Log in

Managing interfacial properties of planar perovskite solar cells using Y3N@C80 endohedral metallofullerene

通过Y3N@C80内嵌金属富勒烯修饰调节钙钛矿太阳能电池的界面性质

  • Articles
  • Published:
Science China Materials Aims and scope Submit manuscript

Abstract

Fullerene derivatives have a wide range of applications in perovskite solar cells (PSCs), such as electron transport layers (ETLs), interfacial modifiers, and additives. However, there have been few studies of the use of endohedral metallofullerenes (EMFs) to improve the performance of PSCs. Here, a novel EMF (Y3N@C80) was synthesized and used as an interfacial modifier in PSC devices based on a SnO2 ETL. Energy level mismatches and detrimental carrier recombination have been observed in devices with a pristine SnO2 ETL, but these issues are alleviated with the assistance of Y3N@C80. A significant increase in open-circuit voltage from 1.106 V (SnO2) to 1.14 V (SnO2-Y3N@C80), an increase in power conversion efficiency from 20.59% to 21.66%, and a marked reduction in hysteresis were observed, which were attributed to the more suitable conduction band energy levels and more effective electron extraction at the SnO2-Y3N@C80/perovskite interface. In addition, the stability of the target devices was improved, which may be due to the hydrophobicity of Y3N@C80 and a reduction in trap states.

摘要

富勒烯衍生物在钙钛矿太阳能电池(PSC)中具有广泛的应用, 例如作为电子传输层(ETL)、 界面改性剂或添加剂. 然而, 很少有研究报道利用内嵌金属富勒烯(EMF)来改善PSC的性能. 在此, 本文报道了一种新颖的Y3N@C80 EMFs的合成, 并将其用作SnO2 ETL基PSCs的界面改性剂. 结果表明, 在SnO2 ETL器件中观察到的能级不匹配和载流子复合严重等问题, 在Y3N@C80分子的修饰下得以改善. 与SnO2 ETL相比, 由于SnO2-Y3N@C80/钙钛矿界面之间更合适的能级排列和更快的电子提取, 器件开路电压(VOC)从1.10 V (SnO2)显著提高到1.14 V (SnO2-Y3N@C80), 能量转换效率由20.59%提高到21.66%, 并大大降低了电池的滞后效应. 此外, Y3N@C80的疏水性和晶界减少导致缺陷态密度降低, 使得目标器件的稳定性也有所提高.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Stranks SD, Eperon GE, Grancini G, et al. Electron-hole diffusion lengths exceeding 1 micrometer in an organometal trihalide perovskite absorber. Science, 2013, 342: 341–344

    Article  CAS  Google Scholar 

  2. Zhou H, Chen Q, Li G, et al. Interface engineering of highly efficient perovskite solar cells. Science, 2014, 345: 542–546

    Article  CAS  Google Scholar 

  3. Jeon NJ, Noh JH, Kim YC, et al. Solvent engineering for high-performance inorganic-organic hybrid perovskite solar cells. Nat Mater, 2014, 13: 897–903

    Article  CAS  Google Scholar 

  4. Kim HS, Lee CR, Im JH, et al. Lead iodide perovskite sensitized all-solid-state submicron thin film mesoscopic solar cell with efficiency exceeding 9%. Sci Rep, 2012, 2: 591–597

    Article  CAS  Google Scholar 

  5. Min H, Lee DY, Kim J, et al. Perovskite solar cells with atomically coherent interlayers on SnO2 electrodes. Nature, 2021, 598: 444–450

    Article  CAS  Google Scholar 

  6. Chen B, Rudd PN, Yang S, et al. Imperfections and their passivation in halide perovskite solar cells. Chem Soc Rev, 2019, 48: 3842–3867

    Article  CAS  Google Scholar 

  7. Correa-Baena JP, Saliba M, Buonassisi T, et al. Promises and challenges of perovskite solar cells. Science, 2017, 358: 739–744

    Article  CAS  Google Scholar 

  8. Yang J, Tang W, Yuan R, et al. Defect mitigation using D-penicillamine for efficient methylammonium-free perovskite solar cells with high operational stability. Chem Sci, 2020, 12: 2050–2059

    Article  Google Scholar 

  9. Tang S, Deng Y, Zheng X, et al. Composition engineering in doctor-blading of perovskite solar cells. Adv Energy Mater, 2017, 7: 1700302

    Article  CAS  Google Scholar 

  10. Tian L, Wen F, Zhang W, et al. Rising from the ashes: Gaseous therapy for robust and large-area perovskite solar cells. ACS Appl Mater Interfaces, 2020, 12: 49648–49658

    Article  CAS  Google Scholar 

  11. **ao Z, Dong Q, Bi C, et al. Solvent annealing of perovskite-induced crystal growth for photovoltaic-device efficiency enhancement. Adv Mater, 2014, 26: 6503–6509

    Article  CAS  Google Scholar 

  12. Laskar MAR, Luo W, Ghimire N, et al. Phenylhydrazinium iodide for surface passivation and defects suppression in perovskite solar cells. Adv Funct Mater, 2020, 30: 2000778

    Article  CAS  Google Scholar 

  13. Dai Z, Yadavalli SK, Chen M, et al. Interfacial toughening with self-assembled monolayers enhances perovskite solar cell reliability. Science, 2021, 372: 618–622

    Article  CAS  Google Scholar 

  14. Li B, Zhen J, Wan Y, et al. Anchoring fullerene onto perovskite film via grafting pyridine toward enhanced electron transport in high-efficiency solar cells. ACS Appl Mater Interfaces, 2018, 10: 32471–32482

    Article  CAS  Google Scholar 

  15. Hu T, Zhang F, Yu H, et al. Efficient carrier transport via dual-function interfacial engineering using cesium iodide for high-performance perovskite solar cells based on NiOx hole transporting materials. Nano Res, 2021, 14: 3864–3872

    Article  CAS  Google Scholar 

  16. Ma D, Li W, Chen X, et al. An effective strategy of combining surface passivation and secondary grain growth for highly efficient and stable perovskite solar cells. Small, 2021, 17: 2100678

    Article  CAS  Google Scholar 

  17. Wang P, Chen B, Li R, et al. Cobalt chloride hexahydrate assisted in reducing energy loss in perovskite solar cells with record open-circuit voltage of 1.20 V. ACS Energy Lett, 2021, 6: 2121–2128

    Article  CAS  Google Scholar 

  18. Yoo JJ, Seo G, Chua MR, et al. Efficient perovskite solar cells via improved carrier management. Nature, 2021, 590: 587–593

    Article  CAS  Google Scholar 

  19. Yuan R, Cai B, Lv Y, et al. Boosted charge extraction of NbOx-enveloped SnO2 nanocrystals enables 24% efficient planar perovskite solar cells. Energy Environ Sci, 2021, 14: 5074–5083

    Article  CAS  Google Scholar 

  20. Jiang Q, Zhang L, Wang H, et al. Enhanced electron extraction using SnO2 for high-efficiency planar-structure HC(NH2)2PbI3-based perovskite solar cells. Nat Energy, 2016, 2: 16177

    Article  CAS  Google Scholar 

  21. Roose B, Baena JPC, Gödel KC, et al. Mesoporous SnO2 electron selective contact enables UV-stable perovskite solar cells. Nano Energy, 2016, 30: 517–522

    Article  CAS  Google Scholar 

  22. Shi L, Lin H. Preparation of band gap tunable SnO2 nanotubes and their ethanol sensing properties. Langmuir, 2011, 27: 3977–3981

    Article  CAS  Google Scholar 

  23. Chiodini N, Paleari A, DiMartino D, et al. SnO2 nanocrystals in SiO2: A wide-band-gap quantum-dot system. Appl Phys Lett, 2002, 81: 1702–1704

    Article  CAS  Google Scholar 

  24. Yang D, Yang R, Wang K, et al. High efficiency planar-type perovskite solar cells with negligible hysteresis using EDTA-complexed SnO2. Nat Commun, 2018, 9: 3239

    Article  CAS  Google Scholar 

  25. Choi K, Lee J, Kim HI, et al. Thermally stable, planar hybrid perovskite solar cells with high efficiency. Energy Environ Sci, 2018, 11: 3238–3247

    Article  CAS  Google Scholar 

  26. Chen J, Zhao X, Kim SG, et al. Multifunctional chemical linker imidazoleacetic acid hydrochloride for 21% efficient and stable planar perovskite solar cells. Adv Mater, 2019, 31: 1902902

    Article  CAS  Google Scholar 

  27. Wu J, Cui Y, Yu B, et al. A simple way to simultaneously release the interface stress and realize the inner encapsulation for highly efficient and stable perovskite solar cells. Adv Funct Mater, 2019, 29: 1905336

    Article  CAS  Google Scholar 

  28. Wei J, Guo F, Wang X, et al. SnO2-in-polymer matrix for high-efficiency perovskite solar cells with improved reproducibility and stability. Adv Mater, 2018, 30: 1805153

    Article  CAS  Google Scholar 

  29. Niu G, Li W, Li J, et al. Progress of interface engineering in perovskite solar cells. Sci China Mater, 2016, 59: 728–742

    Article  CAS  Google Scholar 

  30. Huang L, Zhou X, Xue R, et al. Low-temperature growing anatase TiO2/SnO2 multi-dimensional heterojunctions at MXene conductive network for high-efficient perovskite solar cells. Nano-Micro Lett, 2020, 12: 44

    Article  CAS  Google Scholar 

  31. Wu S, Li Z, Li MQ, et al. 2D metal-organic framework for stable perovskite solar cells with minimized lead leakage. Nat Nanotechnol, 2020, 15: 934–940

    Article  CAS  Google Scholar 

  32. Zhang X, Zeng Q, **ong Y, et al. Energy level modification with carbon dot interlayers enables efficient perovskite solar cells and quantum dot based light-emitting diodes. Adv Funct Mater, 2020, 30: 1910530

    Article  CAS  Google Scholar 

  33. Guan J, Song M, Chen L, et al. Carbon quantum dots passivated CsPbBr3 film with improved water stability and photocurrent: Preparation, characterization and application. Carbon, 2021, 175: 93–100

    Article  CAS  Google Scholar 

  34. Hui W, Yang Y, Xu Q, et al. Red-carbon-quantum-dot-doped SnO2 composite with enhanced electron mobility for efficient and stable perovskite solar cells. Adv Mater, 2020, 32: 1906374

    Article  CAS  Google Scholar 

  35. Zhao X, Tao L, Li H, et al. Efficient planar perovskite solar cells with improved fill factor via interface engineering with graphene. Nano Lett, 2018, 18: 2442–2449

    Article  CAS  Google Scholar 

  36. Gao ZW, Wang Y, Liu H, et al. Tailoring the interface in FAPbI3 planar perovskite solar cells by imidazole-graphene-quantum-dots. Adv Funct Mater, 2021, 31: 2101438

    Article  CAS  Google Scholar 

  37. Zhang S, Si H, Fan W, et al. Graphdiyne: Bridging SnO2 and perovskite in planar solar cells. Angew Chem Int Ed, 2020, 59: 11573–11582

    Article  CAS  Google Scholar 

  38. Tian C, Lin K, Lu J, et al. Interfacial bridge using a cis-full-eropyrrolidine for efficient planar perovskite solar cells with enhanced stability. Small Methods, 2019, 4: 1900476

    Article  CAS  Google Scholar 

  39. Li B, Zhen J, Wan Y, et al. Steering the electron transport properties of pyridine-functionalized fullerene derivatives in inverted perovskite solar cells: The nitrogen site matters. J Mater Chem A, 2020, 8: 3872–3881

    Article  CAS  Google Scholar 

  40. ** organic electron transport layer: A facile and efficient “bridge” linked heterojunction for perovskite solar cells. Adv Funct Mater, 2020, 30: 2001418

    Article  CAS  Google Scholar 

  41. Xue Q, Hu Z, Liu J, et al. Highly efficient fullerene/perovskite planar heterojunction solar cells via cathode modification with an aminofunctionalized polymer interlayer. J Mater Chem A, 2014, 2: 19598–19603

    Article  CAS  Google Scholar 

  42. Ke W, Zhao D, **ao C, et al. Cooperative tin oxide fullerene electron selective layers for high-performance planar perovskite solar cells. J Mater Chem A, 2016, 4: 14276–14283

    Article  CAS  Google Scholar 

  43. Liu K, Chen S, Wu J, et al. Fullerene derivative anchored SnO2 for highperformance perovskite solar cells. Energy Environ Sci, 2018, 11: 3463–3471

    Article  CAS  Google Scholar 

  44. Toth K, Molloy JK, Matta M, et al. A strongly emitting liquid-crystalline derivative of Y3N@C80: Bright and long-lived near-IR luminescence from a charge transfer state. Angew Chem Int Ed, 2013, 52: 12303–12307

    Article  CAS  Google Scholar 

  45. Ross RB, Cardona CM, Guldi DM, et al. Endohedral fullerenes for organic photovoltaic devices. Nat Mater, 2009, 8: 208–212

    Article  CAS  Google Scholar 

  46. MacFarland DK, Walker KL, Lenk RP, et al. Hydrochalarones: A novel endohedral metallofullerene platform for enhancing magnetic resonance imaging contrast. J Med Chem, 2008, 51: 3681–3683

    Article  CAS  Google Scholar 

  47. Liu F, Wang S, Gao CL, et al. Mononuclear clusterfullerene single-molecule magnet containing strained fused-pentagons stabilized by a nearly linear metal cyanide cluster. Angew Chem Int Ed, 2017, 56: 1830–1834

    Article  CAS  Google Scholar 

  48. Stevenson S, Mackey MA, Pickens JE, et al. Selective complexation and reactivity of metallic nitride and oxometallic fullerenes with Lewis acids and use as an effective purification method. Inorg Chem, 2009, 48: 11685–11690

    Article  CAS  Google Scholar 

  49. Cao T, Chen K, Chen Q, et al. Fullerene derivative-modified SnO2 electron transport layer for highly efficient perovskite solar cells with efficiency over 21%. ACS Appl Mater Interfaces, 2019, 11: 33825–33834

    Article  CAS  Google Scholar 

  50. Kang Z, Si H, Shi M, et al. Kelvin probe force microscopy for perovskite solar cells. Sci China Mater, 2019, 62: 776–789

    Article  CAS  Google Scholar 

  51. Reza KM, Gurung A, Bahrami B, et al. Tailored PEDOT:PSS hole transport layer for higher performance in perovskite solar cells: Enhancement of electrical and optical properties with improved morphology. J Energy Chem, 2020, 44: 41–50

    Article  Google Scholar 

  52. Cardona CM, Elliott B, Echegoyen L. Unexpected chemical and electrochemical properties of M3N@C80 (M = Sc, Y, Er). J Am Chem Soc, 2006, 128: 6480–6485

    Article  CAS  Google Scholar 

  53. Luo D, Yang W, Wang Z, et al. Enhanced photovoltage for inverted planar heterojunction perovskite solar cells. Science, 2018, 360: 1442–1446

    Article  CAS  Google Scholar 

  54. Xue R, Zhou X, Peng S, et al. Architecturing lattice-matched bis-muthene-SnO2 heterojunction for effective perovskite solar cells. ACS Sustain Chem Eng, 2020, 8: acssuschemeng.0c01794

    Google Scholar 

  55. Jiang CS, Yang M, Zhou Y, et al. Carrier separation and transport in perovskite solar cells studied by nanometre-scale profiling of electrical potential. Nat Commun, 2015, 6: 8397

    Article  CAS  Google Scholar 

  56. Bi C, Wang Q, Shao Y, et al. Non-wetting surface-driven high-aspect-ratio crystalline grain growth for efficient hybrid perovskite solar cells. Nat Commun, 2015, 6: 7747

    Article  CAS  Google Scholar 

  57. Zhu P, Gu S, Luo X, et al. Simultaneous contact and grain-boundary passivation in planar perovskite solar cells using SnO2-KCl composite electron transport layer. Adv Energy Mater, 2019, 10: 1903083

    Article  CAS  Google Scholar 

  58. Noel NK, Abate A, Stranks SD, et al. Enhanced photoluminescence and solar cell performance via Lewis base passivation of organic-inorganic lead halide perovskites. ACS Nano, 2014, 8: 9815–9821

    Article  CAS  Google Scholar 

  59. Shao Y, **ao Z, Bi C, et al. Origin and elimination of photocurrent hysteresis by fullerene passivation in CH3NH3PbI3 planar heterojunction solar cells. Nat Commun, 2014, 5: 5784

    Article  CAS  Google Scholar 

  60. Snaith HJ, Abate A, Ball JM, et al. Anomalous hysteresis in perovskite solar cells. J Phys Chem Lett, 2014, 5: 1511–1515

    Article  CAS  Google Scholar 

  61. Yang G, Lei H, Tao H, et al. Reducing hysteresis and enhancing performance of perovskite solar cells using low-temperature processed Y-doped SnO2 nanosheets as electron selective layers. Small, 2017, 13: 1601769

    Article  CAS  Google Scholar 

  62. Bu T, Li J, Zheng F, et al. Universal passivation strategy to slot-die printed SnO2 for hysteresis-free efficient flexible perovskite solar module. Nat Commun, 2018, 9: 4609

    Article  CAS  Google Scholar 

  63. Hu W, Zhou W, Lei X, et al. Low-temperature in situ amino functionalization of TiO2 nanoparticles sharpens electron management achieving over 21% efficient planar perovskite solar cells. Adv Mater, 2019, 31: 1806095

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by Sichuan Science and Technology Program(2022YFSY0040) and the Science Project of Southwest Petroleum University (2021JBGS08).

Author information

Authors and Affiliations

Authors

Contributions

Author contributions Zhou X carried out the main experiments and wrote the draft; Zhang WF proposed and designed the project; Wang S synthesized the Y3N@C80; Wen F and Chen Q carried out the data analysis; Shen X and Hu X helped to fabricate the devices; Peng C, Ma Z, Zhang M, and Huang Y advised on the discussion of results; Yang S and Zhang WH directed the project.

Corresponding authors

Correspondence to Wenfeng Zhang  (章文峰), Song Wang  (汪松) or Wenhua Zhang  (张文华).

Ethics declarations

Conflict of interest The authors declare that they have no conflict of interest.

Additional information

Supplementary information Supporting data are available in the online version of the paper.

**angqing Zhou received her Bachelor’s degree in materials chemistry from Civil Aviation University of China, in 2019. She is now a graduate student at the Southwest Petroleum University (SWPU) supervised by Dr. Wenfeng Zhang. Her research interests focus on the preparation of nanomaterials and interface engineering for perovskite solar cells.

Wenfeng Zhang received his PhD degree from the University of Science and Technology of China (USTC) in 2013. He is now an associate professor at SWPU. His current research interests include nano-engineered devices and nanomaterials’ application in organic/perovskite solar cells.

Song Wang received his Bachelor’s degree in applied chemistry from Chongqing University in 2011 and PhD degree in materials science from USTC in 2016. He is now a lecturer at Chongqing Technology and Business University. His main interests focus on the synthesis and derivatization of (endohedral) fullerenes and their applications in perovskite solar cells.

Wenhua Zhang is a professor at Yunnan University. He received his PhD degree from Shanghai Institute of Ceramics, Chinese Academy of Sciences, in 2000. His research interests mainly focus on energy chemistry and optoelectronic devices, in particular on the fields of perovskite solar cells and photovoltaic electrolysis of water for hydrogen production.

Supporting Information for

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhou, X., Zhang, W., Wang, S. et al. Managing interfacial properties of planar perovskite solar cells using Y3N@C80 endohedral metallofullerene. Sci. China Mater. 65, 2325–2334 (2022). https://doi.org/10.1007/s40843-021-1983-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40843-021-1983-3

Keywords

Navigation