Log in

A New Approach to the Hard Problem of Consciousness: a Quasicrystalline Language of “Primitive Units of Consciousness” in Quantized Spacetime

  • Ideas and Opinion
  • Published:
Activitas Nervosa Superior

Abstract

The hard problem of consciousness must be approached through the ontological lens of twentieth-century physics, which tells us that reality is information theoretic Wheeler (American Scientist, 74, 366–375, 1986; Wheeler (1990) and quantized at the level of Planck scale spacetime Snyder (Physical Review D, 67, 38–41, 1947). Through careful deduction, it becomes clear that information cannot exist without consciousness—the awareness of things. And to be aware is to hold the meaning of relationships of objects within consciousness—perceiving abstract objects, while enjoying degrees of freedom within the structuring of those relationships. This defines consciousness as language—(1) a set of objects and (2) an ordering scheme with (3) degrees of freedom used for (4) expressing meaning. And since even information at the Planck scale cannot exist without consciousness, we propose an entity called a “primitive unit of consciousness,” which acts as a mathematical operator in a quantized spacetime language. Quasicrystal mathematics based on E8 geometry Sadoc and Mosseri (Journal of Physics A: Mathematical and General, 26, 1789, 1993) seems to be a candidate for the language of reality, possessing several qualities corresponding to recent physical discoveries and various physically realistic unification models.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

References

  • Alfonso-Faus, A. (2011). Cosmology, holography, the brain and the quantum vacuum. ar**v preprint, ar**v, 1102.0443.

    Google Scholar 

  • Bem, D. J.. (2011) "Experimental evidence for anomalous retroactive influences on human cognition and affect." QUANTUM RETROCAUSATION: THEORY AND EXPERIMENT. Vol. 1408. No. 1. AIP Publishing.

  • Bem, D., et al. (2014) "Feeling the Future: A Meta-Analysis of 90 Experiments on the Anomalous Anticipation of Random Future Events." Available at SSRN 2423692 .

  • Bohm, D., & Hiley, B. (1977). On the intuitive understanding of non-locality as implied by quantum theory. Netherlands: Springer.

    Book  Google Scholar 

  • Calcagni, G. (2010a). Fractal universe and quantum gravity. Physical Review Letters, 104(25), 251301.

    Article  PubMed  Google Scholar 

  • Calcagni, G. (2010b). Quantum field theory, gravity and cosmology in a fractal universe. Journal of High Energy Physics, 2010(3), 1–38.

    Article  Google Scholar 

  • Castro, C.. (2002)."FRACTAL STRINGS AS THE BASIS OF CANTORIAN- FRACTAL SPACETIME AND THE FINE STRUCTURE CONSTANT." ar**v preprint hep-th/0203086.

  • Castro, C. (2007). A CHERN–SIMONS E8 GAUGE THEORY OF GRAVITY IN D= 15, GRAND UNIFICATION AND GENERALIZED GRAVITY IN CLIFFORD SPACES. International Journal of Geometric Methods in Modern Physics, 4(08), 1239–1257.

    Article  Google Scholar 

  • Chalmers, D. J. (1995). Facing up to the problem of consciousness. Journal of Consciousness Studies, 2(3), 200–219.

    Google Scholar 

  • Chamseddine, A. H., Felder, G., & Fröhlich, J. (1992). Unified gauge theories in non- commutative geometry. Physics Letters B, 296(1), 109–116.

    Article  Google Scholar 

  • Chamseddine, A. H., Felder, G., & Fröhlich, J. (1993). Grand unification in non- commutative geometry. Nuclear Physics B, 395(3), 672–698.

    Article  Google Scholar 

  • Cheng, T.-P., Li, L.-F., and Cheng, T.-P.. (1974) Gauge theory of elementary particle physics. Oxford: Clarendon press, 1984. & Labo, Iyman. "Unity of all elementary-particle forces." Physical Review Letters.

  • Christopher, L. H., & Elser, V. (1986). Quasicrystal structure of (Al, Zn) 49Mg32. Philosophical Magazine B, 53(3), L59–L66.

    Article  Google Scholar 

  • Churchland, P.S.. (2002) Brain-wise: Studies in neurophilosophy. MIT press

  • Coldea, R., et al. (2010). Quantum criticality in an Ising chain: Experimental evidence for emergent E8 symmetry. Science, 327(5962), 177–180.

    Article  PubMed  Google Scholar 

  • Connes, A.. (1988) Non-commutative geometry. Springer US.

  • Conway, J. (1970). The game of life. Scientific American, 223(4), 4.

    Google Scholar 

  • Conway, J. H., & Kochen, S. (2009). The strong free will theorem. Notices of the AMS, 56(2), 226–232.

    Google Scholar 

  • El Naschie, M. S. (1998). Penrose universe and Cantorian spacetime as a model for noncommutative quantum geometry. Chaos, Solitons & Fractals, 9(6), 931–933.

    Article  Google Scholar 

  • Freeman, W. J., & Vitiello, G. (2006). Nonlinear brain dynamics as macroscopic manifestation of underlying many-body field dynamics. Physics of Life Reviews, 3(2), 93–118.

    Article  Google Scholar 

  • Fuller, R. B. (1975). Synergetics. New York: Macmillan.

    Google Scholar 

  • Gautam, A., & Kak, S. (2013). Symbols, meaning, and origins of mind. Biosemiotics, 6(3), 301–310.

    Article  Google Scholar 

  • Grujić, P. V. (2011). The concept of fractal cosmos: III. Present state. Serbian Astron Journal, 182, 1–16.

    Article  Google Scholar 

  • Heisenberg, W.. (1971). "Physics and beyond: Encounters and conversations."

  • Heyrovska, R. (2005). The Golden ratio, ionic and atomic radii and bond lengths. Molecular Physics, 103(6–8), 877–882.

    Article  Google Scholar 

  • Hooft, G.. (2000) "The holographic principle." ar**v preprint hep-th/0003004.

  • Iovane, G., Laserra, E., & Tortoriello, F. S. (2004). Stochastic self-similar and fractal universe. Chaos, Solitons & Fractals, 20.3, 415–426.

    Article  Google Scholar 

  • Jaric, M.V., ed. (2012) Introduction to the Mathematics of Quasicrystals. Elsevier. p53.

  • Kak, S. (1995). On quantum neural computing. Information Sciences, 83(3), 143–160.

    Article  Google Scholar 

  • Kaliteevski, M.A., et al. (2000) "Two-dimensional Penrose-tiled photonic quasicrystals: diffraction of light and fractal density of modes." Journal of Modern Optics 47.11: 1771–1778. & Amann, Anton, Lenz Cederbaum, and Werner Gans, eds. Fractals, quasicrystals, chaos, knots and algebraic quantum mechanics. Kluwer Academic Publishers, 1988, ch1?.

  • Kellendonk, J. (1995). Noncommutative geometry of tilings and gap labelling. Reviews in Mathematical Physics, 7(07), 1133–1180.

    Article  Google Scholar 

  • King, C. C. (1996). Fractal Neurodynamics and quantum Chaos. Fractals Brain Fractals Mind Adv Conscious Res, 7, 179–233.

    Article  Google Scholar 

  • Kovacs, J., et al. (2012). "The Sum of Squares Law." ar**v preprint ar**v:1210.1446

  • Kroto, H. W., et al. (1991). Crystal structure and bonding of ordered C 60. Nature, 353, 147–149.

    Article  Google Scholar 

  • Leibniz, M., (2004) 17, as quoted by Istvan Aranyosi. "Chalmers's zombie arguments" (draft ed.). Central European University Personal Pages.

  • Lisi, A. G. (2007). An exceptionally simple theory of everything. ar**v preprint, ar**v, 0711.0770.

    Google Scholar 

  • Livio, M.. (1991) The golden ratio: the story of Phi, the extra ordinary number of nature, art and beauty. Review, 2003. & Kroto, Harold W., et al. "Crystal structure and bonding of ordered C 60." Nature 353: 147–9. See also http://io9.com/5985588/15-uncanny-examples-of-the-golden-ratio-in-nature

  • Maldacena, J. (2003). Eternal black holes in anti-de sitter. Journal of High Energy Physics, 04(2003), 021.

    Article  Google Scholar 

  • Penrose, R. (1979). "Set of tiles for covering a surface." U.S. Patent No. 4,133,152. 9 Jan.

  • Penrose, R., & Hameroff, S. (2011). Consciousness in the universe: Neuroscience, quantum space-time geometry and Orch OR theory. Journal of Cosmology, 14, 1–17.

    Google Scholar 

  • Perelman, C. C., Fang, F., & Irwin, K. (2013). Law of sums of the squares of areas, volumes and hyper-volumes of regular Polytopes from Clifford algebras. AACA: Advances in Applied Clifford Algebras, 23(4), 815–824.

    Article  Google Scholar 

  • Rosenblum B, and Kuttner F. Quantum enigma: Physics encounters consciousness. Oxford University Press, 2011.

  • Rovelli, C. (2003). Loop quantum gravity. Physics World, 2003, 37–42.

    Article  Google Scholar 

  • Sadoc, J. F., & Mosseri, R. (1993). The E8 lattice and quasicrystals: Geometry, number theory and quasicrystals. Journal of Physics A: Mathematical and General, 26(8), 1789.

    Article  Google Scholar 

  • Smith, F. D. T.. (2004) E6, Strings, Branes, and the Standard Model. No. EXT-2004-031. and for his most recent model see http://www.tony5m17h.net/1TSphysics.html

  • Snyder, H. (1947). http://prola.aps.org/abstract/PR/v71/i1/p38_1" "quantized space-time. Physical Review D, 67, 38–41.

    Article  Google Scholar 

  • Stanford Encyclopedia of Philosophy on Panpsychism (n.d.)

  • Stapp, H.P. (2007) Mindful universe: Quantum mechanics and the participating observer. Springer.

  • Susskind, L. (1995). The world as a hologram. Journal of Mathematical Physics, 36(11), 6377–6396.

    Article  Google Scholar 

  • Talbot, M. (1991). The holographic universe. London: HarperCollins Publishers.

    Google Scholar 

  • Tegmark, M.. (2008) "Is “the theory of everything” merely the ultimate ensemble theory?." Annals of Physics 270.1 (1998): 1–51. Tegmark, Max. "The mathematical universe." Foundations of Physics 38.2: 101–150.

  • The Elements of Physiology and Hygiene: A Text-book for Educational Institutions, (1868)by T.H. Huxley & W.J. Youmans. Appleton & Co. p. 178

  • Ventegodt, S., et al. (2006). Human development III: Bridging brain-mind and body- mind. Introduction to “deep”(fractal, poly-ray) cosmology. Scientific World Journal, 6, 767–776.

    Article  PubMed  Google Scholar 

  • Vitiello, G.. (2001) My double Unveiled: the dissipative quantum model of brain. John Benjamins Publishing, Vol. 32.

  • Wang, H. (1961). Proving theorems by pattern recognition—II. Bell System Technical Journal, 40(1), 1–41.

    Article  Google Scholar 

  • Wheeler, J. A. (1986). Hermann Weyl and the unity of knowledge. American Scientist, 74, 366–375.

    Google Scholar 

  • Wheeler, J.A.. (1990) "Information, physics, quantum: The search for links. In (W. Zurek, ed.) Complexity, Entropy, and the Physics of Information. Redwood City." CA: Addison-Wesley. Cited in DJ Chalmers,(1995) Facing up to the Hard Problem of Consciousness, Journal of Consciousness Studies 2.3: 200–19.

  • Wilczek, F.. (2000), “What is quantum theory?”, Physics today, June.

  • Winkelmann, S., et al. (2007) "An optimal radial profile order based on the Golden Ratio for time-resolved MRI." Medical Imaging, IEEE Transactions on 26.1: 68–76.

  • Wolfram, S. (2002). A new kind of science (Vol. 5). Wolfram media: Champaign.

    Google Scholar 

  • Xu, L., & Zhong, T. (2011). Golden ratio in quantum mechanics. Nonlinear Science Letters B, 1, 10–11.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Klee Irwin.

Ethics declarations

Conflict of Interest

The author declares that there is no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Irwin, K. A New Approach to the Hard Problem of Consciousness: a Quasicrystalline Language of “Primitive Units of Consciousness” in Quantized Spacetime. Act Nerv Super 62, 48–68 (2020). https://doi.org/10.1007/s41470-020-00071-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s41470-020-00071-3

Keywords

Navigation