Log in

Recent Advances in Non-Precious Metal–Nitrogen–Carbon Single-Site Catalysts for CO2 Electroreduction Reaction to CO

  • Review article
  • Published:
Electrochemical Energy Reviews Aims and scope Submit manuscript

Abstract

The carbon dioxide electroreduction reaction (CO2RR) to fuels and/or chemicals is an efficient prospective strategy to realize global carbon management using intermittent electric energy harvested from renewable sources. Highly efficient inexpensive electrocatalysts are required to achieve high energy and Faradaic efficiencies as well as fast conversion. Metal–nitrogen–carbon (M–N–C) single-site catalysts (SSCs) are highly competitive over precious metal catalysts in the CO2RR to CO due to their high performance, easy regulation and low cost. In the past six years, intensive studies of M–N–C SSCs for CO2RR to CO have been performed, and great progress has been achieved. This review focuses on the important topic of CO2RR to CO with M–N–C SSCs. We first introduce the reaction mechanism of the CO2RR to CO and the regulation of the electronic structure from a theoretical viewpoint. Then, the construction of M–N–C SSCs and the regulation of the electronic structure are demonstrated experimentally. The up-to-date electrocatalytic performance of M–N–C SSCs with different metal centers (Ni, Fe, Co and others) is summarized and compared systematically to highlight structure–performance correlations that were considered from both theoretical and experimental perspectives. Finally, the opportunities, challenges and future outlooks are summarized to deepen and widen research and applications in this promising field.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Scheme 1
Fig. 1

Copyright 2018, American Chemical Society

Fig. 2

Reproduced from Ref. [79] with permission. Copyright 2019, Wiley–VCH. b The model of Fe–N4–C, Fe–N4–C coated on Fe2N (001), and corresponding free energy profiles for CO2RR. Reproduced from Ref. [80] with permission. Copyright 2018, American Chemical Society. c The M–N4–C10 and M–N2+2–C8 (M = Fe or Co) active sites and their *COOH dissociation free energy evolution. Reproduced from Ref. [102] with permission. Copyright 2018, American Chemical Society. d Co–N5 moiety and corresponding calculated free energy (uncountable) during the CO2RR. The short red line is the desorption free energy level of CO, and the red dashed line is the desorption free energy of CO. Reproduced from Ref. [105] with permission. Copyright 2018, American Chemical Society. e Ni–N–C and S-doped Ni–N–C on hierarchical carbon nanocages (i.e., Ni–N–hCNCs and Ni–SN–hCNCs, respectively) and corresponding free energy profiles for the CO2RR. Reproduced from Ref. [109] with permission. Copyright 2020, Springer

Fig. 3

Reproduced from Ref. [112] with permission. Copyright 2020, Elsevier. The assembly of NiPc–COF via the condensation reaction. Reproduced from Ref. [113] with permission. Copyright 2020, Wiley–VCH. b The assembly of NiPor–CTF via the ionothermal strategy. 1 M = 1 mol L−1, 1 Å = 1 × 10−10 m. Reproduced from Ref. [120] with permission. Copyright 2018, Wiley–VCH

Fig. 4

Reproduced from Ref. [125] with permission. Copyright 2020, Royal Society of Chemistry. b The coordination of metal cations with the 1D molecular chains of formamide for the production of M–N–C SSCs by pyrolysis. Reproduced from Ref. [130] with permission. Copyright 2019, Royal Society of Chemistry. c The synthetic route of the carbon nanosheets with Ni–Nx sites by pyrolyzing the mixture of citric acid, Ni(NO3)2 and melamine. Reproduced from Ref. [131] with permission. Copyright 2020, Elsevier. d Schematic of a MnOx-induced strategy to construct Fe–N–C SSCs with highly exposed active sites. Reproduced from Ref. [133] with permission. Copyright 2016, Royal Society of Chemistry

Fig. 5

Reproduced from Ref. [141] with permission. Copyright 2019, Wiley–VCH. b N-free MEGO as a support. Reproduced from Ref. [128] with permission. Copyright 2019, Elsevier. c Commercially available carbon black. Reproduced from Ref. [127] with permission. Copyright 2020, Royal Society of Chemistry

Fig. 6

Reproduced from Ref. [150] with permission. Copyright 2017, American Chemical Society. b A self-sacrifice ZnO template approach to produce Ni–N–C SSC in the form of porous nanotubes by the pyrolysis of ZnO@Ni–ZIF core–shell nanorods. Reproduced from Ref. [174] with permission. Copyright 2020, Elsevier

Fig. 7

Reproduced from Ref. [178] with permission. Copyright 2019, Springer. b The formation of the Ni–NC@Ni core–shell catalyst by the reaction of gaseous urea with NiO nanosheets. Reproduced from Ref. [180] with permission. Copyright 2020, Elsevier

Fig. 8

Reproduced from Ref. [50] with permission. Copyright 2018, Nature Publishing Group. The operando Raman spectra under atmosphere of e CO2 and f Ar. Reproduced from Ref. [107] with permission. Copyright 2020, Wiley–VCH

Fig. 9

Reproduced from Ref. [96] with permission. Copyright 2018, Royal Society of Chemistry. b Faradaic efficiency of CO and H2 for the Ni–N–C SSC from Ni–ZIF. The N–C catalyst is the control sample. Reproduced from Ref. [175] with permission. Copyright 2019, Royal Society of Chemistry. c FECO for the Ni–N–C SSC from Ni–CTF. The Co–CTF, Cu–CTF, and CTF catalysts are the control samples. Reproduced from Ref. [119] with permission. Copyright 2019, Royal Society of Chemistry. d FECO of NiFe–N–C. The Ni–N–C and Fe–N–C catalysts are the control samples. Reproduced from Ref. [79] with permission. Copyright 2019, Wiley–VCH. e FECO of Ni–N3–V. The Ni–N4 and NC catalysts are the control samples. Reproduced from Ref. [151] with permission. Copyright 2020, Wiley–VCH. f FECO of Ni–N4–O/C. The Ni–N4/C and NC catalysts are the control samples. Reproduced from Ref. [199] with permission. Copyright 2020, Wiley–VCH. Comparison of the g FECO and h CO partial current density of Ni–SN–hCNCs and Ni–N–hCNCs. i Stability test of the Ni–SN–hCNCs. Reproduced from Ref. [109] with permission. Copyright 2020, Springer

Fig. 10

Reproduced from Ref. [51] with permission. Copyright 2019, American Association for the Advancement of Science (AAAS). The operando Fe K-edge XANES c and EXAFS d. Reproduced from Ref. [77] with permission. Copyright 2018, Royal Society of Chemistry

Fig. 11

Reproduced from Ref. [217] with permission. Copyright 2019, Springer. b FECO for FeN4/C prepared by the pyrolysis of Fe-adsorbed g–C3N4. The N/C and Fe/C catalysts are the control samples. Reproduced from Ref. [154] with permission. Copyright 2020, Elsevier

Fig. 12

Reproduced from Ref. [233] with permission. Copyright 2017, Wiley–VCH. b Faradaic efficiency (CO, H2) and current density at − 0.63 V of the CoPc/CNT prepared by the direct adsorption of CoPc on CNT. Reproduced from Ref. [158] with permission. Copyright 2017, Nature Publishing Group. c Faradaic efficiency (CO, H2) of the Co–N–C SSC derived from the Co-containing COF-366. 1 h and 2 h are the reaction times. Reproduced from Ref. [52] with permission. Copyright 2015, AAAS. d Faradaic efficiency (CO, H2) of the Co–N–C SSC derived from Co-adsorbed ZIF-8. Reproduced from Ref. [235] with permission. Copyright 2020, Elsevier. e FECO and corresponding potential of the hybridized ZnCo–N–C catalyst. Zn–N–C and Co–N–C are the control samples. Reproduced from Ref. [238] with permission. Copyright 2019, Wiley–VCH. f TOFCO of the S-doped NapCo@SNG. NapCo@NG and NapCo@OG are the control samples. Reproduced from Ref. [159] with permission. Copyright 2019, Wiley–VCH

Fig. 13

Reproduced from Ref. [239] with permission. Copyright 2019, Nature Publishing Group. b The Faradaic efficiency (formate, CO, H2) of Sn–N4F–C and c Faradaic efficiency (H2, CO) of Sn–C2O2F–C. Reproduced from Ref. [240] with permission. Copyright 2021, American Chemical Society. d The Faradaic efficiency (H2, CO, ethanol) of Cu–N4–C. Reproduced from Ref. [161] with permission. Copyright 2019, Wiley–VCH. e The Faradaic efficiency (H2, C2H4, CO, CH4) and current density of Cu–N2O2–C. Reproduced from Ref. [241] with permission. Copyright 2021, Nature Publishing Group. f The Faradaic efficiency (CH4, H2) and current density of Zn–N4–C. Reproduced from Ref. [162] with permission. Copyright 2020, American Chemical Society

Fig. 14

Similar content being viewed by others

Data Availability

The data that support the findings of this study are available from the corresponding author upon reasonable request.

Code availability

The code that support the findings of this study are available from the corresponding author upon reasonable request.

References

  1. Haszeldine, R.S.: Carbon capture and storage: how green can black be? Science 325, 1647–1652 (2009). https://doi.org/10.1126/science.1172246

    Article  CAS  Google Scholar 

  2. Turner, J.A.: A realizable renewable energy future. Science 285, 687–689 (1999). https://doi.org/10.1126/science.285.5428.687

    Article  CAS  Google Scholar 

  3. Vitousek, P.M., Mooney, H.A., Lubchenco, J., et al.: Human domination of earth’s ecosystems. Science 277, 494–499 (1997). https://doi.org/10.1126/science.277.5325.494

    Article  CAS  Google Scholar 

  4. Chu, S., Cui, Y., Liu, N.: The path towards sustainable energy. Nat. Mater. 16, 16–22 (2017). https://doi.org/10.1038/nmat4834

    Article  CAS  Google Scholar 

  5. Li, L.G., Huang, Y., Li, Y.G.: Carbonaceous materials for electrochemical CO2 reduction. EnergyChem 2, 100024 (2020). https://doi.org/10.1016/j.enchem.2019.100024

    Article  Google Scholar 

  6. Wang, W.H., Himeda, Y., Muckerman, J.T., et al.: CO2 hydrogenation to formate and methanol as an alternative to photo- and electrochemical CO2 reduction. Chem. Rev. 115, 12936–12973 (2015). https://doi.org/10.1021/acs.chemrev.5b00197

    Article  CAS  Google Scholar 

  7. Kibria, M.G., Edwards, J.P., Gabardo, C.M., et al.: Electrochemical CO2 reduction into chemical feedstocks: from mechanistic electrocatalysis models to system design. Adv. Mater. 31, 1807166 (2019). https://doi.org/10.1002/adma.201807166

    Article  CAS  Google Scholar 

  8. Sanz-Pérez, E.S., Murdock, C.R., Didas, S.A., et al.: Direct capture of CO2 from ambient air. Chem. Rev. 116, 11840–11876 (2016). https://doi.org/10.1021/acs.chemrev.6b00173

    Article  CAS  Google Scholar 

  9. Costentin, C., Robert, M., Savéant, J.M.: Catalysis of the electrochemical reduction of carbon dioxide. Chem. Soc. Rev. 42, 2423–2436 (2013). https://doi.org/10.1039/c2cs35360a

    Article  CAS  Google Scholar 

  10. Bevilacqua, M., Filippi, J., Miller, H.A., et al.: Recent technological progress in CO2 electroreduction to fuels and energy carriers in aqueous environments. Energy Technol. 3, 197–210 (2015). https://doi.org/10.1002/ente.201402166

    Article  CAS  Google Scholar 

  11. Dong, Y.C., Duchesne, P., Mohan, A., et al.: Shining light on CO2: from materials discovery to photocatalyst, photoreactor and process engineering. Chem. Soc. Rev. 49, 5648–5663 (2020). https://doi.org/10.1039/d0cs00597e

    Article  CAS  Google Scholar 

  12. Lee, S.H., da Som, C., Kuk, S.K., et al.: Photobiocatalysis: activating redox enzymes by direct or indirect transfer of photoinduced electrons. Angew. Chem. Int. Ed. 57, 7958–7985 (2018). https://doi.org/10.1002/anie.201710070

    Article  CAS  Google Scholar 

  13. Kondratenko, E.V., Mul, G., Baltrusaitis, J., et al.: Status and perspectives of CO2 conversion into fuels and chemicals by catalytic, photocatalytic and electrocatalytic processes. Energy Environ. Sci. 6, 3112–3135 (2013). https://doi.org/10.1039/c3ee41272e

    Article  CAS  Google Scholar 

  14. Jiang, X., Nie, X.W., Guo, X.W., et al.: Recent advances in carbon dioxide hydrogenation to methanol via heterogeneous catalysis. Chem. Rev. 120, 7984–8034 (2020). https://doi.org/10.1021/acs.chemrev.9b00723

    Article  CAS  Google Scholar 

  15. Sun, Z.Y., Ma, T., Tao, H.C., et al.: Fundamentals and challenges of electrochemical CO2 reduction using two-dimensional materials. Chem 3, 560–587 (2017). https://doi.org/10.1016/j.chempr.2017.09.009

    Article  CAS  Google Scholar 

  16. Qiao, J.L., Liu, Y.Y., Hong, F., et al.: A review of catalysts for the electroreduction of carbon dioxide to produce low-carbon fuels. Chem. Soc. Rev. 43, 631–675 (2014). https://doi.org/10.1039/c3cs60323g

    Article  CAS  Google Scholar 

  17. Torres Galvis, H.M., de Jong, K.P.: Catalysts for production of lower olefins from synthesis gas: a review. ACS Catal. 3, 2130–2149 (2013). https://doi.org/10.1021/cs4003436

    Article  CAS  Google Scholar 

  18. Gür, M., Canbaz, E.D.: Analysis of syngas production and reaction zones in hydrogen oriented underground coal gasification. Fuel 269, 117331 (2020). https://doi.org/10.1016/j.fuel.2020.117331

    Article  CAS  Google Scholar 

  19. de Luna, P., Hahn, C., Higgins, D., et al.: What would it take for renewably powered electrosynthesis to displace petrochemical processes? Science 364, 6438 (2019). https://doi.org/10.1126/science.aav3506

    Article  CAS  Google Scholar 

  20. Yuan, Z.H., Eden, M.R., Gani, R.: Toward the development and deployment of large-scale carbon dioxide capture and conversion processes. Ind. Eng. Chem. Res. 55, 3383–3419 (2016). https://doi.org/10.1021/acs.iecr.5b03277

    Article  CAS  Google Scholar 

  21. Duan, X.C., Xu, J.T., Wei, Z.X., et al.: Metal-free carbon materials for CO2 electrochemical reduction. Adv. Mater. 29, 1701784 (2017). https://doi.org/10.1002/adma.201701784

    Article  CAS  Google Scholar 

  22. Cui, H.J., Guo, Y.B., Guo, L.M., et al.: Heteroatom-doped carbon materials and their composites as electrocatalysts for CO2 reduction. J. Mater. Chem. A 6, 18782–18793 (2018). https://doi.org/10.1039/c8ta07430e

    Article  CAS  Google Scholar 

  23. Zhu, G.Z., Li, Y.W., Zhu, H.Y., et al.: Curvature-dependent selectivity of CO2 electrocatalytic reduction on cobalt porphyrin nanotubes. ACS Catal. 6, 6294–6301 (2016). https://doi.org/10.1021/acscatal.6b02020

    Article  CAS  Google Scholar 

  24. Lu, X.L., Rong, X., Zhang, C., et al.: Carbon-based single-atom catalysts for CO2 electroreduction: progress and optimization strategies. J. Mater. Chem. A 8, 10695–10708 (2020). https://doi.org/10.1039/d0ta01955k

    Article  CAS  Google Scholar 

  25. Nguyen, D.L.T., Kim, Y., Hwang, Y.J., et al.: Progress in development of electrocatalyst for CO2 conversion to selective CO production. Carbon Energy 2, 72–98 (2020). https://doi.org/10.1002/cey2.27

    Article  CAS  Google Scholar 

  26. Zhu, W.L., Michalsky, R., Metin, Ö., et al.: Monodisperse Au nanoparticles for selective electrocatalytic reduction of CO2 to CO. J. Am. Chem. Soc. 135, 16833–16836 (2013). https://doi.org/10.1021/ja409445p

    Article  CAS  Google Scholar 

  27. Zhang, L., Mao, F.X., Zheng, L.R., et al.: Tuning metal catalyst with metal-C3N4 interaction for efficient CO2 electroreduction. ACS Catal. 8, 11035–11041 (2018). https://doi.org/10.1021/acscatal.8b03789

    Article  CAS  Google Scholar 

  28. Rosen, J., Hutchings, G.S., Lu, Q., et al.: Mechanistic insights into the electrochemical reduction of CO2 to CO on nanostructured Ag surfaces. ACS Catal. 5, 4293–4299 (2015). https://doi.org/10.1021/acscatal.5b00840

    Article  CAS  Google Scholar 

  29. Liu, S.B., Tao, H.B., Zeng, L., et al.: Shape-dependent electrocatalytic reduction of CO2 to CO on triangular silver nanoplates. J. Am. Chem. Soc. 139, 2160–2163 (2017). https://doi.org/10.1021/jacs.6b12103

    Article  CAS  Google Scholar 

  30. Zhou, Y., Han, N., Li, Y.G.: Recent progress on Pd-based nanomaterials for electrochemical CO2 reduction. Acta Phys Chim Sin. 36, 2001041 (2020). https://doi.org/10.3866/pku.whxb202001041

    Article  Google Scholar 

  31. Chang, Q.W., Kim, J., Lee, J.H., et al.: Boosting activity and selectivity of CO2 electroreduction by pre-hydridizing Pd nanocubes. Small 16, 2005305 (2020). https://doi.org/10.1002/smll.202005305

    Article  CAS  Google Scholar 

  32. Guo, J.J., Huo, J.J., Liu, Y., et al.: Nitrogen-doped porous carbon supported nonprecious metal single-atom electrocatalysts: from synthesis to application. Small Methods 3, 1900159 (2019). https://doi.org/10.1002/smtd.201900159

    Article  CAS  Google Scholar 

  33. Vasileff, A., Xu, C.C., Jiao, Y., et al.: Surface and interface engineering in copper-based bimetallic materials for selective CO2 electroreduction. Chem 4, 1809–1831 (2018). https://doi.org/10.1016/j.chempr.2018.05.001

    Article  CAS  Google Scholar 

  34. **e, H., Wang, T.Y., Liang, J.S., et al.: Cu-based nanocatalysts for electrochemical reduction of CO2. Nano Today 21, 41–54 (2018). https://doi.org/10.1016/j.nantod.2018.05.001

    Article  CAS  Google Scholar 

  35. Wu, J.J., Yadav, R.M., Liu, M.J., et al.: Achieving highly efficient, selective, and stable CO2 reduction on nitrogen-doped carbon nanotubes. ACS Nano 9, 5364–5371 (2015). https://doi.org/10.1021/acsnano.5b01079

    Article  CAS  Google Scholar 

  36. Sreekanth, N., Nazrulla, M.A., Vineesh, T.V., et al.: Metal-free boron-doped graphene for selective electroreduction of carbon dioxide to formic acid/formate. Chem. Commun. 51, 16061–16064 (2015). https://doi.org/10.1039/c5cc06051f

    Article  CAS  Google Scholar 

  37. Han, H., Park, S., Jang, D., et al.: Electrochemical reduction of CO2 to CO by N,S dual-doped carbon nanoweb catalysts. Chemsuschem 13, 539–547 (2020). https://doi.org/10.1002/cssc.201903117

    Article  CAS  Google Scholar 

  38. Xue, X.Y., Yang, H., Yang, T., et al.: N,P-coordinated fullerene-like carbon nanostructures with dual active centers toward highly-efficient multi-functional electrocatalysis for CO2RR, ORR and Zn-air battery. J. Mater. Chem. A 7, 15271–15277 (2019). https://doi.org/10.1039/c9ta03828k

    Article  CAS  Google Scholar 

  39. Ni, W., Xue, Y.F., Zang, X.G., et al.: Fluorine doped cagelike carbon electrocatalyst: an insight into the structure-enhanced CO selectivity for CO2 reduction at high overpotential. ACS Nano 14, 2014–2023 (2020). https://doi.org/10.1021/acsnano.9b08528

    Article  CAS  Google Scholar 

  40. Liu, S., Yang, H.B., Su, X., et al.: Rational design of carbon-based metal-free catalysts for electrochemical carbon dioxide reduction: a review. J. Energy Chem. 36, 95–105 (2019). https://doi.org/10.1016/j.jechem.2019.06.013

    Article  Google Scholar 

  41. Ju, W., Bagger, A., Hao, G.P., et al.: Understanding activity and selectivity of metal-nitrogen-doped carbon catalysts for electrochemical reduction of CO2. Nat. Commun. 8, 944 (2017). https://doi.org/10.1038/s41467-017-01035-z

    Article  CAS  Google Scholar 

  42. Li, C.H., Tong, X., Yu, P., et al.: Carbon dioxide photo/electroreduction with cobalt. J. Mater. Chem. A 7, 16622–16642 (2019). https://doi.org/10.1039/c9ta03892b

    Article  CAS  Google Scholar 

  43. Varela, A.S., Ju, W., Bagger, A., et al.: Electrochemical reduction of CO2 on metal-nitrogen-doped carbon catalysts. ACS Catal. 9, 7270–7284 (2019). https://doi.org/10.1021/acscatal.9b01405

    Article  CAS  Google Scholar 

  44. Cheng, Y., Yang, S.Z., Jiang, S.P., et al.: Supported single atoms as new class of catalysts for electrochemical reduction of carbon dioxide. Small Methods 3, 1800440 (2019). https://doi.org/10.1002/smtd.201800440

    Article  CAS  Google Scholar 

  45. Yang, X.F., Wang, A.Q., Qiao, B.T., et al.: Single-atom catalysts: a new frontier in heterogeneous catalysis. Acc. Chem. Res. 46, 1740–1748 (2013). https://doi.org/10.1021/ar300361m

    Article  CAS  Google Scholar 

  46. Fei, H.L., Dong, J.C., Chen, D.L., et al.: Single atom electrocatalysts supported on graphene or graphene-like carbons. Chem. Soc. Rev. 48, 5207–5241 (2019). https://doi.org/10.1039/c9cs00422j

    Article  CAS  Google Scholar 

  47. **, J., Yin, J., Liu, H.B., et al.: Transition metal (Fe, Co and Ni)–carbide–nitride (M–C–N) nanocatalysts: structure and electrocatalytic applications. ChemCatChem 11, 2780–2792 (2019). https://doi.org/10.1002/cctc.201900570

    Article  CAS  Google Scholar 

  48. Wang, Q.C., Lei, Y.P., Wang, D.S., et al.: Defect engineering in earth-abundant electrocatalysts for CO2 and N2 reduction. Energy Environ. Sci. 12, 1730–1750 (2019). https://doi.org/10.1039/c8ee03781g

    Article  CAS  Google Scholar 

  49. Chen, Y.N., Zhang, X., Zhou, Z.: Carbon-based substrates for highly dispersed nanoparticle and even single-atom electrocatalysts. Small Methods 3, 1900050 (2019). https://doi.org/10.1002/smtd.201900050

    Article  CAS  Google Scholar 

  50. Yang, H.B., Hung, S.F., Liu, S., et al.: Atomically dispersed Ni(I) as the active site for electrochemical CO2 reduction. Nat. Energy 3, 140–147 (2018). https://doi.org/10.1038/s41560-017-0078-8

    Article  CAS  Google Scholar 

  51. Gu, J., Hsu, C.S., Bai, L.C., et al.: Atomically dispersed Fe3+ sites catalyze efficient CO2 electroreduction to CO. Science 364, 1091–1094 (2019). https://doi.org/10.1126/science.aaw7515

    Article  CAS  Google Scholar 

  52. Lin, S., Diercks, C.S., Zhang, Y.B., et al.: Covalent organic frameworks comprising cobalt porphyrins for catalytic CO2 reduction in water. Science 349, 1208–1213 (2015). https://doi.org/10.1126/science.aac8343

    Article  CAS  Google Scholar 

  53. Varela, A.S., Ranjbar Sahraie, N., Steinberg, J., et al.: Metal-doped nitrogenated carbon as an efficient catalyst for direct CO2 electroreduction to CO and hydrocarbons. Angew. Chem. Int. Ed. 54, 10758–10762 (2015). https://doi.org/10.1002/anie.201502099

    Article  CAS  Google Scholar 

  54. Jasinski, R.: A new fuel cell cathode catalyst. Nature 201, 1212–1213 (1964). https://doi.org/10.1038/2011212a0

    Article  CAS  Google Scholar 

  55. Alt, H., Binder, H., Sandstede, G.: Mechanism of the electrocatalytic reduction of oxygen on metal chelates. J. Catal. 28, 8–19 (1973). https://doi.org/10.1016/0021-9517(73)90173-5

    Article  CAS  Google Scholar 

  56. Chen, Z.W., Higgins, D., Yu, A.P., et al.: A review on non-precious metal electrocatalysts for PEM fuel cells. Energy Environ. Sci. 4, 3167 (2011). https://doi.org/10.1039/c0ee00558d

    Article  CAS  Google Scholar 

  57. Wiesener, K.: N4-chelates as electrocatalyst for cathodic oxygen reduction. Electrochim. Acta 31, 1073–1078 (1986). https://doi.org/10.1016/0013-4686(86)80022-6

    Article  CAS  Google Scholar 

  58. Gupta, S., Tryk, D., Bae, I., et al.: Heat-treated polyacrylonitrile-based catalysts for oxygen electroreduction. J. Appl. Electrochem. 19, 19–27 (1989). https://doi.org/10.1007/BF01039385

    Article  CAS  Google Scholar 

  59. Ding, W., Li, L., **ong, K., et al.: Shape fixing via salt recrystallization: a morphology-controlled approach to convert nanostructured polymer to carbon nanomaterial as a highly active catalyst for oxygen reduction reaction. J. Am. Chem. Soc. 137, 5414–5420 (2015). https://doi.org/10.1021/jacs.5b00292

    Article  CAS  Google Scholar 

  60. Lai, Q.X., Gao, Q.W., Su, Q., et al.: Bottom-up synthesis of high-performance nitrogen-enriched transition metal/graphene oxygen reduction electrocatalysts both in alkaline and acidic solution. Nanoscale 7, 14707–14714 (2015). https://doi.org/10.1039/c5nr02984h

    Article  CAS  Google Scholar 

  61. Lefèvre, M., Proietti, E., Jaouen, F., et al.: Iron-based catalysts with improved oxygen reduction activity in polymer electrolyte fuel cells. Science 324, 71–74 (2009). https://doi.org/10.1126/science.1170051

    Article  CAS  Google Scholar 

  62. Lin, Q.P., Bu, X.H., Kong, A.G., et al.: New heterometallic zirconium metalloporphyrin frameworks and their heteroatom-activated high-surface-area carbon derivatives. J. Am. Chem. Soc. 137, 2235–2238 (2015). https://doi.org/10.1021/jacs.5b00076

    Article  CAS  Google Scholar 

  63. Morozan, A., Jousselme, B., Palacin, S.: Low-platinum and platinum-free catalysts for the oxygen reduction reaction at fuel cell cathodes. Energy Environ. Sci. 4, 1238 (2011). https://doi.org/10.1039/c0ee00601g

    Article  CAS  Google Scholar 

  64. Lin, L., Zhu, Q., Xu, A.W.: Noble-metal-free Fe–N/C catalyst for highly efficient oxygen reduction reaction under both alkaline and acidic conditions. J. Am. Chem. Soc. 136, 11027–11033 (2014). https://doi.org/10.1021/ja504696r

    Article  CAS  Google Scholar 

  65. Wu, Z.Y., Xu, X.X., Hu, B.C., et al.: Iron carbide nanoparticles encapsulated in mesoporous Fe-N-doped carbon nanofibers for efficient electrocatalysis. Angew. Chem. Int. Ed. 54, 8179–8183 (2015). https://doi.org/10.1002/anie.201502173

    Article  CAS  Google Scholar 

  66. Zhou, D., Yang, L.P., Yu, L.H., et al.: Fe/N/C hollow nanospheres by Fe(III)-dopamine complexation-assisted one-pot do** as nonprecious-metal electrocatalysts for oxygen reduction. Nanoscale 7, 1501–1509 (2015). https://doi.org/10.1039/c4nr06366j

    Article  CAS  Google Scholar 

  67. Zhu, Y.S., Zhang, B.S., Liu, X., et al.: Unravelling the structure of electrocatalytically active Fe–N complexes in carbon for the oxygen reduction reaction. Angew. Chem. Int. Ed. 53, 10673–10677 (2014). https://doi.org/10.1002/anie.201405314

    Article  CAS  Google Scholar 

  68. Wu, G., More, K.L., Johnston, C.M., et al.: High-performance electrocatalysts for oxygen reduction derived from polyaniline, iron, and cobalt. Science 332, 443–447 (2011). https://doi.org/10.1126/science.1200832

    Article  CAS  Google Scholar 

  69. Li, J., Sougrati, M.T., Zitolo, A., et al.: Identification of durable and non-durable FeNx sites in Fe–N–C materials for proton exchange membrane fuel cells. Nat. Catal. 4, 10–19 (2021). https://doi.org/10.1038/s41929-020-00545-2

    Article  CAS  Google Scholar 

  70. Hossain, M.D., Liu, Z.J., Zhuang, M.H., et al.: Rational design of graphene-supported single atom catalysts for hydrogen evolution reaction. Adv. Energy Mater. 9, 1803689 (2019). https://doi.org/10.1002/aenm.201803689

    Article  CAS  Google Scholar 

  71. Zhao, S., Wang, Y., Dong, J., et al.: Ultrathin metal–organic framework nanosheets for electrocatalytic oxygen evolution. Nat. Energy 1, 16184 (2016). https://doi.org/10.1038/nenergy.2016.184

    Article  CAS  Google Scholar 

  72. Shi, Z.S., Yang, W.Q., Gu, Y.T., et al.: Metal-nitrogen-doped carbon materials as highly efficient catalysts: progress and rational design. Adv. Sci. 7, 2001069 (2020). https://doi.org/10.1002/advs.202001069

    Article  CAS  Google Scholar 

  73. Dai, X.Y., Chen, Z., Yao, T., et al.: Single Ni sites distributed on N-doped carbon for selective hydrogenation of acetylene. Chem. Commun. 53, 11568–11571 (2017). https://doi.org/10.1039/c7cc04820c

    Article  CAS  Google Scholar 

  74. Hu, X.M., Hval, H.H., Bjerglund, E.T., et al.: Selective CO2 reduction to CO in water using earth-abundant metal and nitrogen-doped carbon electrocatalysts. ACS Catal. 8, 6255–6264 (2018). https://doi.org/10.1021/acscatal.8b01022

    Article  CAS  Google Scholar 

  75. Pan, F.P., Deng, W., Justiniano, C., et al.: Identification of champion transition metals centers in metal and nitrogen-codoped carbon catalysts for CO2 reduction. Appl. Catal. B Environ. 226, 463–472 (2018). https://doi.org/10.1016/j.apcatb.2018.01.001

    Article  CAS  Google Scholar 

  76. Li, J.K., Pršlja, P., Shinagawa, T., et al.: Volcano trend in electrocatalytic CO2 reduction activity over atomically dispersed metal sites on nitrogen-doped carbon. ACS Catal. 9, 10426–10439 (2019). https://doi.org/10.1021/acscatal.9b02594

    Article  CAS  Google Scholar 

  77. Leonard, N., Ju, W., Sinev, I., et al.: The chemical identity, state and structure of catalytically active centers during the electrochemical CO2 reduction on porous Fe–nitrogen–carbon (Fe–N–C) materials. Chem. Sci. 9, 5064–5073 (2018). https://doi.org/10.1039/c8sc00491a

    Article  CAS  Google Scholar 

  78. Wang, X., de Araújo, J.F., Ju, W., et al.: Mechanistic reaction pathways of enhanced ethylene yields during electroreduction of CO2–CO co-feeds on Cu and Cu-tandem electrocatalysts. Nat. Nanotechnol. 14, 1063–1070 (2019). https://doi.org/10.1038/s41565-019-0551-6

    Article  CAS  Google Scholar 

  79. Ren, W.H., Tan, X., Yang, W.F., et al.: Isolated diatomic Ni-Fe metal–nitrogen sites for synergistic electroreduction of CO2. Angew. Chem. Int. Ed. 58, 6972–6976 (2019). https://doi.org/10.1002/anie.201901575

    Article  CAS  Google Scholar 

  80. Cheng, Q.Q., Mao, K., Ma, L.S., et al.: Encapsulation of iron nitride by Fe–N–C shell enabling highly efficient electroreduction of CO2 to CO. ACS Energy Lett. 3, 1205–1211 (2018). https://doi.org/10.1021/acsenergylett.8b00474

    Article  CAS  Google Scholar 

  81. Ross, M.B., De Luna, P., Li, Y., et al.: Designing materials for electrochemical carbon dioxide recycling. Nat. Catal. 2, 648–658 (2019). https://doi.org/10.1038/s41929-019-0306-7

    Article  CAS  Google Scholar 

  82. **e, C.L., Niu, Z.Q., Kim, D., et al.: Surface and interface control in nanoparticle catalysis. Chem. Rev. 120, 1184–1249 (2020). https://doi.org/10.1021/acs.chemrev.9b00220

    Article  CAS  Google Scholar 

  83. Menges, F.S., Craig, S.M., Tötsch, N., et al.: Capture of CO2 by a cationic nickel(I) complex in the gas phase and characterization of the bound, activated CO2 molecule by cryogenic ion vibrational predissociation spectroscopy. Angew. Chem. Int. Ed. 55, 1282–1285 (2016). https://doi.org/10.1002/anie.201507965

    Article  CAS  Google Scholar 

  84. Gong, L.L., Zhang, D.T., Lin, C.Y., et al.: Catalytic mechanisms and design principles for single-atom catalysts in highly efficient CO2 conversion. Adv. Energy Mater. 9, 1902625 (2019). https://doi.org/10.1002/aenm.201902625

    Article  CAS  Google Scholar 

  85. Li, Y.W., Chan, S.H., Sun, Q.: Heterogeneous catalytic conversion of CO2: a comprehensive theoretical review. Nanoscale 7, 8663–8683 (2015). https://doi.org/10.1039/c5nr00092k

    Article  CAS  Google Scholar 

  86. Vasileff, A., Zheng, Y., Qiao, S.Z.: Carbon solving carbon’s problems: recent progress of nanostructured carbon-based catalysts for the electrochemical reduction of CO2. Adv. Energy Mater. 7, 1700759 (2017). https://doi.org/10.1002/aenm.201700759

    Article  CAS  Google Scholar 

  87. Li, F.W., MacFarlane, D.R., Zhang, J.: Recent advances in the nanoengineering of electrocatalysts for CO2 reduction. Nanoscale 10, 6235–6260 (2018). https://doi.org/10.1039/C7NR09620H

    Article  CAS  Google Scholar 

  88. Feaster, J.T., Shi, C., Cave, E.R., et al.: Understanding selectivity for the electrochemical reduction of carbon dioxide to formic acid and carbon monoxide on metal electrodes. ACS Catal. 7, 4822–4827 (2017). https://doi.org/10.1021/acscatal.7b00687

    Article  CAS  Google Scholar 

  89. Birdja, Y.Y., Pérez-Gallent, E., Figueiredo, M.C., et al.: Advances and challenges in understanding the electrocatalytic conversion of carbon dioxide to fuels. Nat. Energy 4, 732–745 (2019). https://doi.org/10.1038/s41560-019-0450-y

    Article  CAS  Google Scholar 

  90. Varela, A.S., Kroschel, M., Leonard, N.D., et al.: pH effects on the selectivity of the electrocatalytic CO2 reduction on graphene-embedded Fe–N–C motifs: bridging concepts between molecular homogeneous and solid-state heterogeneous catalysis. ACS Energy Lett. 3, 812–817 (2018). https://doi.org/10.1021/acsenergylett.8b00273

    Article  CAS  Google Scholar 

  91. Zhang, B.H., Zhang, J.T.: Rational design of Cu-based electrocatalysts for electrochemical reduction of carbon dioxide. J. Energy Chem. 26, 1050–1066 (2017). https://doi.org/10.1016/j.jechem.2017.10.011

    Article  Google Scholar 

  92. Li, Y.W., Sun, Q.: Recent advances in breaking scaling relations for effective electrochemical conversion of CO2. Adv. Energy Mater. 6, 1600463 (2016). https://doi.org/10.1002/aenm.201600463

    Article  CAS  Google Scholar 

  93. Li, M.H., Wang, H.F., Luo, W., et al.: Heterogeneous single-atom catalysts for electrochemical CO2 reduction reaction. Adv. Mater. 32, 2001848 (2020). https://doi.org/10.1002/adma.202001848

    Article  CAS  Google Scholar 

  94. Back, S., Lim, J., Kim, N.Y., et al.: Single-atom catalysts for CO2 electroreduction with significant activity and selectivity improvements. Chem. Sci. 8, 1090–1096 (2017). https://doi.org/10.1039/c6sc03911a

    Article  CAS  Google Scholar 

  95. Sheng, T., Sun, S.G.: Free energy landscape of electrocatalytic CO2 reduction to CO on aqueous FeN4 center embedded graphene studied by ab initio molecular dynamics simulations. Chem. Phys. Lett. 688, 37–42 (2017). https://doi.org/10.1016/j.cplett.2017.09.052

    Article  CAS  Google Scholar 

  96. Jiang, K., Siahrostami, S., Zheng, T.T., et al.: Isolated Ni single atoms in graphene nanosheets for high-performance CO2 reduction. Energy Environ. Sci. 11, 893–903 (2018). https://doi.org/10.1039/c7ee03245e

    Article  CAS  Google Scholar 

  97. Shi, C., Hansen, H.A., Lausche, A.C., et al.: Trends in electrochemical CO2 reduction activity for open and close-packed metal surfaces. Phys. Chem. Chem. Phys. 16, 4720 (2014). https://doi.org/10.1039/c3cp54822h

    Article  CAS  Google Scholar 

  98. Kim, D., **e, C.L., Becknell, N., et al.: Electrochemical activation of CO2 through atomic ordering transformations of AuCu nanoparticles. J. Am. Chem. Soc. 139, 8329–8336 (2017). https://doi.org/10.1021/jacs.7b03516

    Article  CAS  Google Scholar 

  99. Zhang, E.H., Wang, T., Yu, K., et al.: Bismuth single atoms resulting from transformation of metal–organic frameworks and their use as electrocatalysts for CO2 reduction. J. Am. Chem. Soc. 141, 16569–16573 (2019). https://doi.org/10.1021/jacs.9b08259

    Article  CAS  Google Scholar 

  100. Wang, Y.H., Liu, J.L., Wang, Y.F., et al.: Tuning of CO2 reduction selectivity on metal electrocatalysts. Small 13, 1701809 (2017). https://doi.org/10.1002/smll.201701809

    Article  CAS  Google Scholar 

  101. Lu, B.Z., Liu, Q.M., Chen, S.W.: Electrocatalysis of single-atom sites: impacts of atomic coordination. ACS Catal. 10, 7584–7618 (2020). https://doi.org/10.1021/acscatal.0c01950

    Article  CAS  Google Scholar 

  102. Pan, F.P., Zhang, H.G., Liu, K.X., et al.: Unveiling active sites of CO2 reduction on nitrogen-coordinated and atomically dispersed iron and cobalt catalysts. ACS Catal. 8, 3116–3122 (2018). https://doi.org/10.1021/acscatal.8b00398

    Article  CAS  Google Scholar 

  103. Ni, W.P., Liu, Z.X., Zhang, Y., et al.: Electroreduction of carbon dioxide driven by the intrinsic defects in the carbon plane of a single Fe–N4 site. Adv. Mater. 33, 2003238 (2021). https://doi.org/10.1002/adma.202003238

    Article  CAS  Google Scholar 

  104. Wang, Y.C., Liu, Y., Liu, W., et al.: Regulating the coordination structure of metal single atoms for efficient electrocatalytic CO2 reduction. Energy Environ. Sci. 13, 4609–4624 (2020). https://doi.org/10.1039/d0ee02833a

    Article  CAS  Google Scholar 

  105. Pan, Y., Lin, R., Chen, Y.J., et al.: Design of single-atom Co–N5 catalytic site: a robust electrocatalyst for CO2 reduction with nearly 100% CO selectivity and remarkable stability. J. Am. Chem. Soc. 140, 4218–4221 (2018). https://doi.org/10.1021/jacs.8b00814

    Article  CAS  Google Scholar 

  106. Wu, Z.Z., Gao, F.Y., Gao, M.R.: Regulating the oxidation state of nanomaterials for electrocatalytic CO2 reduction. Energy Environ. Sci. 14, 1121–1139 (2021). https://doi.org/10.1039/d0ee02747b

    Article  CAS  Google Scholar 

  107. Liu, S., Yang, H.B., Hung, S.F., et al.: Elucidating the electrocatalytic CO2 reduction reaction over a model single-atom nickel catalyst. Angew. Chem. Int. Ed. 59, 798–803 (2020). https://doi.org/10.1002/anie.201915193

    Article  CAS  Google Scholar 

  108. Gao, F.Y., Bao, R.C., Gao, M.R., et al.: Electrochemical CO2–to–CO conversion: electrocatalysts, electrolytes, and electrolyzers. J. Mater. Chem. A 8, 15458–15478 (2020). https://doi.org/10.1039/d0ta03525d

    Article  CAS  Google Scholar 

  109. Chen, Y.Q., Yao, Y.J., **. Nano Res. 13, 2777–2783 (2020). https://doi.org/10.1007/s12274-020-2928-0

    Article  CAS  Google Scholar 

  110. Zhao, X.H., Liu, Y.Y.: Unveiling the active structure of single nickel atom catalysis: critical roles of charge capacity and hydrogen bonding. J. Am. Chem. Soc. 142, 5773–5777 (2020). https://doi.org/10.1021/jacs.9b13872

    Article  CAS  Google Scholar 

  111. Zhu, Y.P., Guo, C.X., Zheng, Y., et al.: Surface and interface engineering of noble-metal-free electrocatalysts for efficient energy conversion processes. Acc. Chem. Res. 50, 915–923 (2017). https://doi.org/10.1021/acs.accounts.6b00635

    Article  CAS  Google Scholar 

  112. Zhu, M.H., Chen, J.C., Guo, R., et al.: Cobalt phthalocyanine coordinated to pyridine-functionalized carbon nanotubes with enhanced CO2 electroreduction. Appl. Catal. B Environ. 251, 112–118 (2019). https://doi.org/10.1016/j.apcatb.2019.03.047

    Article  CAS  Google Scholar 

  113. Zhang, M.D., Si, D.H., Yi, J.D., et al.: Conductive phthalocyanine-based covalent organic framework for highly efficient electroreduction of carbon dioxide. Small 16, 2005254 (2020). https://doi.org/10.1002/smll.202005254

    Article  CAS  Google Scholar 

  114. Puthiaraj, P., Lee, Y.R., Zhang, S.Q., et al.: Triazine-based covalent organic polymers: design, synthesis and applications in heterogeneous catalysis. J. Mater. Chem. A 4, 16288–16311 (2016). https://doi.org/10.1039/c6ta06089g

    Article  CAS  Google Scholar 

  115. Chan-Thaw, C.E., Villa, A., Katekomol, P., et al.: Covalent triazine framework as catalytic support for liquid phase reaction. Nano Lett. 10, 537–541 (2010). https://doi.org/10.1021/nl904082k

    Article  CAS  Google Scholar 

  116. Kuhn, P., Antonietti, M., Thomas, A.: Porous, covalent triazine-based frameworks prepared by ionothermal synthesis. Angew. Chem. Int. Ed. 47, 3450–3453 (2008). https://doi.org/10.1002/anie.200705710

    Article  CAS  Google Scholar 

  117. Zhao, Y., Hao, L., Ning, J., et al.: A versatile transition metal ion-binding motif derived from covalent organic framework for efficient CO2 electroreduction. Appl. Catal. B Environ. 291, 119915 (2021). https://doi.org/10.1016/j.apcatb.2021.119915

    Article  CAS  Google Scholar 

  118. Liang, Z.Z., Wang, H.Y., Zheng, H.Q., et al.: Porphyrin-based frameworks for oxygen electrocatalysis and catalytic reduction of carbon dioxide. Chem. Soc. Rev. 50, 2540–2581 (2021). https://doi.org/10.1039/d0cs01482f

    Article  CAS  Google Scholar 

  119. Su, P.P., Iwase, K., Harada, T., et al.: Covalent triazine framework modified with coordinatively-unsaturated Co or Ni atoms for CO2 electrochemical reduction. Chem. Sci. 9, 3941–3947 (2018). https://doi.org/10.1039/c8sc00604k

    Article  CAS  Google Scholar 

  120. Lu, C.B., Yang, J., Wei, S.C., et al.: Atomic Ni anchored covalent triazine framework as high efficient electrocatalyst for carbon dioxide conversion. Adv. Funct. Mater. 29, 1806884 (2019). https://doi.org/10.1002/adfm.201806884

    Article  CAS  Google Scholar 

  121. Wang, T.T., Zhao, Q.D., Fu, Y.Y., et al.: Single atom electrocatalysts: carbon-rich nonprecious metal single atom electrocatalysts for CO2 reduction and hydrogen evolution (small methods 10/2019). Small Methods 3, 1970033 (2019). https://doi.org/10.1002/smtd.201970033

    Article  Google Scholar 

  122. Nguyen, T.N., Salehi, M., Le, Q.V., et al.: Fundamentals of electrochemical CO2 reduction on single-metal-atom catalysts. ACS Catal. 10, 10068–10095 (2020). https://doi.org/10.1021/acscatal.0c02643

    Article  Google Scholar 

  123. Wang, Y., Wang, M.Y., Zhang, Z.S., et al.: Phthalocyanine precursors to construct atomically dispersed iron electrocatalysts. ACS Catal. 9, 6252–6261 (2019). https://doi.org/10.1021/acscatal.9b01617

    Article  CAS  Google Scholar 

  124. Wu, G., Zelenay, P.: Nanostructured nonprecious metal catalysts for oxygen reduction reaction. Acc. Chem. Res. 46, 1878–1889 (2013). https://doi.org/10.1021/ar400011z

    Article  CAS  Google Scholar 

  125. Liu, L.H., Liu, S., Li, L., et al.: A general method to construct single-atom catalysts supported on N-doped graphene for energy applications. J. Mater. Chem. A 8, 6190–6195 (2020). https://doi.org/10.1039/c9ta11715f

    Article  CAS  Google Scholar 

  126. Yang, H., Shang, L., Zhang, Q., et al.: A universal ligand mediated method for large scale synthesis of transition metal single atom catalysts. Nat. Commun. 10, 4585 (2019). https://doi.org/10.1038/s41467-019-12510-0

    Article  CAS  Google Scholar 

  127. Takele Menisa, L., Cheng, P., Long, C., et al.: Insight into atomically dispersed porous M–N–C single-site catalysts for electrochemical CO2 reduction. Nanoscale 12, 16617–16626 (2020). https://doi.org/10.1039/d0nr03044a

    Article  CAS  Google Scholar 

  128. Cheng, Y., Zhao, S.Y., Li, H.B., et al.: Unsaturated edge-anchored Ni single atoms on porous microwave exfoliated graphene oxide for electrochemical CO2. Appl. Catal. B Environ. 243, 294–303 (2019). https://doi.org/10.1016/j.apcatb.2018.10.046

    Article  CAS  Google Scholar 

  129. Zheng, Y., Jiao, Y., Zhu, Y.H., et al.: Molecule-level g–C3N4 coordinated transition metals as a new class of electrocatalysts for oxygen electrode reactions. J. Am. Chem. Soc. 139, 3336–3339 (2017). https://doi.org/10.1021/jacs.6b13100

    Article  CAS  Google Scholar 

  130. Zhang, G.X., Jia, Y., Zhang, C., et al.: A general route via formamide condensation to prepare atomically dispersed metal–nitrogen–carbon electrocatalysts for energy technologies. Energy Environ. Sci. 12, 1317–1325 (2019). https://doi.org/10.1039/c9ee00162j

    Article  CAS  Google Scholar 

  131. Ma, Z.J., Zhang, X.L., Wu, D.P., et al.: Ni and nitrogen-codoped ultrathin carbon nanosheets with strong bonding sites for efficient CO2 electrochemical reduction. J. Colloid Interface Sci. 570, 31–40 (2020). https://doi.org/10.1016/j.jcis.2020.02.050

    Article  CAS  Google Scholar 

  132. Yuan, C.Z., Liang, K., **a, X.M., et al.: Powerful CO2 electroreduction performance with N-carbon doped with single Ni atoms. Catal. Sci. Technol. 9, 3669–3674 (2019). https://doi.org/10.1039/c9cy00363k

    Article  CAS  Google Scholar 

  133. Sun, T., Wu, Q., Zhuo, O., et al.: Manganese oxide-induced strategy to high-performance iron/nitrogen/carbon electrocatalysts with highly exposed active sites. Nanoscale 8, 8480–8485 (2016). https://doi.org/10.1039/c6nr00760k

    Article  CAS  Google Scholar 

  134. de la Fuente, J.L., Ruiz-Bermejo, M., Menor-Salván, C., et al.: Thermal characterization of HCN polymers by TG-MS, TG, DTA and DSC methods. Polym. Degrad. Stab. 96, 943–948 (2011). https://doi.org/10.1016/j.polymdegradstab.2011.01.033

    Article  CAS  Google Scholar 

  135. Gong, Z.M., Yang, B., Lin, H.P., et al.: Structural variation in surface-supported synthesis by adjusting the stoichiometric ratio of the reactants. ACS Nano 10, 4228–4235 (2016). https://doi.org/10.1021/acsnano.5b07601

    Article  CAS  Google Scholar 

  136. Nguyen, V.S., Abbott, H.L., Dawley, M.M., et al.: Theoretical study of formamide decomposition pathways. J. Phys. Chem. A 115, 841–851 (2011). https://doi.org/10.1021/jp109143j

    Article  CAS  Google Scholar 

  137. Qin, R.X., Liu, P.X., Fu, G., et al.: Strategies for stabilizing atomically dispersed metal catalysts. Small Methods 2, 1700286 (2018). https://doi.org/10.1002/smtd.201700286

    Article  CAS  Google Scholar 

  138. Huang, K., Zhang, L., Xu, T., et al.: −60 °C solution synthesis of atomically dispersed cobalt electrocatalyst with superior performance. Nat. Commun. 10, 606 (2019). https://doi.org/10.1038/s41467-019-08484-8

    Article  CAS  Google Scholar 

  139. Fei, H.L., Dong, J.C., Wan, C.Z., et al.: Microwave-assisted rapid synthesis of graphene-supported single atomic metals. Adv. Mater. 30, 1802146 (2018). https://doi.org/10.1002/adma.201802146

    Article  CAS  Google Scholar 

  140. Koshy, D.M., Chen, S.C., Lee, D.U., et al.: Understanding the origin of highly selective CO2 electroreduction to CO on Ni, N-doped carbon catalysts. Angew. Chem. Int. Ed. 59, 4043–4050 (2020). https://doi.org/10.1002/anie.201912857

    Article  CAS  Google Scholar 

  141. Zhao, S.Y., Chen, G.X., Zhou, G.M., et al.: A universal seeding strategy to synthesize single atom catalysts on 2D materials for electrocatalytic applications. Adv. Funct. Mater. 30, 1906157 (2020). https://doi.org/10.1002/adfm.201906157

    Article  CAS  Google Scholar 

  142. Sun, T., Jiang, Y.F., Wu, Q., et al.: Is iron nitride or carbide highly active for oxygen reduction reaction in acidic medium? Catal. Sci. Technol. 7, 51–55 (2017). https://doi.org/10.1039/c6cy01921h

    Article  CAS  Google Scholar 

  143. Jeong, H., Shin, S., Lee, H.: Heterogeneous atomic catalysts overcoming the limitations of single-atom catalysts. ACS Nano 14, 14355–14374 (2020). https://doi.org/10.1021/acsnano.0c06610

    Article  CAS  Google Scholar 

  144. Wu, J.B., **ong, L.K., Zhao, B.T., et al.: Densely populated single atom catalysts. Small Methods 4, 1900540 (2020). https://doi.org/10.1002/smtd.201900540

    Article  CAS  Google Scholar 

  145. Zhao, L., Zhang, Y., Huang, L.B., et al.: Cascade anchoring strategy for general mass production of high-loading single-atomic metal-nitrogen catalysts. Nat. Commun. 10, 1278 (2019). https://doi.org/10.1038/s41467-019-09290-y

    Article  CAS  Google Scholar 

  146. Cheng, Y., Zhao, S.Y., Johannessen, B., et al.: Atomically dispersed transition metals on carbon nanotubes with ultrahigh loading for selective electrochemical carbon dioxide reduction. Adv. Mater. 30, e1706287 (2018). https://doi.org/10.1002/adma.201706287

    Article  CAS  Google Scholar 

  147. Yan, C.C., Li, H.B., Ye, Y.F., et al.: Coordinatively unsaturated nickel–nitrogen sites towards selective and high-rate CO2 electroreduction. Energy Environ. Sci. 11, 1204–1210 (2018). https://doi.org/10.1039/c8ee00133b

    Article  CAS  Google Scholar 

  148. Zhang, J., Zhao, Z., **a, Z., et al.: A metal-free bifunctional electrocatalyst for oxygen reduction and oxygen evolution reactions. Nat. Nanotechnol. 10, 444–452 (2015). https://doi.org/10.1038/nnano.2015.48

    Article  CAS  Google Scholar 

  149. Sun, T., Wu, Q., Jiang, Y.F., et al.: Sulfur and nitrogen codoped carbon tubes as bifunctional metal-free electrocatalysts for oxygen reduction and hydrogen evolution in acidic media. Chem. Eur. J. 22, 10326–10329 (2016). https://doi.org/10.1002/chem.201601535

    Article  CAS  Google Scholar 

  150. Zhao, C.M., Dai, X.Y., Yao, T., et al.: Ionic exchange of metal-organic frameworks to access single nickel sites for efficient electroreduction of CO2. J. Am. Chem. Soc. 139, 8078–8081 (2017). https://doi.org/10.1021/jacs.7b02736

    Article  CAS  Google Scholar 

  151. Rong, X., Wang, H.J., Lu, X.L., et al.: Controlled synthesis of a vacancy-defect single-atom catalyst for boosting CO2 electroreduction. Angew. Chem. Int. Ed. 59, 1961–1965 (2020). https://doi.org/10.1002/anie.201912458

    Article  CAS  Google Scholar 

  152. Zhang, C.H., Yang, S.Z., Wu, J.J., et al.: Electrochemical CO2 reduction with atomic iron-dispersed on nitrogen-doped graphene. Adv. Energy Mater. 8, 1703487 (2018). https://doi.org/10.1002/aenm.201703487

    Article  CAS  Google Scholar 

  153. Li, X.G., **, S.B., Sun, L.B., et al.: Isolated FeN4 sites for efficient electrocatalytic CO2 reduction. Adv. Sci. 7, 2001545 (2020). https://doi.org/10.1002/advs.202001545

    Article  CAS  Google Scholar 

  154. Pan, F.P., Li, B.Y., Sarnello, E., et al.: Boosting CO2 reduction on Fe–N–C with sulfur incorporation: synergistic electronic and structural engineering. Nano Energy 68, 104384 (2020). https://doi.org/10.1016/j.nanoen.2019.104384

    Article  CAS  Google Scholar 

  155. Zhang, H.N., Li, J., **, S.B., et al.: A graphene-supported single-atom FeN5 catalytic site for efficient electrochemical CO2 reduction. Angew. Chem. Int. Ed. 58, 14871–14876 (2019). https://doi.org/10.1002/anie.201906079

    Article  CAS  Google Scholar 

  156. Sun, L.B., Huang, Z.F., Reddu, V., et al.: A planar, conjugated N4-macrocyclic cobalt complex for heterogeneous electrocatalytic CO2 reduction with high activity. Angew. Chem. Int. Ed. 59, 17104–17109 (2020). https://doi.org/10.1002/anie.202007445

    Article  CAS  Google Scholar 

  157. Hou, P.F., Song, W.L., Wang, X.P., et al.: Well-defined single-atom cobalt catalyst for electrocatalytic flue gas CO2 reduction. Small 16, 2001896 (2020). https://doi.org/10.1002/smll.202001896

    Article  CAS  Google Scholar 

  158. Zhang, X., Wu, Z., Zhang, X., et al.: Highly selective and active CO2 reduction electrocatalysts based on cobalt phthalocyanine/carbon nanotube hybrid structures. Nat. Commun. 8, 14675 (2017). https://doi.org/10.1038/ncomms14675

    Article  Google Scholar 

  159. Wang, J., Huang, X., **, S.B., et al.: Linkage effect in the heterogenization of cobalt complexes by doped graphene for electrocatalytic CO2 reduction. Angew. Chem. Int. Ed. 58, 13532–13539 (2019). https://doi.org/10.1002/anie.201906475

    Article  CAS  Google Scholar 

  160. Lin, L., Li, H.B., Yan, C.C., et al.: Synergistic catalysis over iron-nitrogen sites anchored with cobalt phthalocyanine for efficient CO2 electroreduction. Adv. Mater. 31, 1903470 (2019). https://doi.org/10.1002/adma.201903470

    Article  CAS  Google Scholar 

  161. Karapinar, D., Huan, N.T., Ranjbar Sahraie, N., et al.: Electroreduction of CO2 on single-site copper-nitrogen-doped carbon material: selective formation of ethanol and reversible restructuration of the metal sites. Angew. Chem. Int. Ed. 58, 15098–15103 (2019). https://doi.org/10.1002/anie.201907994

    Article  CAS  Google Scholar 

  162. Han, L.L., Song, S.J., Liu, M.J., et al.: Stable and efficient single-atom Zn catalyst for CO2 reduction to CH4. J. Am. Chem. Soc. 142, 12563–12567 (2020). https://doi.org/10.1021/jacs.9b12111

    Article  CAS  Google Scholar 

  163. Han, A.J., Wang, B.Q., Kumar, A., et al.: Recent advances for MOF-derived carbon-supported single-atom catalysts. Small Methods 3, 1800471 (2019). https://doi.org/10.1002/smtd.201800471

    Article  CAS  Google Scholar 

  164. Jiao, L., Yang, W.J., Wan, G., et al.: Single-atom electrocatalysts from multivariate metal–organic frameworks for highly selective reduction of CO2 at low pressures. Angew. Chem. Int. Ed. 59, 20589–20595 (2020). https://doi.org/10.1002/anie.202008787

    Article  CAS  Google Scholar 

  165. Howarth, A.J., Peters, A.W., Vermeulen, N.A., et al.: Best practices for the synthesis, activation, and characterization of metal–organic frameworks. Chem. Mater. 29, 26–39 (2017). https://doi.org/10.1021/acs.chemmater.6b02626

    Article  CAS  Google Scholar 

  166. Kaneti, Y.V., Tang, J., Salunkhe, R.R., et al.: Nanoarchitectured design of porous materials and nanocomposites from metal-organic frameworks. Adv. Mater. 29, 1604898 (2017). https://doi.org/10.1002/adma.201604898

    Article  CAS  Google Scholar 

  167. Liu, L.C., Corma, A.: Metal catalysts for heterogeneous catalysis: from single atoms to nanoclusters and nanoparticles. Chem. Rev. 118, 4981–5079 (2018). https://doi.org/10.1021/acs.chemrev.7b00776

    Article  CAS  Google Scholar 

  168. Zhu, Y.Z., Peng, W.C., Li, Y., et al.: Modulating the electronic structure of single-atom catalysts on 2D nanomaterials for enhanced electrocatalytic performance. Small Methods 3, 1800438 (2019). https://doi.org/10.1002/smtd.201800438

    Article  CAS  Google Scholar 

  169. Zhang, B.W., Wang, Y.X., Chou, S.L., et al.: Fabrication of superior single-atom catalysts toward diverse electrochemical reactions. Small Methods 3, 1800497 (2019). https://doi.org/10.1002/smtd.201800497

    Article  CAS  Google Scholar 

  170. Chen, Y.J., Ji, S.F., Wang, Y.G., et al.: Isolated single iron atoms anchored on N-doped porous carbon as an efficient electrocatalyst for the oxygen reduction reaction. Angew. Chem. Int. Ed. 56, 6937–6941 (2017). https://doi.org/10.1002/anie.201702473

    Article  CAS  Google Scholar 

  171. Wang, X.X., Cullen, D.A., Pan, Y.T., et al.: Nitrogen-coordinated single cobalt atom catalysts for oxygen reduction in proton exchange membrane fuel cells. Adv. Mater. 30, 1706758 (2018). https://doi.org/10.1002/adma.201706758

    Article  CAS  Google Scholar 

  172. Yin, P.Q., Yao, T., Wu, Y.E., et al.: Single cobalt atoms with precise N-coordination as superior oxygen reduction reaction catalysts. Angew. Chem. Int. Ed. 55, 10800–10805 (2016). https://doi.org/10.1002/anie.201604802

    Article  CAS  Google Scholar 

  173. Shang, L., Yu, H.J., Huang, X., et al.: Well-dispersed ZIF-derived Co,N co-doped carbon nanoframes through mesoporous-silica-protected calcination as efficient oxygen reduction electrocatalysts. Adv. Mater. 28, 1668–1674 (2016). https://doi.org/10.1002/adma.201505045

    Article  CAS  Google Scholar 

  174. Hou, Y., Liang, Y.L., Shi, P.C., et al.: Atomically dispersed Ni species on N-doped carbon nanotubes for electroreduction of CO2 with nearly 100% CO selectivity. Appl. Catal. B Environ. 271, 118929 (2020). https://doi.org/10.1016/j.apcatb.2020.118929

    Article  CAS  Google Scholar 

  175. Pan, F.P., Zhang, H.G., Liu, Z.Y., et al.: Atomic-level active sites of efficient imidazolate framework-derived nickel catalysts for CO2 reduction. J. Mater. Chem. A 7, 26231–26237 (2019). https://doi.org/10.1039/c9ta08862h

    Article  CAS  Google Scholar 

  176. Wang, Y., Jiang, Z., Zhang, X., et al.: Metal phthalocyanine-derived single-atom catalysts for selective CO2 electroreduction under high current densities. ACS Appl. Mater. Interfaces 12, 33795–33802 (2020). https://doi.org/10.1021/acsami.0c08940

    Article  CAS  Google Scholar 

  177. Qu, Y., Li, Z., Chen, W., et al.: Direct transformation of bulk copper into copper single sites via emitting and trap** of atoms. Nat. Catal. 1, 781–786 (2018). https://doi.org/10.1038/s41929-018-0146-x

    Article  CAS  Google Scholar 

  178. Yang, Z., Chen, B., Chen, W., et al.: Directly transforming copper (I) oxide bulk into isolated single-atom copper sites catalyst through gas-transport approach. Nat. Commun. 10, 3734 (2019). https://doi.org/10.1038/s41467-019-11796-4

    Article  CAS  Google Scholar 

  179. Yang, J., Qiu, Z.Y., Zhao, C.M., et al.: In situ thermal atomization to convert supported nickel nanoparticles into surface-bound nickel single-atom catalysts. Angew. Chem. Int. Ed. 57, 14095–14100 (2018). https://doi.org/10.1002/anie.201808049

    Article  CAS  Google Scholar 

  180. He, Y., Li, Y.X., Zhang, J.F., et al.: Low-temperature strategy toward Ni–NC@Ni core–shell nanostructure with single-Ni sites for efficient CO2 electroreduction. Nano Energy 77, 105010 (2020). https://doi.org/10.1016/j.nanoen.2020.105010

    Article  CAS  Google Scholar 

  181. Gao, D.F., Liu, T.F., Wang, G.X., et al.: Structure sensitivity in single-atom catalysis toward CO2 electroreduction. ACS Energy Lett. 6, 713–727 (2021). https://doi.org/10.1021/acsenergylett.0c02665

    Article  CAS  Google Scholar 

  182. Li, Z.H., He, H.Y., Cao, H.B., et al.: Atomic Co/Ni dual sites and Co/Ni alloy nanoparticles in N-doped porous Janus-like carbon frameworks for bifunctional oxygen electrocatalysis. Appl. Catal. B Environ. 240, 112–121 (2019). https://doi.org/10.1016/j.apcatb.2018.08.074

    Article  CAS  Google Scholar 

  183. Zhu, Z.J., Yin, H.J., Wang, Y., et al.: Coexisting single-atomic Fe and Ni sites on hierarchically ordered porous carbon as a highly efficient ORR electrocatalyst. Adv. Mater. 32, 2004670 (2020). https://doi.org/10.1002/adma.202004670

    Article  CAS  Google Scholar 

  184. Wang, Z.L., Choi, J., Xu, M.Q., et al.: Optimizing electron densities of Ni–N–C complexes by hybrid coordination for efficient electrocatalytic CO2 reduction. Chemsuschem 13, 929–937 (2020). https://doi.org/10.1002/cssc.201903427

    Article  CAS  Google Scholar 

  185. Zhang, J.Q., Zhao, Y.F., Chen, C., et al.: Tuning the coordination environment in single-atom catalysts to achieve highly efficient oxygen reduction reactions. J. Am. Chem. Soc. 141, 20118–20126 (2019). https://doi.org/10.1021/jacs.9b09352

    Article  CAS  Google Scholar 

  186. Pan, Y., Chen, Y., Wu, K., et al.: Regulating the coordination structure of single-atom Fe–NxCy catalytic sites for benzene oxidation. Nat. Commun. 10, 4290 (2019). https://doi.org/10.1038/s41467-019-12362-8

    Article  CAS  Google Scholar 

  187. Li, Y.C., Liu, X.F., Zheng, L.R., et al.: Preparation of Fe–N–C catalysts with FeNx (x = 1, 3, 4) active sites and comparison of their activities for the oxygen reduction reaction and performances in proton exchange membrane fuel cells. J. Mater. Chem. A 7, 26147–26153 (2019). https://doi.org/10.1039/c9ta08532g

    Article  CAS  Google Scholar 

  188. Li, J.Z., Zhang, H.G., Samarakoon, W., et al.: Thermally driven structure and performance evolution of atomically dispersed FeN4 sites for oxygen reduction. Angew. Chem. Int. Ed. 58, 18971–18980 (2019). https://doi.org/10.1002/anie.201909312

    Article  CAS  Google Scholar 

  189. Chen, P.Z., Zhou, T.P., **ng, L.L., et al.: Atomically dispersed iron-nitrogen species as electrocatalysts for bifunctional oxygen evolution and reduction reactions. Angew. Chem. Int. Ed. 56, 610–614 (2017). https://doi.org/10.1002/anie.201610119

    Article  CAS  Google Scholar 

  190. Shen, H.J., Gracia-Espino, E., Ma, J.Y., et al.: Synergistic effects between atomically dispersed Fe–N–C and C−S–C for the oxygen reduction reaction in acidic media. Angew. Chem. Int. Ed. 56, 13800–13804 (2017). https://doi.org/10.1002/anie.201706602

    Article  CAS  Google Scholar 

  191. Hou, Y., Qiu, M., Kim, M.G., et al.: Atomically dispersed nickel–nitrogen–sulfur species anchored on porous carbon nanosheets for efficient water oxidation. Nat. Commun. 10, 1392 (2019). https://doi.org/10.1038/s41467-019-09394-5

    Article  CAS  Google Scholar 

  192. Li, Z.D., He, D., Yan, X.X., et al.: Size-dependent nickel-based electrocatalysts for selective CO2 reduction. Angew. Chem. Int. Ed. 59, 18572–18577 (2020). https://doi.org/10.1002/anie.202000318

    Article  CAS  Google Scholar 

  193. Li, X.G., Bi, W.T., Chen, M.L., et al.: Exclusive Ni–N4 sites realize near-unity CO selectivity for electrochemical CO2 reduction. J. Am. Chem. Soc. 139, 14889–14892 (2017). https://doi.org/10.1021/jacs.7b09074

    Article  CAS  Google Scholar 

  194. Zhang, M.L., Wu, T.S., Hong, S., et al.: Efficient electrochemical reduction of CO2 by Ni–N catalysts with tunable performance. ACS Sustain. Chem. Eng. 7, 15030–15035 (2019). https://doi.org/10.1021/acssuschemeng.9b03502

    Article  CAS  Google Scholar 

  195. Yuan, C.Z., Zhan, L.Y., Liu, S.J., et al.: Semi-sacrificial template synthesis of single-atom Ni sites supported on hollow carbon nanospheres for efficient and stable electrochemical CO2 reduction. Inorg. Chem. Front. 7, 1719–1725 (2020). https://doi.org/10.1039/c9qi01688k

    Article  CAS  Google Scholar 

  196. Gang, Y., Pan, F.P., Fei, Y.H., et al.: Highly efficient nickel, iron, and nitrogen codoped carbon catalysts derived from industrial waste petroleum coke for electrochemical CO2 reduction. ACS Sustain. Chem. Eng. 8, 8840–8847 (2020). https://doi.org/10.1021/acssuschemeng.0c03054

    Article  CAS  Google Scholar 

  197. Fan, Q., Hou, P.F., Choi, C., et al.: Activation of Ni particles into single Ni–N atoms for efficient electrochemical reduction of CO2. Adv. Energy Mater. 10, 1903068 (2020). https://doi.org/10.1002/aenm.201903068

    Article  CAS  Google Scholar 

  198. Wu, J.X., Yuan, W.W., Xu, M., et al.: Ultrathin 2D nickel zeolitic imidazolate framework nanosheets for electrocatalytic reduction of CO2. Chem. Commun. 55, 11634–11637 (2019). https://doi.org/10.1039/c9cc05487a

    Article  CAS  Google Scholar 

  199. Wang, X.Y., Wang, Y., Sang, X.H., et al.: Dynamic activation of adsorbed intermediates via axial traction for the promoted electrochemical CO2 reduction. Angew. Chem. Int. Ed. 60, 4192–4198 (2021). https://doi.org/10.1002/anie.202013427

    Article  CAS  Google Scholar 

  200. Sun, M.J., Gong, Z.W., Yi, J.D., et al.: A highly efficient diatomic nickel electrocatalyst for CO2 reduction. Chem. Commun. 56, 8798–8801 (2020). https://doi.org/10.1039/d0cc03410j

    Article  CAS  Google Scholar 

  201. Luo, G., **g, Y., Li, Y.F.: Rational design of dual-metal-site catalysts for electroreduction of carbon dioxide. J. Mater. Chem. A 8, 15809–15815 (2020). https://doi.org/10.1039/d0ta00033g

    Article  CAS  Google Scholar 

  202. He, Q., Liu, D.B., Lee, J.H., et al.: Electrochemical conversion of CO2 to syngas with controllable CO/H2 ratios over co and Ni single-atom catalysts. Angew. Chem. Int. Ed. 59, 3033–3037 (2020). https://doi.org/10.1002/anie.201912719

    Article  CAS  Google Scholar 

  203. Wang, X.W., Wu, D., Dai, C.Z., et al.: Novel folic acid complex derived nitrogen and nickel co-doped carbon nanotubes with embedded Ni nanoparticles as efficient electrocatalysts for CO2 reduction. J. Mater. Chem. A 8, 5105–5114 (2020). https://doi.org/10.1039/c9ta12238a

    Article  CAS  Google Scholar 

  204. Zhu, W.L., Fu, J.J., Liu, J., et al.: Tuning single atom-nanoparticle ratios of Ni-based catalysts for synthesis gas production from CO2. Appl. Catal. B Environ. 264, 118502 (2020). https://doi.org/10.1016/j.apcatb.2019.118502

    Article  CAS  Google Scholar 

  205. Pei, J.J., Wang, T., Sui, R., et al.: N-bridged Co–N–Ni: new bimetallic sites for promoting electrochemical CO2 reduction. Energy Environ. Sci. 14, 3019–3028 (2021). https://doi.org/10.1039/d0ee03947k

    Article  CAS  Google Scholar 

  206. Hossain, M.D., Huang, Y., Yu, T.H., et al.: Reaction mechanism and kinetics for CO2 reduction on nickel single atom catalysts from quantum mechanics. Nat. Commun. 11, 2256 (2020). https://doi.org/10.1038/s41467-020-16119-6

    Article  CAS  Google Scholar 

  207. Gong, Y.N., Jiao, L., Qian, Y.Y., et al.: Regulating the coordination environment of MOF-templated single-atom nickel electrocatalysts for boosting CO2 reduction. Angew. Chem. Int. Ed. 59, 2705–2709 (2020). https://doi.org/10.1002/anie.201914977

    Article  CAS  Google Scholar 

  208. Zhang, Y., Jiao, L., Yang, W.J., et al.: Rational fabrication of low-coordinate single-atom Ni electrocatalysts by MOFs for highly selective CO2 reduction. Angew. Chem. Int. Ed. 60, 7607–7611 (2021). https://doi.org/10.1002/anie.202016219

    Article  CAS  Google Scholar 

  209. Chen, J.G.: Electrochemical CO2 reduction via low-valent nickel single-atom catalyst. Joule 2, 587–589 (2018). https://doi.org/10.1016/j.joule.2018.03.018

    Article  CAS  Google Scholar 

  210. Möller, T., Ju, W., Bagger, A., et al.: Efficient CO2 to CO electrolysis on solid Ni–N–C catalysts at industrial current densities. Energy Environ. Sci. 12, 640–647 (2019). https://doi.org/10.1039/c8ee02662a

    Article  CAS  Google Scholar 

  211. Asset, T., Garcia, S.T., Herrera, S., et al.: Investigating the nature of the active sites for the CO2 reduction reaction on carbon-based electrocatalysts. ACS Catal. 9, 7668–7678 (2019). https://doi.org/10.1021/acscatal.9b01513

    Article  CAS  Google Scholar 

  212. Yang, H.J., Zhang, X., Hong, Y.H., et al.: Superior selectivity and tolerance towards metal-ion impurities of a Fe/N/C catalyst for CO2 reduction. Chemsuschem 12, 3988–3995 (2019). https://doi.org/10.1002/cssc.201901330

    Article  CAS  Google Scholar 

  213. Huan, T.N., Ranjbar, N., Rousse, G., et al.: Electrochemical reduction of CO2 catalyzed by Fe–N–C materials: a structure-selectivity study. ACS Catal. 7, 1520–1525 (2017). https://doi.org/10.1021/acscatal.6b03353

    Article  CAS  Google Scholar 

  214. Ju, W., Bagger, A., Wang, X.L., et al.: Unraveling mechanistic reaction pathways of the electrochemical CO2 reduction on Fe–N–C single-site catalysts. ACS Energy Lett. 4, 1663–1671 (2019). https://doi.org/10.1021/acsenergylett.9b01049

    Article  CAS  Google Scholar 

  215. Vijay, S., Gauthier, J.A., Heenen, H.H., et al.: Dipole-field interactions determine the CO2 reduction activity of 2D Fe–N–C single-atom catalysts. ACS Catal. 10, 7826–7835 (2020). https://doi.org/10.1021/acscatal.0c01375

    Article  CAS  Google Scholar 

  216. Li, X.X., Chai, G.L., Xu, X., et al.: Electrocatalytic reduction of CO2 to CO over iron phthalocyanine-modified graphene nanocomposites. Carbon 167, 658–667 (2020). https://doi.org/10.1016/j.carbon.2020.06.036

    Article  CAS  Google Scholar 

  217. Jiang, Z., Wang, Y., Zhang, X., et al.: Revealing the hidden performance of metal phthalocyanines for CO2 reduction electrocatalysis by hybridization with carbon nanotubes. Nano Res. 12, 2330–2334 (2019). https://doi.org/10.1007/s12274-019-2455-z

    Article  CAS  Google Scholar 

  218. Tuo, J.Q., Lin, Y.X., Zhu, Y.H., et al.: Local structure tuning in Fe–N–C catalysts through support effect for boosting CO2 electroreduction. Appl. Catal. B Environ. 272, 118960 (2020). https://doi.org/10.1016/j.apcatb.2020.118960

    Article  CAS  Google Scholar 

  219. Pan, F.P., Li, B.Y., Sarnello, E., et al.: Atomically dispersed iron-nitrogen sites on hierarchically mesoporous carbon nanotube and graphene nanoribbon networks for CO2 reduction. ACS Nano 14, 5506–5516 (2020)

    Article  CAS  Google Scholar 

  220. Li, E.L., Yang, F., Wu, Z.M., et al.: A bifunctional highly efficient FeNx/C electrocatalyst. Small 14, 1702827 (2018). https://doi.org/10.1002/smll.201702827

    Article  CAS  Google Scholar 

  221. Pan, F.P., Zhao, H.L., Deng, W., et al.: A novel N,Fe-decorated carbon nanotube/carbon nanosheet architecture for efficient CO2 reduction. Electrochim. Acta 273, 154–161 (2018). https://doi.org/10.1016/j.electacta.2018.04.047

    Article  CAS  Google Scholar 

  222. Wu, S.D., Lv, X.N., **, D., et al.: Highly exposed atomic Fe–N active sites within carbon nanorods towards electrocatalytic reduction of CO2 to CO. Electrochim. Acta 340, 135930 (2020). https://doi.org/10.1016/j.electacta.2020.135930

    Article  CAS  Google Scholar 

  223. Ye, Y.F., Cai, F., Li, H.B., et al.: Surface functionalization of ZIF-8 with ammonium ferric citrate toward high exposure of Fe–N active sites for efficient oxygen and carbon dioxide electroreduction. Nano Energy 38, 281–289 (2017). https://doi.org/10.1016/j.nanoen.2017.05.042

    Article  CAS  Google Scholar 

  224. Hu, C., Bai, S.L., Gao, L.J., et al.: Porosity-induced high selectivity for CO2 electroreduction to CO on Fe-doped ZIF-derived carbon catalysts. ACS Catal. 9, 11579–11588 (2019)

    Article  CAS  Google Scholar 

  225. Hu, X.M., Mendoza, D., Madsen, M.R., et al.: Achieving near-unity CO selectivity for CO2 electroreduction on an iron-decorated carbon material. ChemSusChem (2020). https://doi.org/10.1002/cssc.202001311

    Article  Google Scholar 

  226. Hu, C., Mu, Y., Bai, S.L., et al.: Polyvinyl pyrrolidone mediated fabrication of Fe,N-codoped porous carbon sheets for efficient electrocatalytic CO2 reduction. Carbon 153, 609–616 (2019). https://doi.org/10.1016/j.carbon.2019.07.071

    Article  CAS  Google Scholar 

  227. Wang, F.H., **e, H.P., Liu, T., et al.: Highly dispersed CuFe-nitrogen active sites electrode for synergistic electrochemical CO2 reduction at low overpotential. Appl. Energy 269, 115029 (2020). https://doi.org/10.1016/j.apenergy.2020.115029

    Article  CAS  Google Scholar 

  228. Qin, X.P., Zhu, S.Q., **ao, F., et al.: Active sites on heterogeneous single-iron-atom electrocatalysts in CO2 reduction reaction. ACS Energy Lett. 4, 1778–1783 (2019). https://doi.org/10.1021/acsenergylett.9b01015

    Article  CAS  Google Scholar 

  229. Xu, C.C., Vasileff, A., Wang, D., et al.: Synergistic catalysis between atomically dispersed Fe and a pyrrolic-N–C framework for CO2 electroreduction. Nanoscale Horiz. 4, 1411–1415 (2019). https://doi.org/10.1039/c9nh00361d

    Article  CAS  Google Scholar 

  230. Liu, C.H., Wu, Y., Sun, K.A., et al.: Constructing FeN4/graphitic nitrogen atomic interface for high-efficiency electrochemical CO2 reduction over a broad potential window. Chem 7, 1297–1307 (2021). https://doi.org/10.1016/j.chempr.2021.02.001

    Article  CAS  Google Scholar 

  231. Chen, Z.Q., Huang, A.J., Yu, K., et al.: Fe1N4–O1 site with axial Fe–O coordination for highly selective CO2 reduction over a wide potential range. Energy Environ. Sci. 14, 3430–3437 (2021). https://doi.org/10.1039/d1ee00569c

    Article  CAS  Google Scholar 

  232. Han, N., Wang, Y., Ma, L., et al.: Supported cobalt polyphthalocyanine for high-performance electrocatalytic CO2 reduction. Chem 3, 652–664 (2017). https://doi.org/10.1016/j.chempr.2017.08.002

    Article  CAS  Google Scholar 

  233. Hu, X.M., Rønne, M.H., Pedersen, S.U., et al.: Enhanced catalytic activity of cobalt porphyrin in CO2 electroreduction upon immobilization on carbon materials. Angew. Chem. Int. Ed. 56, 6468–6472 (2017). https://doi.org/10.1002/anie.201701104

    Article  CAS  Google Scholar 

  234. Song, X.K., Zhang, H., Yang, Y.Q., et al.: Bifunctional nitrogen and cobalt codoped hollow carbon for electrochemical syngas production. Adv. Sci. 5, 1800177 (2018). https://doi.org/10.1002/advs.201800177

    Article  CAS  Google Scholar 

  235. Yang, H.P., Lin, Q., Wu, Y., et al.: Highly efficient utilization of single atoms via constructing 3D and free-standing electrodes for CO2 reduction with ultrahigh current density. Nano Energy 70, 104454 (2020). https://doi.org/10.1016/j.nanoen.2020.104454

    Article  CAS  Google Scholar 

  236. Zhang, Z., **ao, J.P., Chen, X.J., et al.: Reaction mechanisms of well-defined metal-N4 sites in electrocatalytic CO2 reduction. Angew. Chem. Int. Ed. 57, 16339–16342 (2018). https://doi.org/10.1002/anie.201808593

    Article  CAS  Google Scholar 

  237. **a, Y.J., Kashtanov, S., Yu, P.F., et al.: Identification of dual-active sites in cobalt phthalocyanine for electrochemical carbon dioxide reduction. Nano Energy 67, 104163 (2020). https://doi.org/10.1016/j.nanoen.2019.104163

    Article  CAS  Google Scholar 

  238. Zhu, W.J., Zhang, L., Liu, S.H., et al.: Enhanced CO2 electroreduction on neighboring Zn/Co monomers by electronic effect. Angew. Chem. Int. Ed. 59, 12664–12668 (2020). https://doi.org/10.1002/anie.201916218

    Article  CAS  Google Scholar 

  239. Zhang, B., Zhang, J., Shi, J., et al.: Manganese acting as a high-performance heterogeneous electrocatalyst in carbon dioxide reduction. Nat. Commun. 10, 2980 (2019). https://doi.org/10.1038/s41467-019-10854-1

    Article  CAS  Google Scholar 

  240. Ni, W.P., Gao, Y., Lin, Y., et al.: Nonnitrogen coordination environment steering electrochemical CO2-to-CO conversion over single-atom tin catalysts in a wide potential window. ACS Catal. 11, 5212–5221 (2021). https://doi.org/10.1021/acscatal.0c05514

    Article  CAS  Google Scholar 

  241. Cai, Y.M., Fu, J.J., Zhou, Y., et al.: Insights on forming N,O-coordinated Cu single-atom catalysts for electrochemical reduction CO2 to methane. Nat. Commun. 12, 586 (2021). https://doi.org/10.1038/s41467-020-20769-x

    Article  CAS  Google Scholar 

  242. Mao, K., Yang, L.J., Wang, X.Z., et al.: Identifying iron-nitrogen/carbon active structures for oxygen reduction reaction under the effect of electrode potential. J. Phys. Chem. Lett. 11, 2896–2901 (2020). https://doi.org/10.1021/acs.jpclett.0c00428

    Article  CAS  Google Scholar 

  243. Vijay, S., Ju, W., Brückner, S., et al.: Unified mechanistic understanding of CO2 reduction to CO on transition metal and single atom catalysts. Nat. Catal. 4, 1024–1031 (2021). https://doi.org/10.1038/s41929-021-00705-y

    Article  CAS  Google Scholar 

  244. **, S., Hao, Z.M., Zhang, K., et al.: Advances and challenges for the electrochemical reduction of CO2 to CO: from fundamentals to industrialization. Angew. Chem. Int. Ed. 60, 20627–20648 (2021). https://doi.org/10.1002/anie.202101818

    Article  CAS  Google Scholar 

  245. Zhao, Z.N., Ma, C.D., Chen, F.Y., et al.: Water caltrop shell-derived nitrogen-doped porous carbons with high CO2 adsorption capacity. Biomass Bioenergy 145, 105969 (2021). https://doi.org/10.1016/j.biombioe.2021.105969

    Article  CAS  Google Scholar 

  246. Zhao, C.M., Wang, Y., Li, Z.J., et al.: Solid-diffusion synthesis of single-atom catalysts directly from bulk metal for efficient CO2 reduction. Joule 3, 584–594 (2019). https://doi.org/10.1016/j.joule.2018.11.008

    Article  CAS  Google Scholar 

  247. Wu, Q., Yang, L.J., Wang, X.Z., et al.: Carbon-based nanocages: a new platform for advanced energy storage and conversion. Adv. Mater. 32, 2070206 (2020). https://doi.org/10.1002/adma.202070206

    Article  CAS  Google Scholar 

  248. Wu, Q., Yang, L.J., Wang, X.Z., et al.: Mesostructured carbon-based nanocages: an advanced platform for energy chemistry. Sci. China Chem. 63, 665–681 (2020). https://doi.org/10.1007/s11426-020-9748-0

    Article  CAS  Google Scholar 

  249. Wu, Q., Yang, L.J., Wang, X.Z., et al.: From carbon-based nanotubes to nanocages for advanced energy conversion and storage. Acc. Chem. Res. 50, 435–444 (2017). https://doi.org/10.1021/acs.accounts.6b00541

    Article  CAS  Google Scholar 

  250. Zhu, S.Q., Delmo, E.P., Li, T.H., et al.: Recent advances in catalyst structure and composition engineering strategies for regulating CO2 electrochemical reduction. Adv. Mater. 33, 2005484 (2021). https://doi.org/10.1002/adma.202005484

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was jointly supported by the National Key Research and Development Program of China (2017YFA0206500, 2018YFA0209103, 2021YFA1500900), the National Natural Science Foundation of China (21832003, 21773111, 21972061, 52071174), the Leading-edge Technology Program of Jiangsu Natural Science Foundation (BK20212005) and the Nan**g University Innovation Program for the PhD candidate (No. CXYJ21-38).

Author information

Authors and Affiliations

Authors

Contributions

Y. Chen, J. Zhang: Investigation, data curation, writing original draft, writing & Review & Editing. L. Yang, X. Wang: Writing & Review & Editing, supervision, funding acquisition. Q. Wu, Z. Hu: Conceptualization, writing & Review & Editing, supervision, project administration, funding acquisition.

Corresponding authors

Correspondence to Qiang Wu or Zheng Hu.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Ethical statements

I hereby declare that this manuscript is the result of my independent creation under the reviewer’s comments. Except for the quoted contents. this manuscript does not contain any research achievements that have been published or written by other individuals or groups. I am the only author of this manuscript. The legal responsibility of this statement shall be borne by me.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, Y., Zhang, J., Yang, L. et al. Recent Advances in Non-Precious Metal–Nitrogen–Carbon Single-Site Catalysts for CO2 Electroreduction Reaction to CO. Electrochem. Energy Rev. 5, 11 (2022). https://doi.org/10.1007/s41918-022-00156-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s41918-022-00156-4

Keywords

Navigation