Log in

Stabilization of MOF-derived Co3S4 nanoparticles via graphdiyne coating for efficient oxygen evolution

石墨炔涂层稳定MOF衍生物Co3S4纳米材料用于高效 电催化析氧反应

  • Articles
  • Published:
Science China Materials Aims and scope Submit manuscript

Abstract

Develo** a facile approach to fabricate robust electrocatalysts for the oxygen evolution reaction (OER) is essential for water electrolysis for hydrogen production. Transition metal-organic frameworks (MOFs), with their diverse coordination geometries, offer a promising avenue for deriving materials with excellent electrocatalytic properties. Leveraging the distinct controllable synthesis features of two-dimension graphdiyne (2D-GDY), we herein present a novel strategy: Loading GDY in situ onto a MOF-derived Co3S4/nickel foam (NF) material to create a self-supported electrode, GDY/Co3S4/NF, exhibiting significantly enhanced electrocatalytic performances for OER. Our comprehensive investigation reveals that GDY/Co3S4/NF demonstrates superior performance, with a low overpotential of 223 mV at a current density of 10 mA cm−2 and a small Tafel slope of 46.5 mV dec−1. Notably, it showcases exceptional stability over 45 h of continuous electrolysis at a high current density of 100 mA cm−2 under alkaline conditions, highlighting its promising practical applicability. These results validate that the unique acetylene bonds and macroporous structure of 2D-GDY enable strong electronic interactions with Co3S4, thereby tuning the electronic configuration, facilitating efficient charge transport channels, increasing active surface areas, and enhancing durability. Furthermore, in-situ attenuated total reflection surface-enhanced infrared spectroscopy (in-situ ATR-SEIRAS) analysis reveals that the synergistic effect between GDY and Co3S4 promotes the adsorption of crucial intermediate species such as OOH, thereby significantly improving the electrocatalytic activity for OER. This work presents a facile and efficient strategy for constructing advanced nanomaterials with extraordinary electrocatalytic performance, offering promising prospects for various practical applications.

摘要

制备高效的OER电催化剂对水裂解制氢至关重要. 具有丰富配位 构型的MOFs可以衍生出各种优良的电催化材料. 由于石墨炔(GDY)具 有独特的可控合成特性, 我们将其原位复合在MOF衍生的Co3S4/NF材 料上, 获得了自支撑电极GDY/Co3S4/NF, 大大提高了其OER催化性能. 研究表明, GDY/Co3S4/NF在10 mA cm−2电流密度下表现出223 mV的低 过电位, 在100 mA cm−2的大电流密度下, 能够稳定电解45小时左右, 该 材料显示出了巨大的实际应用潜力. 结果表明, 由于GDY独特的炔键和 大孔结构, 它可以通过**电子相互作用与Co3S4相互作用, 从而调节电 子结构并提供有效的电荷转移通道, 从而大大提高了其电催化OER的 性能.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Kwak WJ, Rosy WJ, Sharon D, et al. Lithium-oxygen batteries and related systems: potential, status, and future. Chem Rev, 2020, 120: 6626–6683

    Article  CAS  PubMed  Google Scholar 

  2. Jaramillo TF, Jørgensen KP, Bonde J, et al. Identification of active edge sites for electrochemical H2 evolution from MoS2 nanocatalysts. Science, 2007, 317: 100–102

    Article  CAS  PubMed  Google Scholar 

  3. Chulliyote R, Hareendrakrishnakumar H, Raja M, et al. Sulfur-immobilized nitrogen and oxygen co-doped hierarchically porous biomass carbon for lithium-sulfur batteries: Influence of sulfur content and distribution on its performance. Chem Select, 2017, 2: 10484–10495

    CAS  Google Scholar 

  4. Anantharaj S, Noda S, Jothi VR, et al. Strategies and perspectives to catch the missing pieces in energy-efficient hydrogen evolution reaction in alkaline media. Angew Chem Int Ed, 2021, 60: 18981–19006

    Article  CAS  Google Scholar 

  5. Wang J, Zhang Z, Ding J, et al. Recent progresses of micro-nanostructured transition metal compound-based electrocatalysts for energy conversion technologies. Sci China Mater, 2021, 64: 1–26

    Article  CAS  Google Scholar 

  6. Yang Y, Zhang K, Lin H, et al. MoS2-Ni3S2 heteronanorods as efficient and stable bifunctional electrocatalysts for overall water splitting. ACS Catal, 2017, 7: 2357–2366

    Article  CAS  Google Scholar 

  7. Kibsgaard J, Chorkendorff I. Considerations for the scaling-up of water splitting catalysts. Nat Energy, 2019, 4: 430–433

    Article  Google Scholar 

  8. Ouyang T, Wang X, Mai X, et al. Coupling magnetic single-crystal Co2Mo3O8 with ultrathin nitrogen-rich carbon layer for oxygen evolution reaction. Angew Chem Int Ed, 2020, 59: 11948–11957

    Article  CAS  Google Scholar 

  9. Yang D, Chen D, Jiang Y, et al. Carbon-based materials for all-solidstate zinc-air batteries. Carbon Energy, 2020, 3: 50–65

    Article  Google Scholar 

  10. Liu Q, **e L, Qu F, et al. A porous Ni3N nanosheet array as a highperformance non-noble-metal catalyst for urea-assisted electrochemical hydrogen production. Inorg Chem Front, 2017, 4: 1120–1124

    Article  CAS  Google Scholar 

  11. Shi Q, Zhu C, Du D, et al. Robust noble metal-based electrocatalysts for oxygen evolution reaction. Chem Soc Rev, 2019, 48: 3181–3192

    Article  CAS  PubMed  Google Scholar 

  12. Shahzad A, Zulfiqar F, Arif Nadeem M. Cobalt containing bimetallic ZIFs and their derivatives as OER electrocatalysts: A critical review. Coord Chem Rev, 2023, 477: 214925

    Article  CAS  Google Scholar 

  13. Sahu N, Behera JN. MOF-derived Co3S4 nanoparticles embedded in nitrogen-doped carbon for electrochemical oxygen production. ACS Appl Nano Mater, 2023, 6: 7686–7693

    Article  CAS  Google Scholar 

  14. Lamiel C, Hussain I, Rabiee H, et al. Metal-organic framework-derived transition metal chalcogenides (S, Se, and Te): Challenges, recent progress, and future directions in electrochemical energy storage and conversion systems. Coord Chem Rev, 2023, 480: 215030

    Article  CAS  Google Scholar 

  15. Li S, Gao Y, Li N, et al. Transition metal-based bimetallic MOFs and MOF-derived catalysts for electrochemical oxygen evolution reaction. Energy Environ Sci, 2021, 14: 1897–1927

    Article  CAS  Google Scholar 

  16. Qin X, Kim D, Piao Y. Metal-organic frameworks-derived novel nanostructured electrocatalysts for oxygen evolution reaction. Carbon Energy, 2021, 3: 66–100

    Article  CAS  Google Scholar 

  17. Xue X, Gao H, Liu J, et al. Electrostatic potential-derived charge: A universal OER performance descriptor for MOFs. Chem Sci, 2022, 13: 13160–13171

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Wang T, Gao L, Hou J, et al. Rational approach to guest confinement inside MOF cavities for low-temperature catalysis. Nat Commun, 2019, 10: 1–9

    Google Scholar 

  19. Yang D, Chen Y, Su Z, et al. Organic carboxylate-based MOFs and derivatives for electrocatalytic water oxidation. Coord Chem Rev, 2021, 428: 213619

    Article  CAS  Google Scholar 

  20. Li Z, Song M, Zhu W, et al. MOF-derived hollow heterostructures for advanced electrocatalysis. Coord Chem Rev, 2021, 439: 213946

    Article  CAS  Google Scholar 

  21. Zong H, Qi R, Yu K, et al. Ultrathin Ti2NTx MXene-wrapped MOF-derived CoP frameworks towards hydrogen evolution and water oxidation. Electrochim Acta, 2021, 393: 139068

    Article  CAS  Google Scholar 

  22. Fu Y, Wang W, Wang J, et al. MOFs-derived ZnCo-Fe core-shell nanocages with remarkable oxygen evolution reaction performance. J Mater Chem A, 2019, 7: 17299–17305

    Article  CAS  Google Scholar 

  23. Guo Y, Zhang C, Zhang J, et al. Metal-organic framework-derived bimetallic NiFe selenide electrocatalysts with multiple phases for efficient oxygen evolution reaction. ACS Sustain Chem Eng, 2021, 9: 2047–2056

    Article  CAS  Google Scholar 

  24. Xu H, Cao J, Shan C, et al. MOF-derived hollow CoS decorated with CeOx nanoparticles for boosting oxygen evolution reaction electrocatalysis. Angew Chem Int Ed, 2018, 57: 8654–8658

    Article  CAS  Google Scholar 

  25. Nguyen AN, Tran NM, Yoo H. Direct growth and post-treatment of zeolitic imidazolate framework-67 on carbon paper: An effective and stable electrode system for electrocatalytic reactions. J Mater Chem A, 2022, 10: 20770–20778

    Article  CAS  Google Scholar 

  26. Bao T, **a Y, Lu J, et al. A pacman-like titanium-doped cobalt sulfide hollow superstructure for electrocatalytic oxygen evolution. Small, 2022, 18: 2103106

    Article  CAS  Google Scholar 

  27. Santhosh Kumar R, Karthikeyan SC, Ramakrishnan S, et al. Anion dependency of spinel type cobalt catalysts for efficient overall water splitting in an acid medium. Chem Eng J, 2023, 451: 138471

    Article  CAS  Google Scholar 

  28. Jiang X, **e Q, Lu G, et al. Synthesis of NiSe2/Fe3O4 nanotubes with heteroepitaxy configuration as a high-efficient oxygen evolution electrocatalyst. Small Methods, 2022, 6: 2200377

    Article  CAS  Google Scholar 

  29. Lin YH, Zhang Q, Ding SC, et al. NiFe nanoparticle nest supported on graphene as electrocatalyst for highly efficient oxygen evolution reaction. Small, 2023, 20: 2308278

    Google Scholar 

  30. Lin L, Wang Y, Ye Q, et al. Rapid fabrication of FexNi2-xP4O12 and graphene hybrids as electrocatalyst for highly efficient oxygen evolution reaction. Appl Catal B-Environ, 2023, 334: 122834

    Article  CAS  Google Scholar 

  31. Chen X, Zheng X, Zhang C, et al. Highly selective conversion of CO2 to formate on SnOx/GDY heterostructured electrocatalyst. Nano Energy, 2023, 114: 108622

    Article  CAS  Google Scholar 

  32. Wang M, Pu J, Hu Y, et al. Functional graphdiyne for emerging applications: Recent advances and future challenges. Adv Funct Mater, 2024, 34: 2308601

    Article  CAS  Google Scholar 

  33. Li G, Li Y, Liu H, et al. Architecture of graphdiyne nanoscale films. Chem Commun, 2010, 46: 3256

    Article  CAS  Google Scholar 

  34. Zuo Z, Wang D, Zhang J, et al. Synthesis and applications of graphdiyne-based metal-free catalysts. Adv Mater, 2019, 31: 1803762

    Article  Google Scholar 

  35. Gao X, Liu H, Wang D, et al. Graphdiyne: synthesis, properties, and applications. Chem Soc Rev, 2019, 48: 908–936

    Article  CAS  PubMed  Google Scholar 

  36. Li M, Wang K, Lv Q. N,P-co-doped graphdiyne as efficient metal-free catalysts for oxygen reduction reaction. Chem Res Chin Univ, 2021, 37: 1283–1288

    Article  CAS  Google Scholar 

  37. Xue Y, Huang B, Yi Y, et al. Anchoring zero valence single atoms of nickel and iron on graphdiyne for hydrogen evolution. Nat Commun, 2018, 9: 1460

    Article  PubMed  PubMed Central  Google Scholar 

  38. Shi GD, **e YL, Du LL, et al. Constructing Cu–C bonds in a graphdiyne-regulated Cu single-atom electrocatalyst for CO2 reduction to CH4. Angew Chem Int Ed, 2022, 61: e202203569

    Article  CAS  Google Scholar 

  39. Fu X, Zhao X, Lu T, et al. Graphdiyne-based single-atom catalysts with different coordination environments. Angew Chem Int Ed, 2023, 62: e202219242

    Article  CAS  Google Scholar 

  40. Gao Y, Cai Z, Wu X, et al. Graphdiyne-supported single-atom-sized fe catalysts for the oxygen reduction reaction: DFT predictions and experimental validations. ACS Catal, 2018, 8: 10364–10374

    Article  CAS  Google Scholar 

  41. Wang S, Che Z, Zou M, et al. Gorgeous turn-back: Rough surface treatment strategy induces Cu-C and N-C active moieties for bifunctional oxygen electrocatalysis. Chem Eng J, 2023, 471: 144262

    Article  CAS  Google Scholar 

  42. Chen B, Jiang YF, **ao H, et al. Bimetallic single-cluster catalysts anchored on graphdiyne for alkaline hydrogen evolution reaction. Chin J Catal, 2023, 50: 306–313

    Article  CAS  Google Scholar 

  43. Wang Z, Zheng Z, Xue Y, et al. Acidic water oxidation on quantum dots of IrOx/graphdiyne. Adv Energy Mater, 2021, 11: 2101138

    Article  CAS  Google Scholar 

  44. Qi L, Chen Z, Luan X, et al. Atomically dispersed Mn enhanced catalytic performance for overall water splitting on graphdiyne-coated copper hydroxide nanowire. Chin J Struct Chem, 2024, 43: 100197

    Article  CAS  Google Scholar 

  45. Liu Y, Xue Y, Yu H, et al. Graphdiyne ultrathin nanosheets for efficient water splitting. Adv Funct Mater, 2021, 31: 2010112

    Article  CAS  Google Scholar 

  46. Yu S, Chen J, Chen C, et al. What happens when graphdiyne encounters do** for electrochemical energy conversion and storage. Coord Chem Rev, 2023, 482: 215082

    Article  CAS  Google Scholar 

  47. Qi L, Gao Y, Gao Y, et al. Controlled growth of metal atom arrays on graphdiyne for seawater oxidation. J Am Chem Soc, 2024, 146: 5669–5677

    Article  CAS  PubMed  Google Scholar 

  48. Zheng Z, Xue Y, Li Y. A new carbon allotrope: graphdiyne. Trends Chem, 2022, 4: 754–768

    Article  CAS  Google Scholar 

  49. Qi L, Zheng Z, **ng C, et al. 1D nanowire heterojunction electrocatalysts of MnCo2O4/GDY for efficient overall water splitting. Adv Funct Mater, 2022, 32: 2107179

    Article  CAS  Google Scholar 

  50. Chen X, Fu X, Zhang S, et al. Graphdiyne in situ thermal reduction enabled ultra-small quasi-core/shell Ru-RuO2 heterostructures for efficient acidic water oxidation. 2D Mater, 2021, 8: 044011

    Article  CAS  Google Scholar 

  51. Wang S, Yi L, Halpert JE, et al. A novel and highly efficient photocatalyst based on P25-graphdiyne nanocomposite. Small, 2012, 8: 265–271

    Article  CAS  PubMed  Google Scholar 

  52. Zhao XJ, Fang XL, Wu BH, et al. Facile synthesis of size-tunable ZIF-8 nanocrystals using reverse micelles as nanoreactors. Sci China Chem, 2014, 57: 141–146

    Article  CAS  Google Scholar 

  53. Li G, Wang P, Li C, et al. Cobalt-nickel layered double hydroxide on hollow Co3S4/CuS derived from ZIF-67 for efficient overall water splitting. Mater Res Lett, 2022, 10: 744–753

    Article  CAS  Google Scholar 

  54. Yang Y, Ma Q, Han L, et al. Zeolitic imidazolate framework-derived Co3S4@Co(OH)2 nanoarrays as self-supported electrodes for asymmetric supercapacitors. Inorg Chem Front, 2019, 6: 1398–1404

    Article  CAS  Google Scholar 

  55. Ji K, Che Q, Yue Y, et al. Ni-doped Co3S4 hollow nanobox for the hydrogen evolution reaction. ACS Appl Nano Mater, 2022, 5: 9901–9909

    Article  CAS  Google Scholar 

  56. Lee YJ, Park S. Metal-organic framework-derived hollow CoSx nanoarray coupled with NiFe layered double hydroxides as efficient bifunctional electrocatalyst for overall water splitting. Small, 2022, 18: 2200586

    Article  CAS  Google Scholar 

  57. Guo Y, Tang J, Qian H, et al. One-pot synthesis of zeolitic imidazolate framework 67-derived hollow Co3S4@MoS2 heterostructures as efficient bifunctional catalysts. Chem Mater, 2017, 29: 5566–5573

    Article  CAS  Google Scholar 

  58. Ren Y, Wang H, Zhang T, et al. Designed preparation of CoS/Co/MoC nanoparticles incorporated in N and S dual-doped porous carbon nanofibers for high-performance Zn-air batteries. Chin Chem Lett, 2021, 32: 2243–2248

    Article  CAS  Google Scholar 

  59. Rao P, Liu Y, Su YQ, et al. S, N co-doped carbon nanotube encased Co NPs as efficient bifunctional oxygen electrocatalysts for zinc-air batteries. Chem Eng J, 2021, 422: 130135

    Article  CAS  Google Scholar 

  60. Li X, Zheng K, Zhang J, et al. Engineering sulfur vacancies in spinelphase Co3S4 for effective electrocatalysis of the oxygen evolution reaction. ACS Omega, 2022, 7: 12430–12441

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Li Z, Xu W, Yu X, et al. Synergistic effect between 1D Co3S4/MoS2 heterostructures to boost the performance for alkaline overall water splitting. Inorg Chem Front, 2022, 9: 2139–2149

    Article  CAS  Google Scholar 

  62. Liu H, Zhang Z, Fang J, et al. Eliminating over-oxidation of ruthenium oxides by niobium for highly stable electrocatalytic oxygen evolution in acidic media. Joule, 2023, 7: 558–573

    Article  CAS  Google Scholar 

  63. Cheng W, Zhao X, Su H, et al. Lattice-strained metal-organic-framework arrays for bifunctional oxygen electrocatalysis. Nat Energy, 2019, 4: 115–122

    Article  CAS  Google Scholar 

  64. Liu H, Qi Z, Song L. In situ electrocatalytic infrared spectroscopy for dynamic reactions. J Phys Chem C, 2021, 125: 24289–24300

    Article  CAS  Google Scholar 

  65. Kumar G, Haldar R, Shanmugam M, et al. Mechanistic insight into a Co-based metal-organic framework as an efficient oxygen electrocatalyst via an in situ FT-IR study. J Mater Chem A, 2023, 11: 26508–26518

    Article  CAS  Google Scholar 

  66. **n S, Tang Y, Jia B, et al. Coupling adsorbed evolution and lattice oxygen mechanism in Fe-Co(OH)2/Fe2O3 heterostructure for enhanced electrochemical water oxidation. Adv Funct Mater, 2023, 33: 2305243

    Article  CAS  Google Scholar 

  67. Li X, Deng C, Kong Y, et al. Unlocking the transition of electrochemical water oxidation mechanism induced by heteroatom do**. Angew Chem Int Ed, 2023, 62: e202309732

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (22375148) and the National Key R&D Program of China (2022YFA1502902).

Author information

Authors and Affiliations

Authors

Contributions

Author contributions Lu M and Zhang S designed and engineered the samples; Lu M, Zhao X and Zhang S performed the experiments; Jian H did some analyses. Wang M and Lu M wrote the paper with support from Lu T. Lu T and Wang M administrated the project, supervised the experiments and reviewed the manuscript. All authors contributed to the general discussion.

Corresponding authors

Correspondence to Mei Wang  (王梅) or Tongbu Lu  (鲁统部).

Ethics declarations

Conflict of interest The authors declare that they have no conflict of interest.

Additional information

Supplementary information Experimental details and supporting data are available in the online version of the paper.

Mengyu Lu is a graduate student at the School of Materials Science and Engineering, Tian** University of Technology. She received her BE degree from the Jiangxi University of Science and Technology in 2022. She is mainly engaged in the application of metal-based nanomaterials in electrocatalysis.

Mei Wang received her PhD degree in 2009 at the Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences. Then she worked as a postdoctoral fellow at Max-Planck Institute for Chemical Energy Conversion. She is currently an associate professor at Tian** University of Technology, working on metalbased complexes and nanomaterials synthesis, and exploring their applications in electrocatalysis.

Tongbu Lu obtained his BS in 1988 and PhD in 1993 from Lanzhou University. He joined the Sun Yat-Sen University and became a professor in 2000. In 2016, he moved to Tian** University of Technology. His current research interest focuses on the study of artificial photosynthesis, including the design of homogeneous and heterogeneous catalysts for water splitting and CO2 reduction. He obtained the National Natural Science Foundation for Distinguished Youth Scholar in 2006.

Electronic supplementary material

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lu, M., Zhao, X., Zhang, S. et al. Stabilization of MOF-derived Co3S4 nanoparticles via graphdiyne coating for efficient oxygen evolution. Sci. China Mater. 67, 1882–1890 (2024). https://doi.org/10.1007/s40843-024-2956-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40843-024-2956-9

Keywords

Navigation