Log in

Research on the CdZnTe γ spectrum analysis based on an intelligent dynamic library

  • Published:
Journal of Radioanalytical and Nuclear Chemistry Aims and scope Submit manuscript

Abstract

To achieve more efficient and accurate measurement of low- and intermediate-level radioactive waste (LILW), a room-temperature semiconductor detector CdZnTe (CZT) can be used to replace the high-purity germanium detector. The traditional method cannot identify nuclides since the energy resolution of CZT detectors is poor, and the spectrum have more overlap** peaks, compared with HPGe detectors. Therefore, in this study, we proposed a gamma spectrum analysis method based on an intelligent dynamic library. Simulation spectrum experiment and standard-source spectrum experiment achieved LILW all-nuclide quantitative analysis based on a CZT detector for the first time globally.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  1. INTERNATIONAL ATOMIC ENERGY AGENCY (2009) Classification of radioactive waste, IAEA Safety Standards Series No. GSG-1, IAEA, Vienna

  2. Atomenergie-Organisation I (ed) (1998) Interim storage of radioactive waste packages. IAEA, Vienna

    Google Scholar 

  3. I. A. E. Agency (2007) Strategy and methodology for radioactive waste characterization. International Atomic Energy Agency, https://books.google.com.hk/books?id=3iJSAAAAMAAJ, Accessed 27 Jul 2022

  4. J. S. Hansen, APPLICATION GUIDE TO TOMOGRAPHIC GAMMA SCANNING OF URANIUM AND PLUTONIUM, https://www.lanl.gov/orgs/n/n1/docs/laur_04_7014.pdf, Accessed 27 Jul 2022

  5. M. Kashiwagi et al. (2007) ISO Standardization of the scaling factor method for low- and intermediate level radioactive wastes generated at nuclear power plants, in 11th international conference on environmental remediation and radioactive waste management, Parts A and B, Bruges, Belgium, Jan. pp. 625–629.https://doi.org/10.1115/ICEM2007-7015.

  6. ASTM, Standard guide for making quality nondestructive assay measurements. https://doi.org/10.1520/C1592_C1592M-21

  7. U.S.NRC PART 61—LICENSING REQUIREMENTS FOR LAND DISPOSAL OF RADIOACTIVE WASTE,” NRC Web. https://www.nrc.gov/reading-rm/doc-collections/cfr/part061/full-text.html Accessed Mar. 08, 2022

  8. ASTM (2019) Nondestructive assay of radioactive material by tomographic gamma scanning. https://doi.org/10.1520/C1718-10

  9. ISO (2015) Guidance for gamma spectrometry measurement of radioactive waste https://standards.iteh.ai/catalog/standards/cen/7c0d6eef-900c-4b86-b33c-6e586f3dbaec/en-iso-19017-2017 Accessed Dec. 06, 2022.

  10. Bell SJ, Aitken-Smith P, Beeke S, Collins SM, Regan PH, Shearman R (2016) A comparison of emerging gamma detector technologies for airborne radiation monitoring. J Phys Conf Ser 763:012010. https://doi.org/10.1088/1742-6596/763/1/012010

    Article  CAS  Google Scholar 

  11. Croft S, Venkataraman R, Villani M, and Estep RJ (2004) On the accuracy of the tomographic gamma scanner for the assay of drummed waste. Proceedings. 19

  12. Hasan MM, Vidmar T, Rutten J, Verheyen L, Camps J, Huysmans M (2021) Optimization and validation of a LaBr3(Ce) detector model for use in Monte Carlo simulations. Appl Radiat Isot 174:09790. https://doi.org/10.1016/j.apradiso.2021.109790

    Article  CAS  Google Scholar 

  13. Yang H et al (2022) Transmission reconstruction algorithm by combining maximum-likelihood expectation maximization and a convolutional neural network for radioactive drum characterization. Appl Radiat Isot 184:110172. https://doi.org/10.1016/j.apradiso.2022.110172

    Article  CAS  PubMed  Google Scholar 

  14. Gu W, Liu C, Qian N, Wang D (2013) Study on detection simplification of tomographic gamma scanning using dynamic grids applied in the emission reconstruction. Ann Nucl Energy 58:113–123. https://doi.org/10.1016/j.anucene.2013.02.031

    Article  CAS  Google Scholar 

  15. Mariscotti MA (1967) A method for automatic identification of peaks in the presence of background and its application to spectrum analysis. Nucl Instrum Methods 50(2):309–320. https://doi.org/10.1016/0029-554X(67)90058-4

    Article  CAS  Google Scholar 

  16. Slavić IA, Bingulac SP (1970) A simple method for full automatic gamma-ray spectra analysis. Nucl Instrum Methods 84(2):261–268. https://doi.org/10.1016/0029-554X(70)90270-3

    Article  Google Scholar 

  17. Robertson A, Prestwich WV, Kennett TJ (1972) An automatic peak-extraction technique. Nucl Instrum Methods 100(2):317–324. https://doi.org/10.1016/0029-554X(72)90701-X

    Article  CAS  Google Scholar 

  18. Slavić IA (1973) Automatic analysis of gamma-ray spectra. Nucl Instrum Methods 112(1–2):253–260. https://doi.org/10.1016/0029-554X(73)90804-5

    Article  Google Scholar 

  19. Blok HP, de Lange JC, Schotman JW (1975) A new peak search method for an automatic spectrum analysis program. Nucl Instrum Methods 128(3):545–556. https://doi.org/10.1016/0029-554X(75)90523-6

    Article  CAS  Google Scholar 

  20. Sullivan CJ, Garner SE, and Butterfield KB (2004) Wavelet analysis of gamma-ray spectra in IEEE Symposium Conference Record Nuclear Science 2004., Rome, Italy, 2004, 1:281–286 https://doi.org/10.1109/NSSMIC.2004.1462198

  21. Galib SM, Bhowmik PK, Avachat AV, Lee HK (2021) A comparative study of machine learning methods for automated identification of radioisotopes using NaI gamma-ray spectra. Nucl Eng Technol 53(12):4072–4079. https://doi.org/10.1016/j.net.2021.06.020

    Article  CAS  Google Scholar 

  22. Wei J, Weiguo G, Yang H, Wang D (2022) Analytical method for γ energy spectrum of radioactive waste drum based on deep neural network. Nucl Tech 45(4):53–59

    Google Scholar 

  23. Teke C, Akkurt I, Arslankaya S, Ekmekci I, Gunoglu K (2022) Prediction of gamma ray spectrum for 22Na source by feed forward back propagation ANN model. Radiat Phys Chem 202:110558. https://doi.org/10.1016/j.radphyschem.2022.110558

    Article  CAS  Google Scholar 

  24. Morháč M, Kliman J, Matoušek V, Veselský M, Turzo I (1997) Efficient one- and two-dimensional gold deconvolution and its application to γ-ray spectra decomposition. Nucl Instrum Methods Phys Res Sect Accel Spectrometers Detect Assoc Equip 401(2–3):385–408. https://doi.org/10.1016/S0168-9002(97)01058-9

    Article  Google Scholar 

  25. Du P, Kibbe WA, Lin SM (2006) Improved peak detection in mass spectrum by incorporating continuous wavelet transform-based pattern matching. Bioinformatics 22(17):2059–2065. https://doi.org/10.1093/bioinformatics/btl355

    Article  CAS  PubMed  Google Scholar 

  26. Gregoire JM, Dale D, van Dover RB (2011) A wavelet transform algorithm for peak detection and application to powder x-ray diffraction data. Rev Sci Instrum 82(1):015105. https://doi.org/10.1063/1.3505103

    Article  CAS  PubMed  Google Scholar 

  27. Uher J, Roach G, Tickner J (2009) Peak fitting and identification software library for high resolution gamma-ray spectra. Nucl Instrum Methods Phys Res Sect Accel Spectrometers Detect Assoc Equip 619(1–3):457–459. https://doi.org/10.1016/j.nima.2009.12.086

    Article  CAS  Google Scholar 

  28. Likar A (2003) A peak-search method based on spectrum convolution. J Phys Appl Phys 36(15):1903–1909. https://doi.org/10.1088/0022-3727/36/15/323

    Article  CAS  Google Scholar 

  29. Likar A, Lipoglav M, ek, (2004) Resolving double peaks in high-resolution spectra by spectrum convolution. J Phys Appl Phys 37(6):932–937. https://doi.org/10.1088/0022-3727/37/6/019

    Article  CAS  Google Scholar 

  30. Ryan CG, Clayton E, Griffin WL, Sie SH, Cousens DR (1988) SNIP, a statistics-sensitive background treatment for the quantitative analysis of PIXE spectra in geoscience applications. Nucl Instrum Methods Phys Res Sect B Beam Interact Mater 34(3):396–402. https://doi.org/10.1016/0168-583X(88)90063-8

    Article  Google Scholar 

  31. Morháč M (2008) An algorithm for determination of peak regions and baseline elimination in spectroscopic data. Nucl Instrum Methods Phys Res Sect Accel Spectrometers Detect Assoc Equip 600(2):478–487. https://doi.org/10.1016/j.nima.2008.11.132

    Article  CAS  Google Scholar 

  32. Coolidge JL (1949) The story of the binomial theorem. Am Math Mon 56(3):147–157. https://doi.org/10.1080/00029890.1949.11999350

    Article  Google Scholar 

  33. Morháč M (2006) Deconvolution methods and their applications in the analysis of -ray spectra. Nucl Instrum Methods Phys Res Sect Accel Spectrometers Detect Assoc Equip 559(1):119–123. https://doi.org/10.1016/j.nima.2005.11.129

    Article  CAS  Google Scholar 

  34. Gold R (1964) An iterative unfolding method for response matrices ANL-6984, 4634295, https://doi.org/10.2172/4634295

  35. Morháč M, Matoušek V (2011) High-resolution boosted deconvolution of spectroscopic data. J Comput Appl Math 235(6):1629–1640. https://doi.org/10.1016/j.cam.2010.09.005

    Article  Google Scholar 

  36. C26 Committee test method for nondestructive assay of special nuclear material in low-density scrap and waste by segmented passive gamma-ray scanning. ASTM International.https://doi.org/10.1520/C1133_C1133M-10R18

  37. Gu W, Wang D, Tang X, Ma Y (2019) An improved gamma scanning assay method for the 400-L compacted radioactive waste drum based on the segmented equivalent ring source. IEEE Trans Nucl Sci 66(7):1889–1896. https://doi.org/10.1109/TNS.2019.2920180

    Article  CAS  Google Scholar 

  38. Liu Cheng Z, Lu Z, Huang Z, Liu C, Qin W (2019) An improved segmented gamma scanning for radioactive waste drums. Math Biosci Eng 16(5):4491–4505. https://doi.org/10.3934/mbe.2019224

    Article  PubMed  Google Scholar 

  39. IEEE (1997) IEEE Standard Test procedures for germanium gamma-ray detectors. IEEE Std 325–1996, p. 0_1-, 1997, https://doi.org/10.1109/IEEESTD.1997.82400.

  40. Qian N, Krings T, Mauerhofer E, Wang D, Bai Y (2012) Analytical calculation of the collimated detector response for the characterization of nuclear waste drums by segmented gamma scanning. J Radioanal Nucl Chem 292(3):1325–1328. https://doi.org/10.1007/s10967-011-1601-1

    Article  CAS  Google Scholar 

  41. Nan Q, Dezhong W, Chuan W, Yuelong Z, Eric M (2013) Collimated LaBr 3 detector response function in radioactivity analysis of nuclear waste drums. Nucl Sci Tech 24(6):26

    Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge financial support provided by the National Natural Science Foundation of China (project number 11805121) and the Science and Technology Commission of Shanghai Municipality (project number 21ZR1435400).

Funding

Wentao Zhou reports financial support was provided by National Natural Science Foundation of China and Science and Technology Commission of Shanghai Municipality Capacity Building Plan for Some Regional Universities and Colleges.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Wentao Zhou or Dezhong Wang.

Ethics declarations

Conflict of interest

The remaining authors have no conflicts of interest to declare.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, H., Zhang, X., Gu, W. et al. Research on the CdZnTe γ spectrum analysis based on an intelligent dynamic library. J Radioanal Nucl Chem 332, 1847–1867 (2023). https://doi.org/10.1007/s10967-023-08858-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10967-023-08858-9

Keywords

Navigation