. Mech Mater 37:33–44

    Article  Google Scholar 

  31. Reddy JN (2003) Mechanics of Laminated Composite Plates and Shells: Theory and Analysis. CRC Press

  32. Yu Q, Fish J (2002) Multiscale asymptotic homogenization for multiphysics problems with multiple spatial and temporal scales: a coupled thermo-viscoelastic example problem. Int J Solids Struct 39:6429–6452

    Article  MathSciNet  Google Scholar 

  33. Buryachenko VA (2018) Computational homogenization in linear elasticity of peridynamic periodic structure composites. Math Mech Solids 23:2497–2525

    Google Scholar 

  34. Galadima YK, **a W, Oterkus E, Oterkus S (2022) A computational homogenization framework for non-ordinary state-based peridynamics. Eng Comput

  35. Du Q, Gunzburger M, Lehoucq RB, Zhou K (2013) Analysis of the volume-constrained peridynamic Navier equation of linear elasticity. J Elast 113:193–217

    Article  MathSciNet  Google Scholar 

  36. Ahmadia M, Hosseini-Toudeshky H, Sadighia M (2020) Peridynamic micromechanical modeling of plastic deformation and progressive damage prediction in dual-phase materials. Eng Fract Mech 235:107179

    Article  Google Scholar 

  37. Ahmadia M, Sadighia M, Hosseini-Toudeshky H (2021) Computational microstructural model of ordinary state-based Peridynamic theory for damage mechanisms, void nucleation, and propagation in DP600 steel. Eng Fract Mech 247:107660

    Article  Google Scholar 

  38. Askari E, Xu J, Silling SA (2006) Peridynamic analysis of damage and failure in composites. 44th AIAA Aerospace Sciences Meeting and Exhibition, AIAA 2006–88, Reno, NV, pp 1–12

  39. Askari A, Azdoud Y, Han F, Lubineau G, Silling S (2015) Peridynamics for analysis of failure in advanced composite materials. Numerical Modeling of Failure in Advanced Composite Materials, Woodhead Publishing Series in Composites Science and Engineering, pp 331-350

  40. Hu W, Ha YD, Bobaru F (2012) Peridynamic model for dynamic fracture in unidirectional fiber-reinforced composites. Comput Methods Appl Mech Eng 217–220:247–261

    Article  ADS  MathSciNet  Google Scholar 

  41. Ghajari M, Iannucci L, Curtis P (2014) A peridynamic material model for the analysis of dynamic crack propagation in orthotropic media. Comput Meth Appl Mech Eng 276:431–452

    Article  MathSciNet  Google Scholar 

  42. Diyaroglu C, Oterkus E, Madenci E, Rabczuk T, Siddiq A (2016) Peridynamic modeling of composite laminates under explosive loading. Compos Struct 144:14–23

    Article  Google Scholar 

  43. Madenci E, Yaghoobi A, Barut A, Phan N (2021) Peridynamic modeling of compression after impact damage. J Peridyn Nonlocal Model 3:327–347

    Article  MathSciNet  Google Scholar 

  44. Ren B, Wu CT, Seleson S, Zeng D, Nishi M, Pasetto M (2022) An FEM-Based Peridynamic Model for Failure Analysis of Unidirectional Fiber-Reinforced Laminates. J Peridyn Nonlocal Model 4:139–158

    Article  MathSciNet  Google Scholar 

  45. Xu J, Askari A, Weckner O, Silling SA (2008) Peridynamic analysis of impact damage in composite laminates. J Aerosp Eng 21:187–194

    Article  Google Scholar 

  46. Hu W, Ha YD, Bobaru F (2011) Modeling dynamic fracture and damage in a fiber- reinforced composite lamina with peridynamics. Int J Multiscale Comput Eng 9:707–726

    Article  Google Scholar 

  47. Buryachenko V (2020) Generalized effective field method in peridynamic micromechanics of random structure composites. Int J Solid Struct 202:765–786

    Article  Google Scholar 

  48. Bobaru F, Ha YD (2011) Adaptive refinement and multiscale modeling in 2D PD. Int J Multiscale Comput Eng 9:635–659

    Article  Google Scholar 

  49. Lehoucq RB, Silling SA (2008) Force flux and the peridynamic stress tensor. J Mech Phys Solids 56:1566–1577

  50. Silling SA, Askari E (2005) A meshfree method based on the peridynamic model of solid mechanics. Comput Struct 83:1526–1535

    Article  Google Scholar 

  51. Bobaru F, Yang M, Alves LF, Silling SA, Askari A, Xu J (2009) Convergence, adaptive refinement, and scaling in 1d peridynamics. Int J Numer Methods Eng 77:852–877

    Article  Google Scholar 

  52. Silling SA, Zimmermann M, Abeyaratne R (2003) Deformation of a peridynamic bar. J Elasticity 73:173–190

  53. Weckner O, Abeyaratne R (2005) The effect of long-range forces on the dynamics of a bar. J Mech Phys Solids 53:705–728

    Article  ADS  MathSciNet  Google Scholar 

  54. Le QV, Chan WK, Schwartz J (2014) A two-dimensional ordinary, state-based peridynamic model for linearly elastic solids. Int J Numer Methods Eng 98:547–561

    Article  MathSciNet  Google Scholar 

  55. Sarego G, Le QV, Bobaru F, Zaccariotto M, Galvanetto U (2016) Linearized state-based peridynamics for 2-D problems. Int J Numer Methods Eng 108:1174–1197

    Article  MathSciNet  Google Scholar 

  56. Emmrich E, Weckner O (2007) Analysis and numerical approximation of an integro-differential equation modeling non-local effects in linear elasticity. Math Mech Solids 12:363–384

    Article  MathSciNet  Google Scholar 

  57. Emmrich E, Weckner O (2007) On the well-posedness of the linear peridynamic model and its convergence towards the Navier equation of linear elasticity. Commun Math Sci 5:851–864

    Article  MathSciNet  Google Scholar 

  58. Kilic B (2008) Peridynamic theory for progressive failure prediction in homogeneous and heterogeneous materials. Ph.D. Thesis, Dep Mech Eng, The University of Arizona, pp 1–262

  59. Macek RW, Silling SA (2007) Peridynamics via finite element analysis. Finite Elem Anal Des 43:1169–1178

  60. Alali B, Gunzburger M (2015) Peridynamics and material interfaces. J Elast 120:225–248

    Article  MathSciNet  Google Scholar 

  61. Seleson P, Gunzburger M, Parks ML (2013) Interface problems in nonlocal diffusion and sharp transitions between local and nonlocal domains. Comput Methods Appl Mech Eng 266:185–204

    Article  ADS  MathSciNet  Google Scholar 

  62. Babuska I (1976) Homogenization and its application. Mathematical and computational problems. In: Lions, J.-L., Glowinski, R. (Eds.) Numerical Solution of Partial Differential Equations. III. Academic Press, New York, pp 89-116

  63. Buryachenko VA (2019) Interface integral technique for the thermoelasticity of random structure matrix composites. Math Mech Solids 24:2785–2813

    Article  MathSciNet  Google Scholar 

  64. Buryachenko VA (2019) Modeling of one inclusion in the infinite peridynamic matrix subjected to homogeneous remote loading. J Peridyn Nonlocal Model 1:75–87

    Article  MathSciNet  Google Scholar 

  65. Weckner O, Emmrich E (2005) Numerical simulation of the dynamics of a nonlocal, inhomogeneous, infinite bar. J Comp Appl Mech 6:311–319

    MathSciNet  Google Scholar 

  66. Mori T, Tanaka K (1973) Average stress in matrix and average elastic energy of materials with misfitting inclusions. Acta Metall 21:571–574

    Article  Google Scholar 

  67. Buryachenko V (2020) Generalized Mori-Tanaka approach in micromechanics of peristatic random structure composites. J Peridyn Nonlocal Model 2:26–49

    Article  MathSciNet  Google Scholar 

  68. **a Z, Zhang Y, Ellyin F (2003) A unified periodical boundary conditions for representative volume elements of composites and applications. Int J Solids Struct 40:1907–1921

    Article  Google Scholar 

  69. Benveniste Y (1987) A new approach to application of Mori-Tanaka’s theory in composite materials. Mech Mater 6:147–157

    Article  Google Scholar 

  70. Buryachenko VA (2024) Transformation field analysis and clustering discretization method in pyridynamic micromechanics of composites. J Peridyn Nonlocal Model 6. https://doi.org/10.1007/s42102-023-00113-9

  71. Ponte Castaneda P, Suquet P (1998) Nonlinear composites. Adv Appl Mech 34:171–302

Download references

Acknowledgements

The author acknowledges Dr. Stewart A. Silling for the fruitful personal discussions, encouragements, helpful comments, and suggestions. The author also acknowledges the reviewers for the encouraging comments that initiated a significant correction of the manuscript.

Author information

Authors and Affiliations

Authors

Contributions

V.B. wrote the main manuscript text, V.B. prepared Figs. 1, 2, 3, and 4, and the author reviewed the manuscript.

Corresponding author

Correspondence to Valeriy A. Buryachenko.

Ethics declarations

Ethical Approval

Not applicable

Conflict of Interest

The author declares no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

We shortly reproduce (following Chatzigeorgiou [25]) several mathematical formulae used in locally elastic micromechanics of the multilayered CMs and based on the normal and tangential parts (with respect to the axis \(x^1\)) of the second-order tensors separately. For a strain tensor \(\varvec{\varepsilon }\), and a stress tensor \(\varvec{\sigma }\), written in slightly modified Voigt notation as

$$\begin{aligned} \varvec{\varepsilon }=\begin{bmatrix} \varepsilon _{11}\\ \varepsilon _{22}\\ \varepsilon _{33}\\ 2\varepsilon _{12}\\ 2\varepsilon _{13}\\ 2\varepsilon _{23} \end{bmatrix}, \ \ \ \varvec{\sigma }= \begin{bmatrix} \sigma _{11}\\ \sigma _{22}\\ \sigma _{33}\\ \sigma _{12}\\ \sigma _{13}\\ \sigma _{23} \end{bmatrix} \end{aligned}$$
(A.1)

these normal and tangential parts are expressed through the \(3\times 1\) vectors

$$\begin{aligned} \varvec{\varepsilon }^n=\begin{bmatrix} \varepsilon _{11}\\ 2\varepsilon _{12}\\ 2\varepsilon _{13}\\ \end{bmatrix}, \ \ \ \varvec{\varepsilon }^t=\begin{bmatrix} \varepsilon _{22}\\ 2\varepsilon _{33}\\ 2\varepsilon _{23}\\ \end{bmatrix}, \end{aligned}$$
(A.2)
$$\begin{aligned} \varvec{\sigma }^n= \begin{bmatrix} \sigma ^{11}\\ \sigma _{12}\\ \sigma _{13}\\ \end{bmatrix},\ \ \ \varvec{\sigma }^t= \begin{bmatrix} \sigma _{22}\\ \sigma _{33}\\ \sigma _{23} \end{bmatrix}, \end{aligned}$$
(A.3)

respectively. A fourth-order tensor \(\textbf{F}\) presenting minor symmetries (\(F_{ijkl} = F_{jikl} = F_{ijlk}\)) and written in the Voigt form

$$\begin{aligned} \ \ \ \textbf{F}= \begin{bmatrix} F_{11}&{}F_{12}&{}F_{13}&{}F_{14}&{}F_{15}&{}F_{16}\\ F_{21}&{}F_{22}&{}F_{23}&{}F_{24}&{}F_{25}&{}F_{26}\\ F_{31}&{}F_{32}&{}F_{33}&{}F_{34}&{}F_{35}&{}F_{36}\\ F_{41}&{}F_{42}&{}F_{43}&{}F_{44}&{}F_{45}&{}F_{46}\\ F_{51}&{}F_{52}&{}F_{53}&{}F_{54}&{}F_{55}&{}F_{56}\\ F_{61}&{}F_{62}&{}F_{63}&{}F_{64}&{}F_{65}&{}F_{66}\\ \end{bmatrix} \end{aligned}$$
(A.4)

can be represented by the \(3\times 3\) matrices

$$\begin{aligned} \ \ \ \textbf{F}^{nn}= \begin{bmatrix} F_{11}&{}F_{14}&{}F_{15}\\ F_{41}&{}F_{44}&{}F_{45}\\ F_{51}&{}F_{54}&{}F_{55}\\ \end{bmatrix},\ \ \ \textbf{F}^{nt}= \begin{bmatrix} F_{12}&{}F_{13}&{}F_{16}\\ F_{42}&{}F_{43}&{}F_{46}\\ F_{52}&{}F_{53}&{}F_{56}\\ \end{bmatrix} \end{aligned}$$
(A.5)
$$\begin{aligned} \textbf{F}^{tn}= \begin{bmatrix} F_{21}&{}F_{24}&{}F_{25}\\ F_{31}&{}F_{34}&{}F_{35}\\ F_{61}&{}F_{64}&{}F_{65}\\ \end{bmatrix}, \ \ \ \textbf{F}^{tt}= \begin{bmatrix} F_{22}&{}F_{23}&{}F_{26}\\ F_{32}&{}F_{33}&{}F_{36}\\ F_{62}&{}F_{63}&{}F_{66}\\ \end{bmatrix} \end{aligned}$$
(A.6)

and expressed through the matrix-type relations

$$\begin{aligned} \textbf{F}= \varvec{\mathcal {I}}_n\cdot \textbf{F}^{nn}\cdot \varvec{\mathcal {I}}^{\top }_n +\varvec{\mathcal {I}}_n\cdot \textbf{F}^{nt}\cdot \varvec{\mathcal {I}}^{\top }_t +\varvec{\mathcal {I}}_t\cdot \textbf{F}^{tn}\cdot \varvec{\mathcal {I}}^{\top }_n +\varvec{\mathcal {I}}_t\cdot \textbf{F}^{tt}\cdot \varvec{\mathcal {I}}^{\top }_t. \end{aligned}$$
(A.7)

Here, the \(6\times 3\) matrices

$$\begin{aligned} \varvec{\mathcal {I}}_n= \begin{bmatrix} 1 &{} 0 &{} 0\\ 0 &{} 0 &{} 0\\ 0 &{} 0 &{} 0\\ 0 &{} 1 &{} 0\\ 0 &{} 0 &{} 1\\ 0 &{} 0 &{} 0\\ \end{bmatrix},\ \ \ \varvec{\mathcal {I}}_t= \begin{bmatrix} 0 &{} 0 &{} 0\\ 1 &{} 0 &{} 0\\ 0 &{} 1 &{} 0\\ 0 &{} 0 &{} 0\\ 0 &{} 0 &{} 0\\ 0 &{} 0 &{} 1\\ \end{bmatrix} \end{aligned}$$
(A.8)

have the properties

$$\begin{aligned} \varvec{\mathcal {I}}_n^{\top }\cdot \varvec{\varepsilon }=\varvec{\varepsilon }^n, \ \ \ \varvec{\mathcal {I}}_t^{\top }\cdot \varvec{\varepsilon }=\varvec{\varepsilon }^t, \end{aligned}$$
(A.9)
$$\begin{aligned} \varvec{\mathcal {I}}_n^{\top }\cdot \varvec{\mathcal {I}}_t=\varvec{\mathcal {I}}_t^{\top }\cdot \textbf{I}_n=\textbf{0}, \ \ \varvec{\mathcal {I}}_n^{\top }\cdot \varvec{\mathcal {I}}_n\varvec{\mathcal {I}}_t^{\top }\cdot \textbf{I}_t={\textbf{I}}, \end{aligned}$$
(A.10)
$$\begin{aligned} \varvec{\mathcal {I}}_n\cdot \textbf{I}\cdot \varvec{\mathcal {I}}_n^{\top }+\varvec{\mathcal {I}}_t\cdot \textbf{I}\cdot \varvec{\mathcal {I}}_t^{\top }=\varvec{\mathcal {I}}, \end{aligned}$$
(A.11)

where

$$\begin{aligned} \varvec{\mathcal {I}}=\textrm{diag}(1,1,1,1,1,1),\ \ \ \textbf{I}^{33}=\textrm{diag}(1,1,1). \end{aligned}$$
(A.12)

Let us consider the tensor \(\textbf{F}\) connecting two symmetric second-order tensors \(\textbf{a}\) and \(\textbf{b}\) (e.g., strain or stress type). It can be presented in either the indicial (Einstein’s) or matrix notations

$$\begin{aligned} a_{ij}=F_{ijkl}b_{kl}, \end{aligned}$$
(A.13)
$$\begin{aligned} \textbf{a}^n=\textbf{F}^{nn}\cdot \textbf{b}^n+\textbf{F}^{nt}\cdot \textbf{b}^t, \ \ \textbf{a}^t=\textbf{F}^{tn}\cdot \textbf{b}^n+\textbf{F}^{tt}\cdot \textbf{b}^t, \end{aligned}$$
(A.14)

respectively. In particular, the linear stress–strain relations are expressed in either the indicial (Einstein’s) or matrix notations

$$\begin{aligned} \sigma _{ij}=L_{ijkl}\varepsilon _{kl}, \end{aligned}$$
(A.15)
$$\begin{aligned} \varvec{\sigma }^n=\textbf{L}^{nn}\cdot \varvec{\varepsilon }^n+\textbf{L}^{nt}\cdot \varvec{\varepsilon }^t, \ \ \varvec{\sigma }^t=\textbf{L}^{tn}\cdot \varvec{\varepsilon }^n+\textbf{L}^{tt}\cdot \varvec{\varepsilon }^t, \end{aligned}$$
(A.16)

respectively, where the stiffness matrix \(\textbf{L}\) posses major symmetries (\(L_{ijkl}=L_{klij}\)):

$$\begin{aligned} \textbf{L}^{nn}=(\textbf{L}^{nn})^{\top },\ \ \ \textbf{L}^{tn}=(\textbf{L}^{nt})^{\top }, \ \ \ \textbf{L}^{tt}=(\textbf{L}^{tt})^{\top }. \end{aligned}$$
(A.17)

Due to the form of the structure, all fields vary spatially only in the \(x^1\) direction, transforming the equilibrium Eq. (2) into a 1D problem. For simplicity, the elasticity tensor is decomposed with the help of representations (A.5) and (A.6). Since all fields depend only on \(x^1\), the equilibrium equation is reduced to

$$\begin{aligned} \frac{\textrm{d} }{\textrm{d}{x^1}}\Big ({\textbf{L}}^{nn}\cdot \frac{\textrm{d}{\textbf{u}} }{\textrm{d}{x^1}}\Big )=\textbf{0}, \end{aligned}$$
(A.18)

where

$$\begin{aligned} \textbf{u}= \begin{bmatrix} u_1\\ u_2\\ u_3 \end{bmatrix},\ \ \ \frac{\textrm{d}\textbf{u}}{\textrm{d}x^1}=\varvec{\varepsilon }^n, \end{aligned}$$
(A.19)
$$\begin{aligned} {\textbf{u}}=(u_1,u_2.u_3)^{\top }. \end{aligned}$$
(A.20)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Buryachenko, V.A. Generalized Mori-Tanaka Approach in Peridynamic Micromechanics of Multilayered Composites of Random Structure. J Peridyn Nonlocal Model (2024). https://doi.org/10.1007/s42102-023-00114-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s42102-023-00114-8

Keywords

Navigation