Log in

Surface modification of metal-organic frameworks under sublimated iron-atmosphere by controlled carbonization for boosted oxygen evolution reaction

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Development of cost-effective, efficient, and durable electrocatalysts for oxygen evolution reaction (OER) with fast kinetic reaction is highly significant, considering the elevated thermodynamic energy barrier involved in water electrolysis. To overcome such challenges, an innovative vapor phased iron-do** strategy is employed on carbon nanotubes (CNT)-interlinked metal-organic framework (MOF) nanosheets (Ni-MOF@CNT) to obtain mixed metal oxide and metal heteronanoparticles superficially implanted partially (semi)-decomposed MOF nanosheets (Ni-M@C-400). These semi-MOF nanosheets attain the structural privileges related to MOF-nanostructure, mixed metal nanoparticles synergism, interconnected-CNT assisted high conductivity, and mechanical strength. As a result, Ni-M@C-400 exhibits exceptional OER activity with overpotential as low as 229 mV to reach the benchmark current density of 10 mA/cm2 (η10) and exhibits greatly reduced thermodynamic barrier (Tafel slopes of 40.51 mV/dec) along with significant durability for ∼60 h. More importantly, this sublimated iron-doped semi-MOF (Ni-M@C-400) displays significantly better OER performance over the corresponding annealed bimetallic MOF (NiFe-M@C-400: 270 mV at η10). Moreover, the successful incorporation of vapor phased iron into variety of MOFs (Cr, Mn, Co, Ni, and Cu) approved its uniqueness and the universality. This work provides an innovative vapor phased heteroatom-do** strategy to develop cost-effective and efficient electrocatalysts for water electrolysis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Chu, S; Majumdar, A. Opportunities and challenges for a sustainable energy future. Nature 2012, 488, 294–303.

    Article  CAS  Google Scholar 

  2. Zhou, T. P.; Shan, H.; Yu, H.; Zhong, C. A.; Ge, J. K.; Zhang, N.; Chu, W. S.; Yan, W. S.; Xu, Q.; Wu, H. A. et al. Nanopore confinement of electrocatalysts optimizing triple transport for an ultrahigh-power-density zinc-air fuel cell with robust stability. Adv. Mater. 2020, 32, 2003251.

    Article  CAS  Google Scholar 

  3. Gao, C. B.; Lyu, F. L.; Yin, Y. D. Encapsulated metal nanoparticles for catalysis. Chem. Rev. 2021, 121, 834–881.

    Article  CAS  Google Scholar 

  4. Qin, T. C.; Wang, Z. G.; Wang, Y. Q.; Besenbacher, F.; Otyepka, M.; Dong, M. D. Recent progress in emerging two-dimensional transition metal carbides. Nano-Micro Lett. 2021, 13, 183.

    Article  CAS  Google Scholar 

  5. Srinivas, K.; Chen, Y. F.; Wang, B.; Yu, B.; Wang, X. Q.; Hu, Y.; Lu, Y. J.; Li, W. X.; Zhang, W. L.; Yang, D. X. Metal-organic framework-derived NiS/Fe3O4 heterostructure-decorated carbon nanotubes as highly efficient and durable electrocatalysts for oxygen evolution reaction. ACS Appl. Mater. Interfaces 2020, 12, 31552–31563.

    Article  CAS  Google Scholar 

  6. Wang, Y. M.; Qian, G. F.; Xu, Q. L.; Zhang, H.; Shen, F.; Luo, L.; Yin, S. B. Industrially promising IrNi-FeNi3 hybrid nanosheets for overall water splitting catalysis at large current density. Appl. Catal. B:Environ. 2021, 286, 119881.

    Article  CAS  Google Scholar 

  7. Che, Z. W.; Lu, X. Y.; Cai, B. F.; Xu, X. X.; Bao, J. C.; Liu, Y. Ligand-controlled synthesis of high density and ultra-small Ru nanoparticles with excellent electrocatalytic hydrogen evolution performance. Nano Res. 2022, 15, 1269–1275.

    Article  CAS  Google Scholar 

  8. Li, X. Y.; **ao, L. P.; Zhou, L.; Xu, Q. C.; Weng, J.; Xu, J.; Liu, B. Adaptive bifunctional electrocatalyst of amorphous CoFe oxide@2D black phosphorus for overall water splitting. Angew. Chem., Int. Ed. 2020, 59, 21106–21113.

    Article  CAS  Google Scholar 

  9. Wang, Q.; Astruc, D. State of the art and prospects in metal-organic framework (MOF)-based and MOF-derived nanocatalysis. Chem. Rev. 2020, 120, 1438–1511.

    Article  CAS  Google Scholar 

  10. Wang, W. B.; Yang, Y.; Zhao, Y.; Wang, S. Z.; Ai, X. M.; Fang, J. K.; Liu, Y. W. Multi-scale regulation in S, N co-incorporated carbon encapsulated Fe-doped Co9S8 achieving efficient water oxidation with low overpotential. Nano Res. 2022, 15, 872–880.

    Article  CAS  Google Scholar 

  11. Zhong, D. Z.; Li, T.; Wang, D.; Li, L. N.; Wang, J. C.; Hao, G. Y.; Liu, G.; Zhao, Q.; Li, J. P. Strengthen metal-oxygen covalency of CoFe-layered double hydroxide for efficient mild oxygen evolution. Nano Res. 2022, 15, 162–169.

    Article  CAS  Google Scholar 

  12. Yang, D. X.; Chen, Y. F.; Su, Z.; Zhang, X. J.; Zhang, W. L.; Srinivas, K. Organic carboxylate-based MOFs and derivatives for electrocatalytic water oxidation. Coord. Chem. Rev. 2021, 428, 213619.

    Article  CAS  Google Scholar 

  13. Li, F. L.; Shao, Q.; Huang, X. Q.; Lang, J. P. Nanoscale trimetallic metal-organic frameworks enable efficient oxygen evolution electrocatalysis. Angew. Chem., Int. Ed. 2018, 57, 1888–1892.

    Article  CAS  Google Scholar 

  14. Sun, F. Z.; Wang, G.; Ding, Y. Q.; Wang, C.; Yuan, B. B.; Lin, Y. Q. NiFe-based metal-organic framework nanosheets directly supported on nickel foam acting as robust electrodes for electrochemical oxygen evolution reaction. Adv. Energy Mater. 2018, 8, 1800584.

    Article  Google Scholar 

  15. Luo, X.; Ji, P. X.; Wang, P. Y.; Cheng, R. L.; Chen, D.; Lin, C.; Zhang, J. N.; He, J. W.; Shi, Z. H.; Li, N. et al. Interface engineering of hierarchical branched Mo-doped Ni3S2/NixPy hollow heterostructure nanorods for efficient overall water splitting. Adv. Energy Mater. 2020, 10, 1903891.

    Article  CAS  Google Scholar 

  16. Gu, X. K.; Camayang, J. C. A.; Samira, S.; Nikolla, E. Oxygen evolution electrocatalysis using mixed metal oxides under acidic conditions: Challenges and opportunities. J. Catal. 2020, 388, 130–140.

    Article  CAS  Google Scholar 

  17. Wang, X. Y.; He, Y.; Han, X. P.; Zhao, J.; Li, L. L.; Zhang, J. F.; Zhong, C.; Deng, Y. D.; Hu, W. B. Engineering cobalt sulfide/oxide heterostructure with atomically mixed interfaces for synergistic electrocatalytic water splitting. Nano Res. 2022, 15, 1246–1253.

    Article  CAS  Google Scholar 

  18. Wang, Z. G.; Wu, H. H.; Li, Q.; Besenbacher, F.; Li, Y. R.; Zeng, X. C.; Dong, M. D. Reversing interfacial catalysis of ambipolar WSe2 single crystal. Adv. Sci. 2020, 7, 1901382.

    Article  CAS  Google Scholar 

  19. Deng, Y. J.; Chi, B.; Li, J.; Wang, G. H.; Zheng, L.; Shi, X. D.; Cui, Z. M.; Du, L.; Liao, S. J.; Zang, K. T. et al. Atomic Fe-doped MOF-derived carbon polyhedrons with high active-center density and ultrahigh performance toward PEM fuel cells. Adv. Energy Mater. 2019, 9, 1802856.

    Article  Google Scholar 

  20. Chen, J. Y.; Zhuang, P. Y.; Ge, Y. C.; Chu, H.; Yao, L. Y.; Cao, Y. D.; Wang, Z. Y.; Chee, M. O. L.; Dong, P.; Shen, J. F. et al. Sublimation-vapor phase pseudomorphic transformation of template-directed MOFs for efficient oxygen evolution reaction. Adv. Funct. Mater. 2019, 29, 1903875.

    Article  Google Scholar 

  21. Gao, R.; Yan, D. P. Recent development of Ni/Fe-based micro/nanostructures toward photo/electrochemical water oxidation. Adv. Energy Mater. 2020, 10, 1900954.

    Article  CAS  Google Scholar 

  22. Zhao, X. J.; Pachfule, P.; Li, S.; Simke, J. R. J.; Schmidt, J.; Thomas, A. Bifunctional electrocatalysts for overall water splitting from an iron/nickel-based bimetallic metal-organic framework/dicyandiamide composite. Angew. Chem. 2018, 130, 9059–9064.

    Article  Google Scholar 

  23. Wang, M.; Wang, Y. Q.; Mao, S. S.; Shen, S. H. Transition-metal alloy electrocatalysts with active sites modulated by metal-carbide heterophases for efficient oxygen evolution. Nano Energy 2021, 88, 106216.

    Article  CAS  Google Scholar 

  24. Zhang, W.; Li, D. H.; Zhang, L. Z.; She, X. L.; Yang, D. J. NiFe-based nanostructures on nickel foam as highly efficiently electrocatalysts for oxygen and hydrogen evolution reactions. J. Energy Chem. 2019, 39, 39–53.

    Article  Google Scholar 

  25. Anantharaj, S.; Kundu, S.; Noda, S. “The Fe effect”: A review unveiling the critical roles of Fe in enhancing OER activity of Ni and Co based catalysts. Nano Energy 2021, 80, 105514.

    Article  CAS  Google Scholar 

  26. Chang, J. L.; Chen, L. M.; Zang, S. Q.; Wang, Y. F.; Wu, D. P.; Xu, F.; Jiang, K.; Gao, Z. Y. The effect of Fe(III) cations in electrolyte on oxygen evolution catalytic activity of Ni(OH)2 electrode. J. Colloid Interface Sci. 2020, 569, 50–56.

    Article  CAS  Google Scholar 

  27. Ren, J. T.; Yuan, G. G.; Weng, C. C.; Chen, L.; Yuan, Z. Y. Uniquely integrated Fe-doped Ni(OH)2 nanosheets for highly efficient oxygen and hydrogen evolution reactions. Nanoscale 2018, 10, 10620–10628.

    Article  CAS  Google Scholar 

  28. Zhong, B.; Kuang, P. Y.; Wang, L. X.; Yu, J. G. Hierarchical porous nickel supported NiFeOxHy nanosheets for efficient and robust oxygen evolution electrocatalyst under industrial condition. Appl. Catal. B:Environ. 2021, 299, 120668.

    Article  CAS  Google Scholar 

  29. Tian, G. Q.; Wei, S. R.; Guo, Z. T.; Wu, S. W.; Chen, Z. L.; Xu, F. M.; Cao, Y.; Liu, Z.; Wang, J. Q.; Ding, L. et al. Hierarchical NiMoP2-Ni2P with amorphous interface as superior bifunctional electrocatalysts for overall water splitting. J. Mater. Sci. Technol. 2021, 77, 108–116.

    Article  CAS  Google Scholar 

  30. Wang, X. Q.; Wang, B.; Chen, Y. F.; Wang, M. Y.; Wu, Q.; Srinivas, K.; Yu, B.; Zhang, X. J.; Ma, F.; Zhang, W. L. Fe2P nanoparticles embedded on Ni2P nanosheets as highly efficient and stable bifunctional electrocatalysts for water splitting. J. Mater. Sci. Technol. 2022, 105, 266–273.

    Article  Google Scholar 

  31. Yang, D. X.; Su, Z.; Chen, Y. F.; Srinivas, K.; Gao, J. Z.; Zhang, W. L.; Wang, Z. G.; Lin, H. P. Electronic modulation of hierarchical spongy nanosheets toward efficient and stable water electrolysis. Small 2021, 17, 2006881.

    Article  CAS  Google Scholar 

  32. Wang, X. L.; **ao, H.; Li, A.; Li, Z.; Liu, S. J.; Zhang, Q. H.; Gong, Y.; Zheng, L. R.; Zhu, Y. Q.; Chen, C. et al. Constructing NiCo/Fe3O4 heteroparticltes within MOF-74 for efficient oxygen evolution reactions. J. Am. Chem. Soc. 2018, 140, 15336–15341.

    Article  CAS  Google Scholar 

  33. Zhao, M.; Li, W.; Li, J. Y.; Hu, W. H.; Li, C. M. Strong electronic interaction enhanced electrocatalysis of metal sulfide clusters embedded metal-organic framework ultrathin nanosheets toward highly efficient overall water splitting. Adv. Sci. 2020, 7, 2001965.

    Article  CAS  Google Scholar 

  34. Dou, S.; Dong, C. L.; Hu, Z.; Huang, Y. C.; Chen, J. L.; Tao, L.; Yan, D. F.; Chen, D. W.; Shen, S. H.; Chou, S. L. et al. Atomic-scale CoOx species in metal-organic frameworks for oxygen evolution reaction. Adv. Funct. Mater. 2017, 27, 1702546.

    Article  Google Scholar 

  35. Liu, T.; Li, P.; Yao, N.; Cheng, G. Z.; Chen, S. L.; Luo, W.; Yin, Y. D. CoP-doped MOF-based electrocatalyst for pH-universal hydrogen evolution reaction. Angew. Chem., Int. Ed. 2019, 58, 4679–1684.

    Article  CAS  Google Scholar 

  36. Wu, X. Q.; Huang, D. D.; Wu, Y. P.; Zhao, J.; Liu, X.; Dong, W. W.; Li, S.; Li, D. S.; Li, J. R. In situ synthesis of nano CuS-embedded MOF hierarchical structures and application in dye adsorption and hydrogen evolution reaction. ACS Appl. Energy Mater. 2019, 2, 5698–5706.

    Article  CAS  Google Scholar 

  37. Srinivas, K.; Chen, Y. F.; Wang, B.; Yu, B.; Lu, Y. J.; Su, Z.; Zhang, W. L.; Yang, D. X. Metal-organic framework-derived Fe-doped Ni3Fe/NiFe2O4 heteronanoparticle-decorated carbon nanotube network as a highly efficient and durable bifunctional electrocatalyst. ACS Appl. Mater. Interfaces 2020, 12, 55782–55794.

    Article  CAS  Google Scholar 

  38. Srinivas, K.; Chen, Y. F.; Wang, X. Q.; Wang, B.; Karpuraranjith, M.; Wang, W.; Su, Z.; Zhang, W. L.; Yang, D. X. Constructing Ni/NiS heteronanoparticle-embedded metal-organic framework-derived nanosheets for enhanced water-splitting catalysis. ACS Sustainable Chem. Eng. 2021, 9, 1920–1931.

    Article  CAS  Google Scholar 

  39. Yang, D. X.; Su, Z.; Chen, Y. F.; Srinivas, K.; Zhang, X. J.; Zhang, W. L.; Lin, H. P. Self-reconstruction of a MOF-derived chromium-doped nickel disulfide in electrocatalytic water oxidation. Chem. Eng. J. 2022, 430, 133046.

    Article  CAS  Google Scholar 

  40. Yang, D. X.; Su, Z.; Chen, Y. F.; Lu, Y. J.; Yu, B.; Srinivas, K.; Wang, B.; Zhang, W. L. Double-shelled hollow bimetallic phosphide nanospheres anchored on nitrogen-doped graphene for boosting water electrolysis. J. Mater. Chem. A 2020, 8, 22222–22229.

    Article  CAS  Google Scholar 

  41. Zhu, K. Y.; Chen, J. Y.; Wang, W. J.; Liao, J. W.; Dong, J. C.; Chee, M. O. L.; Wang, N.; Dong, P.; Ajayan, P. M.; Gao, S. P. et al. Etching-do** sedimentation equilibrium strategy: Accelerating kinetics on hollow Rh-doped CoFe-layered double hydroxides for water splitting. Adv. Funct. Mater. 2020, 30, 2003556.

    Article  CAS  Google Scholar 

  42. Chen, J. W.; Wang, F. M.; Qi, X. P.; Yang, H.; Peng, B. J.; Xu, L.; **ao, Z. L.; Hou, X. M.; Liang, T. X. A simple strategy to construct cobalt oxide-based high-efficiency electrocatalysts with oxygen vacancies and heterojunctions. Electrochim. Acta 2019, 326, 134979.

    Article  CAS  Google Scholar 

  43. Ren, C. T.; Jia, X.; Zhang, W.; Hou, D.; **a, Z. Q.; Huang, D. S.; Hu, J.; Chen, S. P.; Gao, S. L. Hierarchical porous integrated Co1−xS/CoFe2O4@rGO nanoflowers fabricated via temperature-controlled in situ calcining sulfurization of multivariate CoFe-MOF-74@rGO for high-performance supercapacitor. Adv. Funct. Mater. 2020, 30, 2004519.

    Article  CAS  Google Scholar 

  44. Yang, L. J.; Li, H.; Yu, Y.; Wu, Y.; Zhang, L. Assembled 3D MOF on 2D nanosheets for self-boosting catalytic synthesis of N-doped carbon nanotube encapsulated metallic Co electrocatalysts for overall water splitting. Appl. Catal. B:Environ. 2020, 271, 118939.

    Article  CAS  Google Scholar 

  45. Abdel-Wahed, M. S.; El-Kalliny, A. S.; Badawy, M. I.; Attia, M. S.; Gad-Allah, T. A. Core double-shell MnFe2O4@rGO@TiO2 superparamagnetic photocatalyst for wastewater treatment under solar light. Chem. Eng. J. 2020, 382, 122936.

    Article  CAS  Google Scholar 

  46. Wang, B.; Wang, X. Q.; Wang, Z. G.; Srinivas, K.; Zhang, X. J.; Yu, B.; Yang, D. X.; Zhang, W. L.; Lau, T. C.; Chen, Y. F. Electronic modulation of NiS-PBA/CNT with boosted water oxidation performance realized by a rapid microwave-assisted in-sttu partial sulfidation. Chem. Eng. J. 2021, 420, 130481.

    Article  CAS  Google Scholar 

  47. Ma, F.; Yu, B.; Zhang, X. J.; Zhang, Z. H.; Srinivas, K.; Wang, X. Q.; Liu, D. W.; Wang, B.; Zhang, W. L.; Wu, Q. et al. WN0.67-embedded N-doped graphene-nanosheet interlayer as efficient polysulfide catalyst and absorbant for high-performance lithium-sulfur batteries. Chem. Eng. J. 2022, 431, 133439.

    Article  CAS  Google Scholar 

  48. Lu, Y. J.; Chen, Y. F.; Srinivas, K.; Su, Z.; Wang, X. Q.; Wang, B.; Yang, D. X. Employing dual-ligand co-coordination compound to construct nanorod-like Bi-metallic (Fe, Co)P decorated with nitrogen-doped graphene for electrocatalytic overall water splitting. Electrochim. Acta 2020, 350, 136338.

    Article  CAS  Google Scholar 

  49. Rui, K.; Zhao, G. Q.; Chen, Y. P.; Lin, Y.; Zhou, Q.; Chen, J. Y.; Zhu, J. X.; Sun, W. P.; Huang, W.; Dou, S. X. Hybrid 2D dual-metal-organic frameworks for enhanced water oxidation catalysis. Adv. Funct. Mater. 2018, 28, 1801554.

    Article  Google Scholar 

  50. Kamble, R. B.; Varade, V.; Ramesh, K. P.; Prasad, V. Domain size correlated magnetic properties and electrical impedance of size dependent nickel ferrite nanoparticles. AIP Adv. 2015, 5, 017119.

    Article  Google Scholar 

  51. Sankar, K. V.; Selvan, R. K.; Meyrick, D. Electrochemical performances of CoFe2O4 nanoparticles and a rGO based asymmetric supercapacitor. RSC Adv. 2015, 5, 99959–99967.

    Article  CAS  Google Scholar 

  52. Zhu, P.; Gao, J. X.; Liu, S. Facile in situ coupling CoFe/Co nanoparticles and N-doped carbon nanotubes/graphitic nanosheets as bifunctional oxygen electrocatalysts for rechargeable Zn-air batteries. J. Power Sources 2020, 449, 227512.

    Article  CAS  Google Scholar 

  53. Liu, J. L.; Zhu, D. D.; Ling, T.; Vasileff, A.; Qiao, S. Z. S-NiFe2O4 ultra-small nanoparticle built nanosheets for efficient water splitting in alkaline and neutral pH. Nano Energy 2017, 40, 264–273.

    Article  CAS  Google Scholar 

  54. Li, F. L.; Wang, P. T.; Huang, X. Q.; Young, D. J.; Wang, H. F.; Braunstein, P.; Lang, J. P. Large-scale, bottom-up synthesis of binary metal-organic framework nanosheets for efficient water oxidation. Angew. Chem., Int. Ed. 2019, 58, 7051–7056.

    Article  CAS  Google Scholar 

  55. Zhang, J. F.; Jiang, Y.; Wang, Y.; Yu, C. P.; Cui, J. W.; Wu, J. J.; Shu, X.; Qin, Y. Q.; Sun, J.; Yan, J. et al. Ultrathin carbon coated mesoporous Ni-NiFe2O4 nanosheet arrays for efficient overall water splitting. Electrochim. Acta 2019, 321, 134652.

    Article  CAS  Google Scholar 

  56. Li, S. S.; Sirisomboonchai, S.; Yoshida, A.; An, X. W.; Hao, X. G.; Abudula, A.; Guan, G. Q. Bifunctional CoNi/CoFe2O4/Ni foam electrodes for efficient overall water splitting at a high current density. J. Mater. Chem. A 2018, 6, 19221–19230.

    Article  CAS  Google Scholar 

  57. Lei, S.; Li, Q. H.; Kang, Y.; Gu, Z. G.; Zhang, J. Epitaxial growth of oriented prussian blue analogue derived well-aligned CoFe2O4 thin film for efficient oxygen evolution reaction. Appl. Catal. B:Environ. 2019, 245, 1–9.

    Article  CAS  Google Scholar 

  58. Srinivas, K.; Lu, Y. J.; Chen, Y. F.; Zhang, W. L.; Yang, D. X. FeNi3-Fe3O4 heterogeneous nanoparticles anchored on 2D MOF nanosheets/1D CNT matrix as highly efficient bifunctional electrocatalysts for water splitting. ACS Sustainable Chem. Eng. 2020, 8, 3820–3831.

    Article  CAS  Google Scholar 

  59. Mohanty, B.; Bhanja, P.; Jena, B. K. An overview on advances in design and development of materials for electrochemical generation of hydrogen and oxygen. Mater. Today Energy 2022, 23, 100902.

    Article  CAS  Google Scholar 

  60. Muschi, M.; Serre, C. Progress and challenges of graphene oxide/metal-organic composites. Coord. Chem. Rev. 2019, 387, 262–272.

    Article  CAS  Google Scholar 

  61. Shao, Q.; Wang, P. T.; Huang, X. Q. Opportunities and challenges of interface engineering in bimetallic nanostructure for enhanced electrocatalysis. Adv. Funct. Mater. 2019, 29, 1806419.

    Article  Google Scholar 

  62. Huang, J. W.; Li, Y. Y.; Zhang, Y. D.; Rao, G. F.; Wu, C. Y.; Hu, Y.; Wang, X. F.; Lu, R. F.; Li, Y. R.; **ong, J. Identification of key reversible intermediates in self-reconstructed nickel-based hybrid electrocatalysts for oxygen evolution. Angew. Chem., Int. Ed. 2019, 58, 17458–17464.

    Article  CAS  Google Scholar 

  63. Görlin, M.; de Araújo, J. F.; Schmies, H.; Bernsmeier, D.; Dresp, S.; Gliech, M.; Jusys, Z.; Chernev, P.; Kraehnert, R.; Dau, H. et al. Tracking catalyst redox states and reaction dynamics in Ni-Fe oxyhydroxide oxygen evolution reaction electrocatalysts: The role of catalyst support and electrolyte pH. J. Am. Chem. Soc. 2017, 139, 2070–2082.

    Article  Google Scholar 

  64. Dionigi, F.; Zeng, Z. H.; Sinev, I.; Merzdorf, T.; Deshpande, S.; Lopez, M. B.; Kunze, S.; Zegkinoglou, I.; Sarodnik, H.; Fan, D. X. et al. In-situ structure and catalytic mechanism of NiFe and CoFe layered double hydroxides during oxygen evolution. Nat. Commun. 2020, 11, 2522.

    Article  CAS  Google Scholar 

  65. Qian, Q. Z.; Li, Y. P.; Liu, Y.; Yu, L.; Zhang, G. Q. Ambient fast synthesis and active sites deciphering of hierarchical foam-like trimetal-organic framework nanostructures as a platform for highly efficient oxygen evolution electrocatalysis. Adv. Mater. 2019, 31, 1901139.

    Article  Google Scholar 

  66. Li, J. W.; Song, J. D.; Huang, B. Y.; Liang, G. F.; Liang, W. L.; Huang, G. J.; **, Y. Q.; Zhang, H.; **. J. Catal. 2020, 389, 375–381.

    Article  CAS  Google Scholar 

  67. Wang, P. Y.; Pu, Z. H.; Li, W. Q.; Zhu, J. W.; Zhang, C. T.; Zhao, Y. F.; Mu, S. C. Coupling NiSe2-Ni2P heterostructure nanowrinkles for highly efficient overall water splitting. J. Catal. 2019, 377, 600–608.

    Article  CAS  Google Scholar 

  68. Fang, M.; Han, D.; Xu, W. B.; Shen, Y.; Lu, Y. M.; Cao, P. J.; Han, S.; Xu, W. Y.; Zhu, D. L.; Liu, W. J. et al. Surface-guided formation of amorphous mixed-metal oxyhydroxides on ultrathin MnO2 nanosheet arrays for efficient electrocatalytic oxygen evolution. Adv. Energy Mater. 2020, 10, 2001059.

    Article  CAS  Google Scholar 

  69. Chen, H. J.; Zou, Y. H.; Li, J.; Zhang, K. W.; **a, Y. Z.; Hui, B.; Yang, D. J. Wood aerogel-derived sandwich-like layered nanoelectrodes for alkaline overall seawater electrosplitting. Appl. Catal. B:Environ. 2021, 293, 120215.

    Article  CAS  Google Scholar 

  70. Karpuraranjith, M.; Chen, Y. F.; Wang, B.; Ramkumar, J.; Yang, D. X.; Srinivas, K.; Wang, W.; Zhang, W. L.; Manigandan, R. Hierarchical ultrathin layered MoS2@NiFe2O4 nanohybrids as a bifunctional catalyst for highly efficient oxygen evolution and organic pollutant degradation. J. Colloid Interface Sci. 2021, 592, 385–396.

    Article  CAS  Google Scholar 

  71. Wang, B.; Srinivas, K.; Wang, X. Q.; Su, Z.; Yu, B.; Zhang, X. J.; Liu, Y. F.; Ma, F.; Yang, D. X.; Chen, Y. F. Self-assembled CoSe2-FeSe2 heteronanoparticles along the carbon nanotube network for boosted oxygen evolution reaction. Nanoscale 2021, 13, 9651–9658.

    Article  CAS  Google Scholar 

  72. Srinivas, K.; Chen, Y. F.; Su, Z.; Yu, B.; Karpuraranjith, M.; Ma, F.; Wang, X. Q.; Zhang, W. L.; Yang, D. X. Heterostructural CoFe2O4/CoO nanoparticles-embedded carbon nanotubes network for boosted overall water-splitting performance. Electrochim. Acta 2022, 404, 139745.

    Article  CAS  Google Scholar 

  73. Hoa, V. H.; Tran, D. T.; Nguyen, D. C.; Kim, D. H.; Kim, N. H.; Lee, J. H. Molybdenum and phosphorous dual do** in cobalt monolayer interfacial assembled cobalt nanowires for efficient overall water splitting. Adv. Funct. Mater. 2020, 30, 2002533.

    Article  CAS  Google Scholar 

  74. Li, W.; Gao, X. F.; **ong, D. H.; **a, F.; Liu, J.; Song, W. G.; Xu, J. Y.; Thalluri, S. M.; Cerqueira, M. F.; Fu, X. L. et al. Vapor-solid synthesis of monolithic single-crystalline CoP nanowire electrodes for efficient and robust water electrolysis. Chem. Sci. 2017, 8, 2952–2958.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The research was financially supported by the National Natural Science Foundation of China (Nos. 21773024 and 52072310), Sichuan Science and Technology Program (No. 20YYJC3786), China Postdoctoral Science Foundation (No. 2019M663469), and the Reformation and Development Funds for Local Region Universities from China Government in 2020 (No. ZCKJ 2020-11).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Hua Lin or Yuanfu Chen.

Electronic Supplementary Material

12274_2022_4231_MOESM1_ESM.pdf

Surface modification of metal-organic frameworks under sublimated iron-atmosphere by controlled carbonization for boosted oxygen evolution reaction

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Srinivas, K., Chen, X., Liu, D. et al. Surface modification of metal-organic frameworks under sublimated iron-atmosphere by controlled carbonization for boosted oxygen evolution reaction. Nano Res. 15, 5884–5894 (2022). https://doi.org/10.1007/s12274-022-4231-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-022-4231-8

Keywords

Navigation