Log in

A novel method for gamma spectrum analysis of low-level and intermediate-level radioactive waste

  • Published:
Nuclear Science and Techniques Aims and scope Submit manuscript

Abstract

The uncertainty of nuclide libraries in the analysis of the gamma spectra of low- and intermediate-level radioactive waste (LILW) using existing methods produces unstable results. To address this problem, a novel spectral analysis method is proposed in this study. In this method, overlap** peaks are located using a continuous wavelet transform. An improved quadratic convolution method is proposed to calculate the widths of the peaks and establish a fourth-order filter model to estimate the Compton edge baseline with the overlap** peaks. Combined with the adaptive sensitive nonlinear iterative peak, this method can effectively subtracts the background. Finally, a function describing the peak shape as a filter is used to deconvolve the energy spectrum to achieve accurate qualitative and quantitative analyses of the nuclide without the aid of a nuclide library. Gamma spectrum acquisition experiments for standard point sources of Cs-137 and Eu-152, a segmented gamma scanning experiment for a 200 L standard drum, and a Monte Carlo simulation experiment for triple overlap** peaks using the closest energy of three typical LILW nuclides (Sb-125, Sb-124, and Cs-134) are conducted. The results of the experiments indicate that (1) the novel method and gamma vision (GV) with an accurate nuclide library have the same spectral analysis capability, and the peak area calculation error is less than 4%; (2) compared with the GV, the analysis results of the novel method are more stable; (3) the novel method can be applied to the activity measurement of LILW, and the error of the activity reconstruction at the equivalent radius is 2.4%; and (4) The proposed novel method can quantitatively analyze all nuclides in LILW without a nuclide library. This novel method can improve the accuracy and precision of LILW measurements, provide key technical support for the reasonable disposal of LILW, and ensure the safety of humans and the environment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Data availability

The data that support the findings of this study are openly available in Science Data Bank at https://doi.org/10.57760/sciencedb.08126 and https://cstr.cn/31253.11.sciencedb.08126

References

  1. International Atomic Energy Agency, Classification of Radioactive Waste, IAEA Safety Standards Series No. GSG-1, IAEA, Vienna (2009)

  2. International Atomic Energy Agency, Interim Storage of Radioactive Waste Packages, Technical Reports Series No. 390, IAEA, Vienna (1998)

  3. International Atomic Energy Agency, Strategy and Methodology for Radioactive Waste Characterization, IAEA-TECDOC-1537 (IAEA, Vienna, 2007)

    Google Scholar 

  4. P. Ormai, A. Fritz, J. Solymosi et al., Inventory determination of low and intermediate level radioactive waste of Paks Nuclear Power Plant origin. J. Radioanal. Nucl. Chem. Artic. 211, 443–451 (1996). https://doi.org/10.1007/BF02039710

    Article  Google Scholar 

  5. M. Kashiwagi, H. Masui, Y. Denda et al., ISO Standardization of the Scaling Factor Method for Low- and Intermediate Level Radioactive Wastes Generated at Nuclear Power Plants. In: 11th International Conference on Environmental Remediation and Radioactive Waste Management, Parts A and B. ASMEDC, pp. 625–629 (2007). https://doi.org/10.1115/ICEM2007-7015

  6. Standard Guide for Making Quality Nondestructive Assay Measurements, Accessed October 12, 2020. https://compass.astm.org/download/C1592C1592M-WITHDRAWN.4230.pdf

  7. American Society for Testing and Materials, Standard Test Method for Nondestructive Assay of Special Nuclear Material in Low Density Scrap and Waste by Segmented Passive Gamma-Ray Scanning. https://doi.org/10.1520/C1133_C1133M-10

  8. Y.F. Bai, E. Mauerhofer, D.Z. Wang et al., An improved method for the non-destructive characterization of radioactive waste by gamma scanning. Appl. Radiat. Isot. 67, 1897–1903 (2009). https://doi.org/10.1016/j.apradiso.2009.05.017

    Article  Google Scholar 

  9. Z.L. Cheng, Z. Lu, Z. Huang et al., An improved segmented gamma scanning for radioactive waste drums. Math. Biosci. Eng. 16, 4491–4505 (2010). https://doi.org/10.3934/mbe.2019224

    Article  Google Scholar 

  10. Y.F. Bai, D.Z. Wang, M. Eric et al., MC simulation of thermal neutron flux of large samples irradiated by 14 MeV neutrons. Nucl. Sci. Tech. 21(1), 11–15 (2010)

    Google Scholar 

  11. C. Liu, W.G. Gu, N. Qian et al., Study of image reconstruction using dynamic grids in tomographic gamma scanning. Nucl. Sci. Tech. 23, 277–283 (2012)

    Google Scholar 

  12. N. Qian, T. Krings, E. Mauerhofer et al., Analytical calculation of the collimated detector response for the characterization of nuclear waste drums by segmented gamma scanning. J. Radioanal. Nucl. Chem. 292, 1325–1328 (2012). https://doi.org/10.1007/s10967-011-1601-1

    Article  Google Scholar 

  13. W.G. Gu, C. Liu, N. Qian et al., Study on detection simplification of tomographic gamma scanning using dynamic grids applied in the emission reconstruction. Ann. Nucl. Energy 58, 113–123 (2013). https://doi.org/10.1016/j.anucene.2013.02.031

    Article  Google Scholar 

  14. Q. Nan, D.Z. Wang, C. Wang et al., Collimated LaBr 3 detector response function in radioactivity analysis of nuclear waste drums. Nucl. Sci. Tech. 24, 060203 (2013). https://doi.org/10.13538/j.1001-8042/nst.2013.06.006

    Google Scholar 

  15. W. Gu, K. Rao, D. Wang et al., Semi-tomographic gamma scanning technique for non-destructive assay of radioactive waste drums. IEEE Trans. Nucl. Sci. 63, 2793–2800 (2016). https://doi.org/10.1109/TNS.2016.2614964

    Article  ADS  Google Scholar 

  16. W.G. Gu, D.Z. Wang, X.H. Tang et al., an improved gamma scanning assay method for the 400-L compacted radioactive waste drum based on the segmented equivalent ring source. IEEE Trans. Nucl. Sci. 66, 1889–1896 (2019). https://doi.org/10.1109/TNS.2019.2920180

    Article  ADS  Google Scholar 

  17. H. Yang, B. Dong, W.G. Gu et al., Transmission reconstruction algorithm by combining maximum-likelihood expectation maximization and a convolutional neural network for radioactive drum characterization. Appl. Radiat. Isot. 184, 110172 (2022). https://doi.org/10.1016/j.apradiso.2022.110172

    Article  Google Scholar 

  18. H. Yang, H. Zhou, B. Dong et al., A novel transmission reconstruction algorithm for radioactive drum characterization. In: Volume 9: Decontamination and Decommissioning, Radiation Protection, and Waste Management. American Society of Mechanical Engineers, V009T09A005 (2022). https://doi.org/10.1115/ICONE29-90126

  19. Office of the Federal Register, National Archives and Records Administration. 10 CFR 61 – Licensing requirements for land disposal of radioactive waste. Code of Federal Regulations, title 10, 153–179 (2016). https://www.govinfo.gov/app/details/CFR-2006-title10-vol2/CFR-2006-title10-vol2-part61 . Accessed 26 June 2022

  20. International Atomic Energy Agency, Determination and use of scaling factors for waste characterization in nuclear power plants, IAEA Nuclear Energy Series No. NW-T-1.18, IAEA, Vienna (2009)

  21. M.I. Abbas, M.S. Badawi, I.N. Ruskov et al., Calibration of a single hexagonal NaI(Tl) detector using a new numerical method based on the efficiency transfer method. Nucl. Instrum. Methods Phys. Res. Sect. A 771, 110–114 (2015). https://doi.org/10.1016/j.nima.2014.10.056

  22. H. Yang, W. Gu, X. Zhang et al., Research on the γ spectrum-unfolding method of low- and intermediate-level radioactive waste based on LaBr3(Ce) detector. Radiat. Phys. Chem. 207, 110841 (2023). https://doi.org/10.1016/j.radphyschem.2023.110841

  23. H. Yang, W. Gu, X. Zhang et al., Research on the CdZnTe γ spectrum analysis method based on an intelligent dynamic library. J. Radioanal. Nucl. Chem. 332, 1847–1867 (2023). https://doi.org/10.1007/s10967-023-08858-9

    Article  Google Scholar 

  24. M.W. Rawool-Sullivan, R.J. Estep, D. Miko, Estimation of obliquely scattered gamma-ray response functions in the gross-count tomographic gamma scanner (GC-TGS) method. In: 1997 IEEE Nuclear Science Symposium Conference Record., pp. 774–778 (1997). https://doi.org/10.1109/NSSMIC.1997.672697

  25. R. Venkataraman, M. Villani, S. Croft et al., An integrated Tomographic Gamma Scanning system for non-destructive assay of radioactive waste. Nucl. Instrum. Methods Phys. Res. Sect. A 579, 375–379 (2007). https://doi.org/10.1016/j.nima.2007.04.125

  26. J.T. Routti, S.G. Prussin, Photopeak method for the computer analysis of gamma-ray spectra from semiconductor detectors. Nucl. Instrum. Methods. 72, 125–142 (1969). https://doi.org/10.1016/0029-554X(69)90148-7

    Article  ADS  Google Scholar 

  27. H. Cheng, Bao Hua Sun, L.H. Zhu et al., Intrinsic background radiation of LaBr3(Ce) detector via coincidence measurements and simulations. Nucl. Sci. Tech. 31, 99 (2020). https://doi.org/10.1007/s41365-020-00812-8

  28. M.A. Mariscotti, A method for automatic identification of peaks in the presence of background and its application to spectrum analysis. Nucl. Instrum. Methods. 50, 309–320 (1967). https://doi.org/10.1016/0029-554X(67)90058-4

    Article  ADS  Google Scholar 

  29. INTERNATIONAL ATOMIC ENERGY AGENCY, Intercomparison of Gamma Ray Analysis Software Packages, IAEA-TECDOC-1011 (IAEA, Vienna, 1998)

    Google Scholar 

  30. Canberra. Genie 2000 Operations Manual. https://www3.nd.edu/~wzech/Genie%202000%20Operations%20Manual.pdf. Accessed 26 June 2022

  31. I.A. Slavić, S.P. Bingulac, A simple method for full automatic gamma-ray spectra analysis. Nucl. Instrum. Methods. 84, 261–268 (1970). https://doi.org/10.1016/0029-554X(70)90270-3

    Article  ADS  Google Scholar 

  32. A. Robertson, W.V. Prestwich, T.J. Kennett, An automatic peak-extraction technique. Nucl. Instrum. Methods. 100, 317–324 (1972). https://doi.org/10.1016/0029-554X(72)90701-X

    Article  ADS  Google Scholar 

  33. I.A. Slavić, Automatic analysis of gamma-ray spectra. Nucl. Instrum. Methods. 112, 253–260 (1973). https://doi.org/10.1016/0029-554X(73)90804-5

    Article  ADS  Google Scholar 

  34. H.P. Blok, J.C. de Lange, J.W. Schotman, A new peak search method for an automatic spectrum analysis program. Nucl. Instrum. Methods. 128, 545–556 (1975). https://doi.org/10.1016/0029-554X(75)90523-6

    Article  ADS  Google Scholar 

  35. C.J. Sullivan, S.E. Garner, K.B. Butterfield, Wavelet analysis of gamma-ray spectra. In: IEEE Symposium Conference Record Nuclear Science 2004. 281–286 (2004). https://doi.org/10.1109/NSSMIC.2004.1462198

  36. J.W. Wang, W.G. Gu, H. Yang et al., Analytical method for γ energy spectrum of radioactive waste drum based on deep neural network. Nucl. Tech. 45, 53–59 (2022). https://doi.org/10.11889/j.0253-3219.2022.hjs.45.040501 (in Chinese)

    Article  Google Scholar 

  37. ORTEC. GammaVision Users Manual. https://manualzz.com/doc/o/nbci8/ortec gammavision-v7-user-manual-783620h-mda--preset. Accessed 18 June 2022

  38. E. Clayton, PIXAN: the Lucas Heights PIXE analysis computer package. AAEC/M--113(1986). ISBN 0 642 59841 X

  39. M. Morháč, An algorithm for determination of peak regions and baseline elimination in spectroscopic data. Nucl. Instrum. Methods Phys. Res. Sect. A 600, 478–487 (2009). https://doi.org/10.1016/j.nima.2008.11.132

  40. M.C. Ali Santoro, M.J. Anagnostakis, T. Boshkova et al., Determining the probability of locating peaks using computerized peak-location methods in gamma-ray spectra as a function of the relative peak-area uncertainty. Appl. Radiat. Isot. 155, 108920 (2020). doi:https://doi.org/10.1016/j.apradiso.2019.108920

  41. G.F. Knoll, Radiation Detection and Measurement, 4th edn. (Wiley, Hoboken, 2010)

    Google Scholar 

  42. International Electrotechnical Commission. IEC 61453:2007 Nuclear instrumentation - Scintillation gamma ray detector systems for the assay of radionuclides—Calibration and routine tests. https://webstore.iec.ch/publication/5471. Accessed December 7, 2022

  43. M. Morháč, J.Kliman, V. Matoušek et al., Efficient one- and two-dimensional gold deconvolution and its application to γ-ray spectra decomposition. Nucl. Instrum. Methods Phys. Res. Sect. A. 401, 385–408 (1997). https://doi.org/10.1016/S0168-9002(97)01058-9

  44. C.M. Salgado, L.E.B. Brandão, R. Schirru et al., Validation of a NaI(Tl) detector’s model developed with MCNP-X code. Prog. Nucl. Energy. 59, 19–25 (2012). https://doi.org/10.1016/j.pnucene.2012.03.006

    Article  Google Scholar 

  45. M. Morháč, V. Matoušek, J. Kliman, Optimized multidimensional nonoscillating deconvolution. J. Comput. Appl. Math. 140, 639–658 (2002). https://doi.org/10.1016/S0377-0427(01)00521-0

    Article  ADS  MATH  MathSciNet  Google Scholar 

  46. M. Morháč, Deconvolution methods and their applications in the analysis of -ray spectra. Nucl. Instrum. Methods Phys. Res. Sect. A 559, 119–123 (2006). doi:https://doi.org/10.1016/j.nima.2005.11.129

  47. R. Gold, An iterative unfolding method for response matrices. United States (1964). https://doi.org/10.2172/4634295

    Article  Google Scholar 

  48. M. Morháč, V. Matoušek, High-resolution boosted deconvolution of spectroscopic data. J. Comput. Appl. Math. 235, 1629–1640 (2011). https://doi.org/10.1016/j.cam.2010.09.005

    Article  MATH  MathSciNet  Google Scholar 

  49. S. Steenstrup, A simple procedure for fitting a backgound to a certain class of measured spectra. J. Appl. Crystallogr. 14, 226–229 (1981). https://doi.org/10.1107/S0021889881009242

    Article  Google Scholar 

  50. S.A. Gerasimov, Simple method for background subtraction in gamma-ray spectra. Int. J. Rad. Appl. Instrum. 43, 1529–1531 (1992). https://doi.org/10.1016/0883-2889(92)90186-I

    Article  Google Scholar 

  51. C.V. Hampton, B. Lian, W.C. McHarris, Fast-Fourier-transform spectral enhancement techniques for γ-ray spectroscopy. Nucl. Instrum. Meth. Phys. Res. Sect. A 353(1–3), 280–284 (1994) https://doi.org/10.1016/0168-9002(94)91657-8

  52. C.G. Ryan, E. Clayton, W.L. Griffin et al., SNIP, a statistics-sensitive background treatment for the quantitative analysis of PIXE spectra in geoscience applications. Nucl. Instrum. Meth. Phys. Res. Sect. B 34, 396–402 (1988). https://doi.org/10.1016/0168-583X(88)90063-8

  53. C.J. Sullivan, M.E. Martinez, S.E. Garner, Wavelet analysis of sodium iodide spectra. IEEE Nuclear Science Symposium Conference Record, 2005, Fajardo, PR, USA, 302–306 (2005). https://doi.org/10.1109/NSSMIC.2005.1596258

  54. S. Lovejoy, D. Schertzer, Haar wavelets, fluctuations and structure functions: convenient choices for geophysics. Nonlinear Process. Geophys. 19, 513–527 (2012). https://doi.org/10.5194/npg-19-513-2012

    Article  ADS  Google Scholar 

  55. J.M. Gregoire, D. Dale, R.B. van Dover, A wavelet transform algorithm for peak detection and application to powder x-ray diffraction data. Rev. Sci. Instrum. 82, 015105 (2011). https://doi.org/10.1063/1.3505103

  56. J. Uher, G. Roach, J. Tickner, Peak fitting and identification software library for high resolution gamma-ray spectra. Nucl. Instrum. Methods Phys. Res. Sect. A 619, 457–459 (2010). doi:https://doi.org/10.1016/j.nima.2009.12.086

  57. A. Likar, A peak-search method based on spectrum convolution. J. Phys. Appl. Phys. 36, 1903–1909 (2003). https://doi.org/10.1088/0022-3727/36/15/323

    Article  ADS  Google Scholar 

  58. M. Morháč, J. Kliman, V. Matoušek et al., Background elimination methods for multidimensional coincidence γ-ray spectra. Nucl. Instrum. Methods Phys. Res. Sect. Accel. Spectrometers Detect. Assoc. Equip. 401, 113–132 (1997). https://doi.org/10.1016/S0168-9002(97)01023-1

  59. J.L. Coolidge, The story of the binomial theorem. Am. Math. Mon. 56, 147–157 (1949). https://doi.org/10.1080/00029890.1949.11999350

    Article  MATH  MathSciNet  Google Scholar 

  60. M.S. Badawi, A.M. El-Khatib, M.E. Krar, New numerical simulation approach to calibrate the NaI(Tl) detectors array using non-axial extended spherical sources. J. Instrum. 8, P11005 (2013). https://doi.org/10.1088/1748-0221/8/11/P11005

    Article  Google Scholar 

  61. M.S. Badawi, M. Abd-Elzaher, A.A. Thabet et al., An empirical formula to calculate the full energy peak efficiency of scintillation detectors. Appl. Radiat. Isot. 74, 46–49 (2013). https://doi.org/10.1016/j.apradiso.2012.12.011

    Article  Google Scholar 

  62. Canberra.NDA 2000. https://www.mirion.com/products/nda-2000-non-destructive-assay-software. Accessed 15 Nov.2022

  63. American Society for Testing and Materials. ASTM E181–17 Standard Test Methods for Detector Calibration and Analysis of Radionuclides. https://doi.org/10.1520/E0181-17

  64. ORTEC. Comparison of Gamma Ray Nondestructive Assay Measurement Techniques. https://www.ortec-online.com/-/media/ametekortec/technical-papers/waste-assay/comparison-gamma-ray-nondestructive-assay-measurement-techniques.pdf?la=en&revision=415c3b6e-e813-4930-abb1-c79c5870c644&hash=2D10984B0F16B476B43B17F6A332258B. Accessed 19 Nov.2022

  65. S. Agostinelli, J. Allison, K. Amako et al., Geant4—a simulation toolkit. Nucl. Instrum. Methods Phys. Res. Sect. Accel. Spectrometers Detect. Assoc. Equip. 506, 250–303 (2003). https://doi.org/10.1016/S0168-9002(03)01368-8

  66. W. Tang, J.G. Liang, Y. Ge et al., A method for neutron-induced gamma spectra decomposition analysis based on Geant4 simulation. Nucl. Sci. Tech. 33, 154 (2022). https://doi.org/10.1007/s41365-022-01144-5

    Article  Google Scholar 

  67. A.M. El-Khatib, M.S. Badawi, A.A. Thabet et al., Well-type NaI(Tl) detector efficiency using analytical technique and ANGLE 4 software based on radioactive point sources located out the well cavity. Chin. J. Phys. 54, 338–346 (2016). https://doi.org/10.1016/j.cjph.2016.03.019

    Article  Google Scholar 

  68. M.T. Haj-Heidari, M.J. Safari, H. Afarideh et al., Method for develo** HPGe detector model in Monte Carlo simulation codes. Radiat. Meas. 88, 1–6 (2016). https://doi.org/10.1016/j.radmeas.2016.02.035

    Article  Google Scholar 

  69. Y.M. Gómez, H.A.C. Águila, C.M.A. Hernández et al., Monte Carlo simulation of the efficiency response of a well-type HPGe detector at 46.54 keV (2015). http://scielo.sld.cu/pdf/nuc/n57/nuc015715.pdf Accessed 28 Jan.2023

  70. M.S. Badawi, S.I. Jovanovic, A.A. Thabet et al., Calibration of 4π NaI(Tl) detectors with coincidence summing correction using new numerical procedure and ANGLE4 software. AIP Adv. 7, 035005 (2017). https://doi.org/10.1063/1.4978214

  71. M. Ješkovský, A. Javorník, R. Breier et al., Experimental and Monte Carlo determination of HPGe detector efficiency. J. Radioanal. Nucl. Chem. 322, 1863–1869 (2019). https://doi.org/10.1007/s10967-019-06856-4

    Article  Google Scholar 

  72. American Society for Testing and Materials. American National Standard Calibration and Use of Germanium Spectrometers for the Measurement of Gamma-Ray Emission Rates of Radionuclides. ANSI Std N42.14–1991, pp.1–76, 30 Oct. (1991). https://doi.org/10.1109/IEEESTD.1991.101072

  73. IEEE Standard Test Procedures for Germanium Gamma-Ray Detectors. IEEE Std 325–1996. 0_1- Published online 1997. https://doi.org/10.1109/IEEESTD.1997.82400

Download references

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. Material preparation, data collection and analysis were performed by Hui Yang, **n-Yu Zhang, Wei-Guo Gu, Bing Dong, Xue-Zhi Jiang, Wen-Tao Zhou and De-Zhong Wang. The first draft of the manuscript was written by Hui Yang and all authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding authors

Correspondence to Wen-Tao Zhou or De-Zhong Wang.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interests.

Additional information

This work was supported by the National Natural Science Foundation of China (Nos. 12205190 and 11805121) and the Science and Technology Commission of Shanghai Municipality (No. 21ZR1435400).

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, H., Zhang, XY., Gu, WG. et al. A novel method for gamma spectrum analysis of low-level and intermediate-level radioactive waste. NUCL SCI TECH 34, 87 (2023). https://doi.org/10.1007/s41365-023-01236-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s41365-023-01236-w

Keywords

Navigation