Log in

Forbidden Transmission of Broadband Duct Noise Realized by Compactly Placed Detuned Resonators

  • Original Paper
  • Published:
Acoustics Australia Aims and scope Submit manuscript

Abstract

Effective broadband duct sound propagation control is highly required in many practical engineering applications. In this study, a compact structure constituted by multiple detuned resonators is proposed for broadband duct noise transmission control. The coupling characteristics of two detuned resonators flush-mounted on the sidewall of a duct are firstly investigated. Results show that a coherent perfect absorption (CPA) is induced when these two resonators are precisely designed. Meanwhile, a nearly flat transmission forbidden band is formed, which is very beneficial for duct noise control. Furthermore, it is found that the appearance of the forbidden band is insensitive to the distance between resonators. On this basis, a customized broadband CPA-based structure constructed by detuned resonators is developed, in which the geometric parameters of each adjacent resonator satisfying the CPA condition and the resonators are closely placed. By overlap** the forbidden band of adjacent resonators, a broad duct sound transmission forbidden band is attained. The acoustic performance of the proposed compact design is demonstrated experimentally.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Spain)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Červenka, M., Bednařík, M., Groby, J.P.: Optimized reactive silencers composed of closely-spaced elongated side-branch resonators. J. Acoust. Soc. Am. 145(4), 2210–2220 (2019)

    Article  Google Scholar 

  2. Ingard, U.: On the theory and design of acoustic resonators. J. Acoust. Soc. Am. 25(6), 1037–1061 (1953)

    Article  Google Scholar 

  3. Červenka, M., Bednařík, M.: Optimized reactive silencers with narrow side-branch tubes. J. Acoust. Soc. Am. 144(4), 2015–2021 (2018)

    Article  Google Scholar 

  4. Chen, K., Chen, Y., Lin, K., Weng, C.: The improvement on the transmission loss of a duct by adding Helmholtz resonators. Appl. Acoust. 54(1), 71–82 (1998)

    Article  Google Scholar 

  5. Sugimoto, N., Horioka, T.: Dispersion characteristics of sound waves in a tunnel with an array of Helmholtz resonators. J. Acoust. Soc. Am. 97(3), 1446–1459 (1995)

    Article  Google Scholar 

  6. Seo, S.H., Kim, Y.H.: Silencer design by using array resonators for low-frequency band noise reduction. J. Acoust. Soc. Am. 118(4), 2332–2338 (2005)

    Article  Google Scholar 

  7. Munday, J., Bennett, C.B., Robertson, W.: Band gaps and defect modes in periodically structured waveguides. J. Acoust. Soc. Am. 112(4), 1353–1358 (2002)

    Article  Google Scholar 

  8. Richoux, O., Maurel, A., Pagneux, V.: Disorder persistent transparency within the bandgap of a periodic array of acoustic Helmholtz resonators. J. Appl. Phys. 117(10), 104902 (2015)

    Article  Google Scholar 

  9. Li, Y., Shen, H., Zhang, L., Su, Y., Yu, D.: Control of low-frequency noise for pi** systems via the design of coupled band gap of acoustic metamaterials. Phys. Lett. A 380(29), 2322–2328 (2016)

    Article  Google Scholar 

  10. Guo, J., Cao, J., **ao, Y., Shen, H., Wen, J.: Interplay of local resonances and Bragg band gaps in acoustic waveguides with periodic detuned resonators. Phys. Lett. A 384, 126253 (2020)

    Article  MathSciNet  Google Scholar 

  11. Griffin, S., Lane, S.A., Huybrechts, S.: Coupled Helmholtz resonators for acoustic attenuation. J Vib. Acoust. 123(1), 11–17 (2001)

    Article  Google Scholar 

  12. Zhao, D.: Transmission loss analysis of a parallel-coupled Helmholtz resonator network. AIAA J. 50(6), 1339–1346 (2012)

    Article  Google Scholar 

  13. Fey, J., Robertson, W.M.: Compact acoustic bandgap material based on a subwavelength collection of detuned Helmholtz resonators. J. Appl. Phys. 109(11), 114903 (2011)

    Article  Google Scholar 

  14. Santillán, A., Bozhevolnyi, S.I.: Acoustic transparency and slow sound using detuned acoustic resonators. Phys. Rev. B 84(6), 064304 (2011)

    Article  Google Scholar 

  15. Zhang, Y.Y., Gao, N.S., Wu, J.H.: New mechanism of tunable broadband in local resonance structures. Appl. Acoust. 169, 107482 (2020)

    Article  Google Scholar 

  16. Zhang, Y.Y., Gao, N.S., Xu, G.S., Wu, J.H., Cao, M., Zhou, Z.T.: Low-frequency band gaps within a local resonance structures. Mod. Phys. Lett. B 34(supp01), 2150014 (2020)

    Article  Google Scholar 

  17. Zhang, Z., Yu, D., Liu, J., Hu, B., Wen, J.: Transmission and bandgap characteristics of a duct mounted with multiple hybrid Helmholtz resonators. Appl. Acoust. 183, 108266 (2021)

    Article  Google Scholar 

  18. Theocharis, G., Richoux, O., García, V.R., Merkel, A., Tournat, V.: Limits of slow sound propagation and transparency in lossy, locally resonant periodic structures. New J. Phys. 16(9), 093017 (2014)

    Article  Google Scholar 

  19. Jiang, X., Li, Y., Zhang, L.: Thermoviscous effects on sound transmission through a metasurface of hybrid resonances. J. Acoust. Soc. Am. 141(4), EL363–EL368 (2017)

    Article  Google Scholar 

  20. Ma, G., Sheng, P.: Acoustic metamaterials: from local resonances to broad horizons. Sci. Adv. 2(2), e1501595 (2016)

    Article  Google Scholar 

  21. Guo, J., Zhang, X., Fang, Y., Fattah, R.: Reflected wave manipulation by inhomogeneous impedance via varying-depth acoustic liners. J. Appl. Phys. 123(17), 174902 (2018)

    Article  Google Scholar 

  22. Cummer, S.A., Popa, B.I., Schurig, D., Smith, D.R., Pendry, J., Rahm, M., Starr, A.: Scattering theory derivation of a 3D acoustic cloaking shell. Phys. Rev. Lett. 100(2), 024301 (2008)

    Article  Google Scholar 

  23. Guo, J., Zhou, J.: An ultrathin acoustic carpet cloak based on resonators with extended necks. J. Phys. D 53(50), 505501 (2020)

    Article  Google Scholar 

  24. Mei, J., Ma, G., Yang, M., Yang, Z., Wen, W., Sheng, P.: Dark acoustic metamaterials as super absorbers for low-frequency sound. Nat. Commun. 3, 756 (2012)

    Article  Google Scholar 

  25. Guo, J., Zhang, X., Fang, Y., Jiang, Z.: A compact low-frequency sound-absorbing metasurface constructed by resonator with embedded spiral neck. Appl. Phys. Lett. 117(22), 221902 (2020)

    Article  Google Scholar 

  26. Guo, J., Zhang, X., Fang, Y., Fattah, R.: Manipulating reflected acoustic wave via Helmholtz resonators with varying-length extended necks. J. Appl. Phys. 124(10), 104902 (2018)

    Article  Google Scholar 

  27. Xue, H., Yang, Y., Liu, G., Gao, F., Chong, Y., Zhang, B.: Realization of an acoustic third-order topological insulator. Phys. Rev. Lett. 122(24), 244301 (2019)

    Article  Google Scholar 

  28. Cai, X., Guo, Q., Hu, G., Yang, J.: Ultrathin low-frequency sound absorbing panels based on coplanar spiral tubes or coplanar Helmholtz resonators. Appl. Phys. Lett. 105(12), 121901 (2014)

    Article  Google Scholar 

  29. Guo, J., Fang, Y., Jiang, Z., Zhang, X.: Acoustic characterizations of Helmholtz resonators with extended necks and their checkerboard combination for sound absorption. J. Phys. D 53(50), 505504 (2020)

    Article  Google Scholar 

  30. Li, J., Wang, W., **e, Y., Popa, B.I., Cummer, S.A.: A sound absorbing metasurface with coupled resonators. Appl. Phys. Lett. 109(9), 091908 (2016)

    Article  Google Scholar 

  31. Guo, J., Fang, Y., Qu, R., Liu, Q., Zhang, X.: An extra-broadband compact sound-absorbing structure composing of double-layer resonator with multiple perforations. J. Acoust. Soc. Am. 150(2), 1370–1380 (2021)

    Article  Google Scholar 

  32. Chong, Y., Ge, L., Cao, H., Stone, A.D.: Coherent perfect absorbers: time-reversed lasers. Phys. Rev. Lett. 105(5), 053901 (2010)

  33. Sun, Y., Tan, W., Li, H.Q., Li, J., Chen, H.: Experimental demonstration of a coherent perfect absorber with PT phase transition Phys. Rev. Lett. 112(14), 143903 (2014)

  34. Wei, P., Croënne, C., Tak Chu, S., Li, J.: Symmetrical and anti-symmetrical coherent perfect absorption for acoustic waves. Appl. Phys. Lett. 104(12), 121902 (2014)

    Article  Google Scholar 

  35. Merkel, A., Theocharis, G., Richoux, O., Romero-García, V., Pagneux, V.: Control of acoustic absorption in one-dimensional scattering by resonant scatterers. Appl. Phys. Lett. 107, 244102 (2015)

    Article  Google Scholar 

  36. Long, H., Cheng, Y., Liu, X.: Asymmetric absorber with multiband and broadband for low-frequency sound. Appl. Phys. Lett. 111(14), 143502 (2017)

    Article  Google Scholar 

  37. Wang, X., Luo, X., Zhao, H., Huang, Z.: Acoustic perfect absorption and broadband insulation achieved by double-zero metamaterials. Appl. Phys. Lett. 112(2), 021901 (2018)

    Article  Google Scholar 

  38. Richoux, O., Pagneux, V.: Acoustic characterization of the Hofstadter butterfly with resonant scatterers. EPL 59(1), 34 (2002)

    Article  Google Scholar 

  39. Jiménez, N., Romero-García, V., Pagneux, V., Groby, J.P.: Rainbow-trap** absorbers: broadband, perfect and asymmetric sound absorption by subwavelength panels for transmission problems. Sci. Rep. 7(1), 1–12 (2017)

    Article  Google Scholar 

  40. Jiménez, N., Romero-García, V., Pagneux, V., Groby, J.P.: Quasiperfect absorption by subwavelength acoustic panels in transmission using accumulation of resonances due to slow sound. Phys. Rev. B 95(1), 014205 (2017)

    Article  Google Scholar 

  41. Romero-García, V., Theocharis, G., Richoux, O., Pagneux, V.: Use of complex frequency plane to design broadband and sub-wavelength absorbers. J. Acoust. Soc. Am. 139(6), 3395–3403 (2016)

    Article  Google Scholar 

  42. Bolton, J.S., Yoo, T., Olivieri, O.: Measurement of normal incidence transmission loss and other acoustical properties of materials placed in a standing wave tube. Brüel Kjær Techn. Rev. 1, 1–44 (2007)

    Google Scholar 

  43. Chanaud, R.: Effects of geometry on the resonance frequency of Helmholtz resonators. J. Sound Vib. 178(3), 337–348 (1994)

    Article  Google Scholar 

Download references

Acknowledgements

The financial support of National Natural Science Foundation of China (11972029) is greatly appreciated. Part of this work is supported by Hong Kong Research Grants Council General Research Fund No. 16202519. **gwen Guo wishes to thank the support of Hong Kong Innovation and Technology Commission (ITC) Project ITS/354/18FP. Yi Fang thanks for the support of ITC Project ITS/387/17FP.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to **gwen Guo.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix A: End-Correction, Complex Wave Number and Impedance

This appendix gives the expressions of the end-correction and the equivalent parameters. The end-correction length of HR \(\Delta l\) is due to the radiation effects induced by the discontinuities from neck to the cavity of HR and the duct, i.e., \(\Delta {l_1}\) and \(\Delta {l_2}\). They are calculated by [35, 36]

$$\begin{aligned} \Delta {l_1}= & {} 0.82\left[ {1 - 1.35\frac{{{R_{\mathrm {n}}}}}{{{R_{\mathrm {c}}}}} + 0.31{{\left( {\frac{{{R_{\mathrm {n}}}}}{{{R_{\mathrm {c}}}}}} \right) }^3}} \right] {R_{\mathrm {n}}} , \end{aligned}$$
(9)
$$\begin{aligned} \Delta l_{2}= & {} 0.82 \left[ 1 - 0.235 \frac{ R _ { \mathrm { n } } }{ R _ { \mathrm { w } } } - 1.32 \left( \frac{ R _ { \mathrm { n } } }{ R _ { \mathrm { w } } } \right) ^ { 2 } \right. + 1.54 \left( \frac{ R _ { \mathrm { n } } }{ R _ { \mathrm { w } } } \right) ^ { 3 } \nonumber \\&-\, 0.86 \left( \frac{ R _ { \mathrm { n } } }{ R _ { \mathrm { w } } } \right) ^ { 4 } ] R _ { \mathrm { n } } , \end{aligned}$$
(10)

The expressions of the effective wave number and the characteristic impedance can be written as [35, 36]

$$\begin{aligned} {k_{\mathrm {e}}}= & {} \frac{\omega }{{{c_0}}}{}\left( {1 + \frac{{(1 - i)}}{{\sqrt{2} (r/\sqrt{2\mu /{\rho _0}\omega } )}}(1 + (\gamma - 1)/ \sqrt{\mathrm {Pr}} } \right) , \end{aligned}$$
(11)
$$\begin{aligned} {Z_{\mathrm {e}}}= & {} \frac{{{\rho _0}{c_0}}}{{\pi {{r}^2}}}\left( {1 + \frac{{(1 - i)}}{{\sqrt{2} (r/\sqrt{2\mu /{\rho _0}\omega } )}}(1 - (\gamma - 1)/\sqrt{\mathrm {Pr}} )} \right) , \end{aligned}$$
(12)

where \(\rho _0\) is the density of air; \(\mu \) and \(\gamma \) are the viscosity of air and the ratio of specific heats; r is the radius of the waveguide, or the neck and cavity of HR; \(\mathrm {Pr}\) is the Prandtl number.

Fig. 12
figure 12

Schematic of reflection and transmission measurement based on two-load method

Appendix B: Reflection and Transmission Measurement

This appendix presents the measurement setup for measuring the reflection and transmission coefficients of test sample based on the two-load method [42]. As shown in Fig. 12, test sample with a length of d is placed between four microphones, where A/C and B/D are the coefficients of the planar waves propagating in positive and negative x directions at left/right side of test sample, respectively. The pressures at different microphone positions from \(x_1\) to \(x_4\) can be expressed as

$$\begin{aligned}&{P_{x_1}} = A{e^{ - ik{x_1}}} + B{e^{ik{x_1}}}, \end{aligned}$$
(13)
$$\begin{aligned}&{P_{x_2}} = A{e^{ - ik{x_2}}} + B{e^{ik{x_2}}}, \end{aligned}$$
(14)
$$\begin{aligned}&{P_{x_3}} = C{e^{ - ik{x_3}}} + D{e^{ik{x_3}}}, \end{aligned}$$
(15)
$$\begin{aligned}&{P_{x_4}} = C{e^{ - ik{x_4}}} + D{e^{ik{x_4}}}. \end{aligned}$$
(16)

By rearranging Eqs. (13)–(16), the coefficients A, B, C, and D can be determined once the pressures \(P_{x_1}\), \(P_{x_2}\), \(P_{x_3}\), and \(P_{x_4}\) are measured. Then, the measured pressures and particle velocities in the x direction at the surfaces of the test sample can be expressed as

$$\begin{aligned}&\left[ \begin{array}{l} P \\ V \end{array}\right] _{x=0}=\left[ \begin{array}{c} A+B \\ A-B \\ \hline \rho _{0} c_{0} \end{array}\right] , \end{aligned}$$
(17)
$$\begin{aligned}&\left[ \begin{array}{l} P \\ V \end{array}\right] _{x=d}=\left[ \begin{array}{l} C e^{-i k d}+D e^{i k d} \\ \frac{C e^{-i k d}-D e^{i k d}}{\rho _{0} c_{0}} \end{array}\right] . \end{aligned}$$
(18)

Two different terminations, i.e., anechoic back and rigid back, are used in experiment. The measured pressures and particle velocities for two different terminations are related by the total transfer matrix

$$\begin{aligned} {\left[ {\begin{array}{*{20}{c}} {{P_1}}&{}{{P_2}} \\ {{V_1}}&{}{{V_2}} \end{array}} \right] _{x = 0}} = \mathbf {T_t} {\left[ {\begin{array}{*{20}{c}} {{P_1}}&{}{{P_2}} \\ {{V_1}}&{}{{V_2}} \end{array}} \right] _{x = d}}, \end{aligned}$$
(19)

where the subscripts 1 and 2 represent the tested results with anechoic back and rigid back, respectively. The total transfer matrix can be calculated based on Eq. (19)

$$\begin{aligned} \mathbf {T_t}= & {} \frac{1}{{{{\left. {{P_1}} \right| }_{x = d}}{{\left. {{V_2}} \right| }_{x = d}} - {{\left. {{P_2}} \right| }_{x = d}}{{\left. {{V_1}} \right| }_{x = d}}}} \nonumber \\&\times \left[ \begin{array}{l} \left. \left. P_{1}\right| _{x=0} V_{2}\right| _{x=d}-\left. \left. P_{2}\right| _{x=0} V_{1}\right| _{x=d}\\ \qquad -\left. \left. P_{1}\right| _{x=0} P_{2}\right| _{x=d}+\left. \left. P_{2}\right| _{x=0} P_{1}\right| _{x=d} \\ \left. \left. V_{1}\right| _{x=0} V_{2}\right| _{x=d}-\left. \left. V_{2}\right| _{x=0} V_{1}\right| _{x=d}\\ \qquad -\left. \left. P_{2}\right| _{x=d} V_{1}\right| _{x=0}+\left. \left. P_{1}\right| _{x=d} V_{2}\right| _{x=0} \end{array}\right] . \end{aligned}$$
(20)

Then, the reflection and transmission coefficients can be calculated from the elements of \(\mathbf {T_t}\) based on Eqs. (5) (6).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Guo, J., Fang, Y. & Zhang, X. Forbidden Transmission of Broadband Duct Noise Realized by Compactly Placed Detuned Resonators. Acoust Aust 50, 79–90 (2022). https://doi.org/10.1007/s40857-021-00258-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40857-021-00258-x

Keywords

Navigation