Log in

An Approach to Segment Nuclei and Cytoplasm in Lung Cancer Brightfield Images Using Hybrid Swin-Unet Transformer

  • Original Article
  • Published:
Journal of Medical and Biological Engineering Aims and scope Submit manuscript

Abstract

Purpose

Segmentation of nuclei and cytoplasm in cellular images is essential for estimating the prognosis of lung cancer disease. The detection of these organelles in the unstained brightfield microscopic images is challenging due to poor contrast and lack of separation of structures with irregular morphology. This work aims to carry out semantic segmentation of nuclei and cytoplasm in lung cancer brightfield images using the Swin-Unet Transformer.

Methods

For this study, publicly available brightfield images of lung cancer cells are pre-processed and fed to the Swin-Unet for semantic segmentation. Model specific hyperparameters are identified after detailed analysis and the segmentation performance is validated using standard evaluation metrics.

Results

The hyperparameter analysis provides the selection of optimum parameters as focal loss, learning rate of 0.0001, Adam optimizer, and Swin Transformer patch size of 4. The obtained results show that with these parameters, the Swin-Unet Transformer accurately segmented the nuclei and cytoplasm in the brightfield images with pixel-F1 scores of 90.71% and 79.29% respectively.

Conclusion

It is observed that the model could identify nuclei and cytoplasm with varied morphologies. The detection of cytoplasm with weak and subtle edge details indicates the effectiveness of shifted window based self attention mechanism of Swin-Unet in capturing the global and long distance pixel interactions in the brightfield images. Thus, the adopted methodology in this study can be employed for the precise segmentation of nuclei and cytoplasm for assessing the malignancy of lung cancer disease.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data Availability

The data used in the manuscript is from a publicly accessible dataset and the details are provided in Sect. 2.1.

References

  1. Pramanik, S. K., & Das, A. (2021). Fluorescent probes for imaging bioactive species in subcellular organelles. Chemical Communications, 57(91), 12058–12073. https://doi.org/10.1039/D1CC04273D

    Article  CAS  PubMed  Google Scholar 

  2. Balachandra, S., Sarkar, S., & Amodeo, A. A. (2022). The nuclear-to-cytoplasmic ratio: Coupling DNA content to cell size, cell cycle, and biosynthetic capacity. Annual Review of Genetics, 56, 165–185. https://doi.org/10.1146/annurev-genet-080320-030537

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Svenningsen, E. B., & Poulsen, T. B. (2019). Establishing cell painting in a smaller chemical biology lab–A report from the frontier. Bioorganic & Medicinal Chemistry, 27(12), 2609–2615. https://doi.org/10.1016/j.bmc.2019.03.052

    Article  CAS  Google Scholar 

  4. Kobayashi, H., Lei, C., Wu, Y., Mao, A., Jiang, Y., Guo, B., & Goda, K. (2017). Label-free detection of cellular drug responses by high-throughput bright-field imaging and machine learning. Scientific Reports, 7(1), 12454. https://doi.org/10.1038/s41598-017-12378-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Wang, R., Butt, D., Cross, S., Verkade, P., & Achim, A. (2023). Bright-field to fluorescence microscopy image translation for cell nuclei health quantification. Biological Imaging, 3, e12. https://doi.org/10.1017/S2633903X23000120

    Article  PubMed  PubMed Central  Google Scholar 

  6. Cross-Zamirski, J. O., Mouchet, E., Williams, G., Schönlieb, C. B., Turkki, R., & Wang, Y. (2022). Label-free prediction of cell painting from brightfield images. Scientific Reports, 12(1), 10001. https://doi.org/10.1038/s41598-022-12914-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Fishman, D., Salumaa, S. O., Majoral, D., Laasfeld, T., Peel, S., Wildenhain, J., & Parts, L. (2021). Practical segmentation of nuclei in brightfield cell images with neural networks trained on fluorescently labelled samples. Journal of Microscopy, 284(1), 12–24. https://doi.org/10.1111/jmi.13038

    Article  CAS  PubMed  Google Scholar 

  8. Ounkomol, C., Seshamani, S., Maleckar, M. M., Collman, F., & Johnson, G. R. (2018). Label-free prediction of three-dimensional fluorescence images from transmitted-light microscopy. Nature Methods, 15(11), 917–920. https://doi.org/10.1038/s41592-018-0111-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Hollandi, R., Moshkov, N., Paavolainen, L., Tasnadi, E., Piccinini, F., & Horvath, P. (2022). Nucleus segmentation: Towards automated solutions. Trends in Cell Biology. https://doi.org/10.1016/j.tcb.2021.12.004

    Article  PubMed  Google Scholar 

  10. Ali, M. A., Misko, O., Salumaa, S. O., Papkov, M., Palo, K., Fishman, D., & Parts, L. (2021). Evaluating very deep convolutional neural networks for nucleus segmentation from brightfield cell microscopy images. SLAS DISCOVERY: Advancing the Science of Drug Discovery, 26(9), 1125–1137. https://doi.org/10.1177/24725552211023214

    Article  CAS  Google Scholar 

  11. Christiansen, E. M., Yang, S. J., Ando, D. M., Javaherian, A., Skibinski, G., Lipnick, S., & Finkbeiner, S. (2018). In silico labeling: predicting fluorescent labels in unlabeled images. Cell, 173(3), 792–803. https://doi.org/10.1016/j.cell.2018.03.040

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Sadanandan, S. K., Ranefall, P., Le Guyader, S., & Wählby, C. (2017). Automated training of deep convolutional neural networks for cell segmentation. Scientific Reports, 7(1), 7860. https://doi.org/10.1038/s41598-017-07599-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Carpenter, A. E., Jones, T. R., Lamprecht, M. R., Clarke, C., Kang, I. H., Friman, O., & Sabatini, D. M. (2006). Cell profiler: image analysis software for identifying and quantifying cell phenotypes. Genome Biology, 7, 1–11. https://doi.org/10.1186/gb-2006-7-10-r100

    Article  CAS  Google Scholar 

  14. Zhou, Z., Siddiquee, M. M. R., Tajbakhsh, N., & Liang, J. (2019). Unet++: Redesigning skip connections to exploit multiscale features in image segmentation. IEEE transactions on medical imaging, 39(6), 1856–1867. https://doi.org/10.1109/TMI.2019.2959609

    Article  PubMed  PubMed Central  Google Scholar 

  15. Ren, H., Zhao, M., Liu, B., Yao, R., Liu, Q., Ren, Z., & Tang, C. (2020). Cellbow: a robust customizable cell segmentation program. Quantitative Biology, 8(3), 245–255. https://doi.org/10.1007/s40484-020-0213-6

    Article  Google Scholar 

  16. **ao, H., Li, L., Liu, Q., Zhu, X., & Zhang, Q. (2023). Transformers in medical image segmentation: A review. Biomedical Signal Processing and Control, 84, 104791. https://doi.org/10.1016/j.bspc.2023.104791

    Article  Google Scholar 

  17. Thisanke, H., Deshan, C., Chamith, K., Seneviratne, S., Vidanaarachchi, R., & Herath, D. (2023). Semantic segmentation using vision transformers: A survey. Engineering Applications of Artificial Intelligence, 126, 106669. https://doi.org/10.1016/j.engappai.2023.106669

    Article  Google Scholar 

  18. Liu, Z., Lin, Y., Cao, Y., Hu, H., Wei, Y., Zhang, Z., ... & Guo, B. (2021). Swin transformer: Hierarchical vision transformer using shifted windows. In Proceedings of the IEEE/CVF international conference on computer vision (pp. 10012–10022). https://doi.org/10.48550/ar**v.2103.14030

  19. Cao, H., Wang, Y., Chen, J., Jiang, D., Zhang, X., Tian, Q., & Wang, M. (2022, October). Swin-unet: Unet-like pure transformer for medical image segmentation. In European conference on computer vision (pp. 205–218). Cham: Springer Nature Switzerland.

  20. Chandrasekaran, S. N., Cimini, B. A., Goodale, A., Miller, L., Kost-Alimova, M., Jamali, N., & Carpenter, A. E. (2024). Three million images and morphological profiles of cells treated with matched chemical and genetic perturbations. Nature Methods. https://doi.org/10.1038/s41592-024-02241-6

    Article  PubMed  PubMed Central  Google Scholar 

  21. Singh, S., Bray, M. A., Jones, T. R., & Carpenter, A. E. (2014). Pipeline for illumination correction of images for high-throughput microscopy. Journal of microscopy, 256(3), 231–236. https://doi.org/10.1111/jmi.12178

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Bray, M. A., Gustafsdottir, S. M., Rohban, M. H., Singh, S., Ljosa, V., Sokolnicki, K. L., & Carpenter, A. E. (2017). A dataset of images and morphological profiles of 30 000 small-molecule treatments using the cell painting assay. Gigascience, 6(12), giw014. https://doi.org/10.1093/gigascience/giw014

    Article  CAS  Google Scholar 

  23. Sultana, F., Sufian, A., & Dutta, P. (2020). Evolution of image segmentation using deep convolutional neural network: A survey. Knowledge-Based Systems, 201, 106062. https://doi.org/10.1016/j.knosys.2020.106062

    Article  Google Scholar 

  24. Lin, S., & Norouzi, N. (2021). An effective deep learning framework for cell segmentation in microscopy images. In 2021 43rd Annual International Conference of the IEEE Engineering in Medicine & Biology Society (EMBC) (pp. 3201–3204). IEEE. https://doi.org/10.1109/EMBC46164.2021.9629863

  25. Jena, B., Digdarshi, D., Paul, S., Nayak, G. K., & Saxena, S. (2023). Effect of learning parameters on the performance of the U-Net architecture for cell nuclei segmentation from microscopic cell images. Microscopy, 72(3), 249–264. https://doi.org/10.1093/jmicro/dfac063

    Article  CAS  PubMed  Google Scholar 

  26. Zaheer, R., & Shaziya, H. (2019). A study of the optimization algorithms in deep learning. In 2019 third international conference on inventive systems and control (ICISC) (pp. 536–539). IEEE. https://doi.org/10.1109/ICISC44355.2019.9036442

  27. Lin, A., Chen, B., Xu, J., Zhang, Z., Lu, G., & Zhang, D. (2022). Ds-transunet: Dual swin transformer u-net for medical image segmentation. IEEE Transactions on Instrumentation and Measurement, 71, 1–15. https://doi.org/10.1109/TIM.2022.3178991

    Article  Google Scholar 

  28. Al Qurri, A., & Almekkawy, M. (2023). Improved UNet with attention for medical image segmentation. Sensors, 23(20), 8589. https://doi.org/10.3390/s23208589

    Article  PubMed  PubMed Central  Google Scholar 

  29. Schabath, M. B., & Cote, M. L. (2019). Cancer progress and priorities: Lung cancer. Cancer epidemiology, biomarkers & prevention, 28(10), 1563–1579. https://doi.org/10.1158/1055-9965.EPI-19-0221

    Article  Google Scholar 

  30. Huang, H. C., Chiang, S. J., Wen, S. H., Lee, P. J., Chen, H. W., Chen, Y. F., & Dong, C. Y. (2019). Three-dimensional nucleus-to-cytoplasm ratios provide better discrimination of normal and lung adenocarcinoma cells than in two dimensions. Journal of Biomedical Optics, 24(8), 080502–080502. https://doi.org/10.1117/1.JBO.24.8.080502

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Funding

This research did not receive any specific grant from funding agencies in the public, commercial, or not-for-profit sectors.

Author information

Authors and Affiliations

Authors

Contributions

Sreelekshmi Palliyil Sreekumar: Methodology, Writing – original draft; Rohini Palanisamy: Methodology, Writing – review & editing; Ramakrishnan Swaminathan: Conceptualization, Writing – review & editing, Supervision.

Corresponding author

Correspondence to Sreelekshmi Palliyil Sreekumar.

Ethics declarations

Conflict of Interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Ethical Approval and Consent to Participate

As this study utilizes publicly available dataset, ethics approval and consent to participate are not applicable.

Consent for Publication

The authors provide full consent for submission and publishing the manuscript in the journal.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sreekumar, S.P., Palanisamy, R. & Swaminathan, R. An Approach to Segment Nuclei and Cytoplasm in Lung Cancer Brightfield Images Using Hybrid Swin-Unet Transformer. J. Med. Biol. Eng. 44, 448–459 (2024). https://doi.org/10.1007/s40846-024-00873-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40846-024-00873-9

Keywords

Navigation