Log in

Efficient carrier transport via dual-function interfacial engineering using cesium iodide for high-performance perovskite solar cells based on NiOx hole transporting materials

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

As a famous hole transporting material, nickle oxide (NiOx) has drawn enormous attention due to its low cost and superior stability. However, the relatively low conductivity and high-density surface trap states of NiOx severely limit device performance in solar cell applications. Interfacial engineering is an efficient approach to achieve remarkable hole-transporting performance by surface passivation. Herein, the efficient NiOx hole transport layer was prepared by surface passivation engineering strategy via facile solution processes with cesium iodide (CsI). It is demonstrated that CsI plays a super-effective dual-function role in inverted solar cell device: On one hand, the presence of CsI hugely passivates the surface trap states at the NiOx/perovskite interface along with obviously improved conductivity by the incorporated Cs+; on the other hand, the ions immigration is significantly suppressed by the presence of I ion for high-quality perovskite films, resulting in a stable contact interface. The ameliorative interface leads to largely reduced carrier non-radiative recombination, attributing to boosted carrier extraction efficiency. As a result, decent power conversion efficiency (PCE) of 18.48% with a noticeable fill factor (FF) beyond 80% was achieved. This facile and efficient surface engineering approach with dual-function shows excellent potential for the design of high-performance functional interfacial modification layer to achieve high-performance solar cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ru, P. B.; Bi, E. B.; Zhang, Y.; Wang, Y. B.; Kong, W. Y.; Sha, Y. M.; Tang, W. T.; Zhang, P.; Wu, Y. Z.; Chen, W. et al. High electron affinity enables fast hole extraction for efficient flexible inverted perovskite solar cells. Adv. Energy Mater. 2020, 10, 1903487.

    Article  CAS  Google Scholar 

  2. Chen, Y. H.; Tan, S. Q.; Li, N. X.; Huang, B. L.; Niu, X. X.; Li, L.; Sun, M. Z.; Zhang, Y.; Zhang, X.; Zhu, C. et al. Self-elimination of intrinsic defects improves the low-temperature performance of perovskite photovoltaics. Joule 2020, 4, 1961–1976.

    Article  CAS  Google Scholar 

  3. Yin, X. T.; Guo, Y. X.; **e, H. X.; Que, W. X.; Kong, L. B. Nickel oxide as efficient hole transport materials for perovskite solar cells. Solar RRL 2019, 3, 1900001.

    Article  CAS  Google Scholar 

  4. Jena, A. K.; Kulkarni, A.; Miyasaka, T. Halide perovskite photovoltaics: Background, status, and future prospects. Chem. Rev. 2019, 119, 3036–3103.

    Article  CAS  Google Scholar 

  5. Kim, H. I.; Kim, M. J.; Choi, K.; Lim, C.; Kim, Y. H.; Kwon, S. K.; Park, T. Improving the performance and stability of inverted planar flexible perovskite solar cells employing a novel NDI-based polymer as the electron transport layer. Adv. Energy Mater. 2018, 8, 1702872.

    Article  CAS  Google Scholar 

  6. Liu, Z. Y.; Chang, J. J.; Lin, Z. H.; Zhou, L.; Yang, Z.; Chen, D. Z.; Zhang, C. F.; Liu, S. Z.; Hao, Y. High-performance planar perovskite solar cells using low temperature, solution-combustion-based nickel oxide hole transporting layer with efficiency exceeding 20%. Adv. Energy Mater. 2018, 8, 1703432.

    Article  CAS  Google Scholar 

  7. Luo, D. Y.; Yang, W. Q.; Wang, Z. P.; Sadhanala, A.; Hu, Q.; Su, R.; Shivanna, R.; Trindade, G. F.; Watts, J. F.; Xu, Z. J. et al. Enhanced photovoltage for inverted planar heterojunction perovskite solar cells. Science 2018, 360, 1442–1446.

    Article  CAS  Google Scholar 

  8. Hu, L. J.; Sun, K.; Wang, M.; Chen, W.; Yang, B.; Fu, J. H.; **ong, Z.; Li, X. Y.; Tang, X. S.; Zang, Z. G. et al. Inverted planar perovskite solar cells with a high fill factor and negligible hysteresis by the dual effect of NaCl-doped PEDOT: PSS. ACS Appl. Mater. Interfaces 2017, 9, 43902–43909.

    Article  CAS  Google Scholar 

  9. Ma, S.; Liu, X. P.; Wu, Y. Z.; Tao, Y.; Ding, Y.; Cai, M. L.; Dai, S. Y.; Liu, X. Y.; Alsaedi, A.; Hayat, T. Efficient and flexible solar cells with improved stability through incorporation of a multifunctional small molecule at PEDOT: PSS/perovskite interface. Solar Energy Mater. Solar Cells 2020, 208, 110379.

    Article  CAS  Google Scholar 

  10. Luo, H.; Lin, X. H.; Hou, X.; Pan, L. K.; Huang, S. M.; Chen, X. H. Efficient and air-stable planar perovskite solar cells formed on graphene-oxide-modified PEDOT: PSS hole transport layer. Nano-Micro Lett. 2017, 9, 39.

    Article  CAS  Google Scholar 

  11. Kung, P. K.; Li, M. H.; Lin, P. Y.; Chiang, Y. H.; Chan, C. R.; Guo, T. F.; Chen, P. A review of inorganic hole transport materials for perovskite solar cells. Adv. Mater. Interfaces 2018, 5, 1800882.

    Article  CAS  Google Scholar 

  12. Peng, H. T.; Sun, W. H.; Li, Y. L.; Ye, S. Y.; Rao, H. X.; Yan, W. B.; Zhou, H. P.; Bian, Z. Q.; Huang, C. H. Solution processed inorganic V2OX as interfacial function materials for inverted planar-heterojunction perovskite solar cells with enhanced efficiency. Nano Res. 2016, 9, 2960–2971.

    Article  CAS  Google Scholar 

  13. Chen, W.; Wu, Y. H.; Tu, B.; Liu, F. Z.; Djurišić, A. B.; He, Z. B. Inverted planar organic-inorganic hybrid perovskite solar cells with NiOX hole-transport layers as light-in window. Appl. Surf. Sci. 2018, 451, 325–332.

    Article  CAS  Google Scholar 

  14. Ge, B.; Qiao, H. W.; Lin, Z. Q.; Zhou, Z. R.; Chen, A. P.; Yang, S.; Hou, Y.; Yang, H. G. Deepening the valance band edges of NiOX contacts by alkaline earth metal do** for efficient perovskite photovoltaics with high open-circuit voltage. Solar RRL 2019, 3, 1900192.

    Article  CAS  Google Scholar 

  15. Lee, S.; Roh, H. S.; Han, G. S.; Lee, J. K. Controlled oxidation of Ni for stress-free hole transport layer of large-scale perovskite solar cells. Nano Res. 2019, 12, 3089–3094.

    Article  CAS  Google Scholar 

  16. Jiang, F.; Choy, W. C. H.; Li, X. C.; Zhang, D.; Cheng, J. Q. Post-treatment-free solution-processed non-stoichiometric NiOX nanoparticles for efficient hole-transport layers of organic optoelectronic devices. Adv. Mater. 2015, 27, 2930–2937.

    Article  CAS  Google Scholar 

  17. Corani, A.; Li, M. H.; Shen, P. S.; Chen, P.; Guo, T. F.; El Nahhas, A.; Zheng, K. B.; Yartsev, A.; Sundström, V.; Ponseca, C. S. Jr. Ultrafast dynamics of hole injection and recombination in organometal halide perovskite using nickel oxide as p-type contact electrode. J. Phys. Chem. Lett. 2016, 7, 1096–1101.

    Article  CAS  Google Scholar 

  18. Fan, R. D.; Huang, Y.; Wang, L. G.; Li, L.; Zheng, G. H. J.; Zhou, H. P. The progress of interface design in perovskite-based solar cells. Adv. Energy Mater. 2016, 6, 1600460.

    Article  CAS  Google Scholar 

  19. Chen, W.; Liu, F. Z.; Feng, X. Y.; Djurišić, A. B.; Chan, W. K.; He, Z. B. Cesium doped NiOX as an efficient hole extraction layer for inverted planar perovskite solar cells. Adv. Energy Mater. 2017, 7, 1700722.

    Article  CAS  Google Scholar 

  20. Nie, W. Y.; Tsai, H.; Blancon, J. C.; Liu, F. Z.; Stoumpos, C. C.; Traore, B.; Kepenekian, M.; Durand, O.; Katan, C.; Tretiak, S. et al. Critical role of interface and crystallinity on the performance and photostability of perovskite solar cell on nickel oxide. Adv. Mater. 2018, 30, 1703879.

    Article  CAS  Google Scholar 

  21. Li, G. J.; Jiang, Y. B.; Deng, S. B.; Tam, A.; Xu, P.; Wong, M.; Kwok, H. S. Overcoming the limitations of sputtered nickel oxide for high-efficiency and large-area perovskite solar cells. Adv. Sci. 2017, 4, 1700463.

    Article  CAS  Google Scholar 

  22. Chen, W.; Wu, Y. H.; Fan, J.; Djurišić, A. B.; Liu, F. Z.; Tam, H. W.; Ng, A.; Surya, C.; Chan, W. K.; Wang, D. et al. Understanding the do** effect on NiO: Toward high-performance inverted perovskite solar cells. Adv. Energy Mater. 2018, 8, 1703519.

    Article  CAS  Google Scholar 

  23. Wei, Y.; Yao, K.; Wang, X. F.; Jiang, Y. H.; Liu, X. Y.; Zhou, N. G.; Li, F. Improving the efficiency and environmental stability of inverted planar perovskite solar cells via silver-doped nickel oxide hole-transporting layer. Appl. Surf. Sci. 2018, 427, 782–790.

    Article  CAS  Google Scholar 

  24. Huang, A. B.; Zhu, J. T.; Zheng, J. Y.; Yu, Y.; Liu, Y.; Yang, S. W.; Bao, S. H.; Lei, L.; **, P. Achieving high-performance planar perovskite solar cells with co-sputtered co-do** NiOX hole transport layers by efficient extraction and enhanced mobility. J. Mater. Chem. C 2016, 4, 10839–10846.

    Article  CAS  Google Scholar 

  25. Hou, D. G.; Zhang, J.; Gan, X. L.; Yuan, H. B.; Yu, L. T.; Lu, C. J.; Sun, H. R.; Hu, Z. Y.; Zhu, Y. J. Pb and Li co-doped NiOX for efficient inverted planar perovskite solar cells. J. Colloid Interface Sci. 2020, 559, 29–38.

    Article  CAS  Google Scholar 

  26. Chandrasekhar, P. S.; Seo, Y. H.; Noh, Y. J.; Na, S. I. Room temperature solution-processed Fe doped NiOX as a novel hole transport layer for high efficient perovskite solar cells. Appl. Surf. Sci. 2019, 481, 588–596.

    Article  CAS  Google Scholar 

  27. Chen, X. F.; Xu, L.; Chen, C.; Wu, Y. J.; Bi, W. J.; Song, Z. L.; Zhuang, X. M.; Yang, S.; Zhu, S. D.; Song, H. W. Rare earth ions doped NiOX hole transport layer for efficient and stable inverted perovskite solar cells. J. Power Sources 2019, 444, 227267.

    Article  CAS  Google Scholar 

  28. Chen, W.; Zhou, Y. C.; Wang, L. J.; Wu, Y. H.; Tu, B.; Yu, B. B.; Liu, F. Z.; Tam, H. W.; Wang, G.; Djurišić, A. B. et al. Molecule-doped nickel oxide: Verified charge transfer and planar inverted mixed cation perovskite solar cell. Adv. Mater. 2018, 30, 1800515.

    Article  CAS  Google Scholar 

  29. Bai, Y.; Chen, H. N.; **ao, S.; Xue, Q. F.; Zhang, T.; Zhu, Z. L.; Li, Q.; Hu, C.; Yang, Y.; Hu, Z. C. et al. Effects of a molecular monolayer modification of NiO nanocrystal layer surfaces on perovskite crystallization and interface contact toward faster hole extraction and higher photovoltaic performance. Adv. Funct. Mater. 2016, 26, 2950–2958.

    Article  CAS  Google Scholar 

  30. Zhang, Y. J.; Zhang, S. S.; Wu, S. H.; Chen, C. L.; Zhu, H. M.; **ong, Z. Z.; Chen, W. T.; Chen, R.; Fang, S. Y.; Chen, W. Bifunctional molecular modification improving efficiency and stability of inverted perovskite solar cells. Adv. Mater. Interfaces 2018, 5, 1800645.

    Article  CAS  Google Scholar 

  31. Chen, W.; Zhou, Y. C.; Chen, G. C.; Wu, Y. H.; Tu, B.; Liu, F. Z.; Huang, L.; Ng, A. M. C.; Djurišić, A. B.; He, Z. B. Alkali chlorides for the suppression of the interfacial recombination in inverted planar perovskite solar cells. Adv. Energy Mater. 2019, 9, 1803872.

    Article  CAS  Google Scholar 

  32. Zhang, J. K.; Luo, H.; **e, W. J.; Lin, X. H.; Hou, X.; Zhou, J. P.; Huang, S. M.; Ou-Yang, W.; Sun, Z.; Chen, X. H. Efficient and ultraviolet durable planar perovskite solar cells via a ferrocenecarboxylic acid modified nickel oxide hole transport layer. Nanoscale 2018, 10, 5617–5625.

    Article  CAS  Google Scholar 

  33. Liu, Y. N.; Duan, J. J.; Zhang, J. K.; Huang, S. M.; Ou-Yang, W.; Bao, Q. Y.; Sun, Z.; Chen, X. H. High efficiency and stability of inverted perovskite solar cells using phenethyl ammonium iodide-modified interface of NiOX and perovskite layers. ACS Appl. Mater. Interfaces 2020, 12, 771–779.

    Article  CAS  Google Scholar 

  34. Ren, Z. W.; **ao, X. T.; Ma, R. M.; Lin, H.; Wang, K.; Sun, X. W.; Choy, W. C. H. Hole transport bilayer structure for quasi-2D perovskite based blue light-emitting diodes with high brightness and good spectral stability. Adv. Funct. Mater. 2019, 29, 1905339.

    Article  CAS  Google Scholar 

  35. Li, W. Z.; Zhang, W.; van Reenen, S.; Sutton, R. J.; Fan, J. D.; Haghighirad, A. A.; Johnston, M. B.; Wang, L. D.; Snaith, H. J. Enhanced UV-light stability of planar heterojunction perovskite solar cells with caesium bromide interface modification. Energy Environ. Sci. 2016, 9, 490–498.

    Article  CAS  Google Scholar 

  36. Liu, X.; Zhang, Y. F.; Shi, L.; Liu, Z. H.; Huang, J. L.; Yun, J. S.; Zeng, Y. Y.; Pu, A. B.; Sun, K. W.; Hameiri, Z. et al. Exploring inorganic binary alkaline halide to passivate defects in low-temperature-processed planar-structure hybrid perovskite solar cells. Adv. Energy Mater. 2018, 8, 1800138.

    Article  CAS  Google Scholar 

  37. Manders, J. R.; Tsang, S. W.; Hartel, M. J.; Lai, T. H.; Chen, S.; Amb, C. M.; Reynolds, J. R.; So, F. Solution-processed nickel oxide hole transport layers in high efficiency polymer photovoltaic cells. Adv. Funct. Mater. 2013, 23, 2993–3001.

    Article  CAS  Google Scholar 

  38. Chen, C. L.; Zhang, S. S.; Wu, S. H.; Zhang, W. J.; Zhu, H. M.; **ong, Z. Z.; Zhang, Y. J.; Chen, W. Effect of BCP buffer layer on eliminating charge accumulation for high performance of inverted perovskite solar cells. RSC Adv. 2017, 7, 35819–35826.

    Article  CAS  Google Scholar 

  39. Hu, Q.; Wu, J.; Jiang, C.; Liu, T. H.; Que, X. L.; Zhu, R.; Gong, Q. H. Engineering of electron-selective contact for perovskite solar cells with efficiency exceeding 15%. ACS Nano 2014, 8, 10161–10167.

    Article  CAS  Google Scholar 

  40. Wang, K.; Zhao, W. J.; Liu, J.; Niu, J. Z.; Liu, Y. C.; Ren, X. D.; Feng, J. S.; Liu, Z. K.; Sun, J.; Wang, D. P. et al. CO2 plasma-treated TiO2 film as an effective electron transport layer for high-performance planar perovskite solar cells. ACS Appl. Mater. Interfaces 2017, 9, 33989–33996.

    Article  CAS  Google Scholar 

  41. Wang, P. Y.; Zhang, X. W.; Zhou, Y. Q.; Jiang, Q.; Ye, Q. F.; Chu, Z. M.; Li, X. X.; Yang, X. L.; Yin, Z. G.; You, J. B. Solvent-controlled growth of inorganic perovskite films in dry environment for efficient and stable solar cells. Nat. Commun. 2018, 9, 2225.

    Article  CAS  Google Scholar 

  42. Eperon, G. E.; Stranks, S. D.; Menelaou, C.; Johnston, M. B.; Herz, L. M.; Snaith, H. J. Formamidinium lead trihalide: A broadly tunable perovskite for efficient planar heterojunction solar cells. Energy Environ. Sci. 2014, 7, 982–988.

    Article  CAS  Google Scholar 

  43. Li, W.; Sun, Y. Y.; Li, L. Q.; Zhou, Z. H.; Tang, J. F.; Prezhdo, O. V. Control of charge recombination in perovskites by oxidation state of halide vacancy. J. Am. Chem. Soc. 2018, 140, 15753–15763.

    Article  CAS  Google Scholar 

  44. Zheng, X. P.; Chen, B.; Dai, J.; Fang, Y. J.; Bai, Y.; Lin, Y. Z.; Wei, H. T.; Zeng, X. C.; Huang, J. S. Defect passivation in hybrid perovskite solar cells using quaternary ammonium halide anions and cations. Nat. Energy 2017, 2, 17102.

    Article  CAS  Google Scholar 

  45. Chen, W.; Wu, Y. Z.; Yue, Y. F.; Liu, J.; Zhang, W. J.; Yang, X. D.; Chen, H.; Bi, E. B.; Ashraful, I.; Grätzel, M. et al. Efficient and stable large-area perovskite solar cells with inorganic charge extraction layers. Science 2015, 350, 944–948.

    Article  CAS  Google Scholar 

  46. Li, M. J.; Li, B.; Cao, G. Z.; Tian, J. J. Monolithic MAPbI3 films for high-efficiency solar cells via coordination and a heat assisted process. J. Mater. Chem. A 2017, 5, 21313–21319.

    Article  CAS  Google Scholar 

  47. Osorio-Guillén, J.; Lany, S.; Barabash, S. V.; Zunger, A. Nonstoichiometry as a source of magnetism in otherwise nonmagnetic oxides: Magnetically interacting cation vacancies and their percolation. Phys. Rev. B 2007, 75, 184421.

    Article  CAS  Google Scholar 

  48. Langell, M. A.; Nassir, M. H. Stabilization of NiO(111) thin films by surface hydroxyls. J. Phys. Chem. 1995, 99, 4162–4169.

    Article  CAS  Google Scholar 

  49. Ratcliff, E. L.; Meyer, J.; Steirer, K. X.; Garcia, A.; Berry, J. J.; Ginley, D. S.; Olson, D. C.; Kahn, A.; Armstrong, N. R. Evidence for near-surface NiOOH species in solution-processed NiOX selective interlayer materials: Impact on energetics and the performance of polymer bulk heterojunction photovoltaics. Chem. Mater. 2011, 23, 4988–5000.

    Article  CAS  Google Scholar 

  50. Zhu, Z. L.; Bai, Y.; Zhang, T.; Liu, Z. K.; Long, X.; Wei, Z. H.; Wang, Z. L.; Zhang, L. X.; Wang, J. N.; Yan, F. et al. High-performance hole-extraction layer of sol-gel-processed NiO nanocrystals for inverted planar perovskite solar cells. Angew. Chem., Int. Ed. 2014, 53, 12571–12575.

    CAS  Google Scholar 

  51. Qiu, Z. W.; Gong, H. B.; Zheng, G. H. J.; Yuan, S.; Zhang, H. L.; Zhu, X. M.; Zhou, H. P.; Cao, B. Q. Enhanced physical properties of pulsed laser deposited NiO films via annealing and lithium do** for improving perovskite solar cell efficiency. J. Mater. Chem. C 2017, 5, 7084–7094.

    Article  CAS  Google Scholar 

  52. Mrowec, S.; Grzesik, Z. Oxidation of nickel and transport properties of nickel oxide. J. Phys. Chem. Solids 2004, 65, 1651–1657.

    Article  CAS  Google Scholar 

  53. Zhang, K. H. L.; **, K.; Blamire, M. G.; Egdell, R. G. P-type transparent conducting oxides. J. Phys. Condens. Matter. 2016, 28, 383002.

    Article  CAS  Google Scholar 

  54. Cahen, D.; Kahn, A. Electron energetics at surfaces and interfaces: Concepts and experiments. Adv. Mater. 2003, 15, 271–277.

    Article  CAS  Google Scholar 

  55. Hameiri, Z.; Soufiani, A. M.; Juhl, M. K.; Jiang, L. C.; Huang, F. Z.; Cheng, Y. B.; Kampwerth, H.; Weber, J. W.; Green, M. A.; Trupke, T. Photoluminescence and electroluminescence imaging of perovskite solar cells. Prog. Photovoltaics 2015, 23, 1697–1705.

    Article  CAS  Google Scholar 

  56. Tress, W.; Marinova, N.; Moehl, T.; Zakeeruddin, S. M.; Nazeeruddin, M. K.; Grätzel, M. Understanding the rate-dependent J-V hysteresis, slow time component, and aging in CH3NH3PbI3 perovskite solar cells: The role of a compensated electric field. Energy Environ. Sci. 2015, 8, 995–1004.

    Article  CAS  Google Scholar 

  57. Hu, W. P.; Zhou, W. R.; Lei, X. Y.; Zhou, P. C.; Zhang, M. M.; Chen, T.; Zeng, H. L.; Zhu, J.; Dai, S. Y.; Yang, S. H. et al. Low-temperature in situ amino functionalization of TiO2 nanoparticles sharpens electron management achieving over 21% efficient planar perovskite solar cells. Adv. Mater. 2019, 31, 1806095.

    Article  CAS  Google Scholar 

  58. Singh, T.; Miyasaka, T. Stabilizing the efficiency beyond 20% with a mixed cation perovskite solar cell fabricated in ambient air under controlled humidity. Adv. Energy Mater. 2018, 8, 1700677.

    Article  CAS  Google Scholar 

  59. Kim, J.; Kim, G.; Kim, T. K.; Kwon, S.; Back, H.; Lee, J.; Lee, S. H.; Kang, H.; Lee, K. Efficient planar-heterojunction perovskite solar cells achieved via interfacial modification of a sol-gel ZnO electron collection layer. J. Mater. Chem. A 2014, 2, 17291–17296.

    Article  CAS  Google Scholar 

  60. Zhu, H. M.; Huang, B. Y.; Wu, S. H.; **ong, Z. Z.; Li, J. Y.; Chen, W. Facile surface modification of CH3NH3PbI3 films leading to simultaneously improved efficiency and stability of inverted perovskite solar cells. J. Mater. Chem. A 2018, 6, 6255–6264.

    Article  CAS  Google Scholar 

  61. Wei, Z. H.; Chen, H. N.; Yan, K. Y.; Zheng, X. L.; Yang, S. H. Hysteresis-free multi-walled carbon nanotube-based perovskite solar cells with a high fill factor. J. Mater. Chem. A 2015, 3, 24226–24231.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This research was supported by the Sichuan Science and Technology Program (No. 2021YFH0090) and Scientific Research Start-Up Project of Southwest Petroleum University, China (No. X151528). The authors are grateful to the colleagues for their assistance.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Hua Yu or Wenfeng Zhang.

Electronic Supplementary Material

12274_2021_3306_MOESM1_ESM.pdf

Efficient carrier transport via dual-function interfacial engineering using cesium iodide for high-performance perovskite solar cells based on NiOx hole transporting materials

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hu, T., Zhang, F., Yu, H. et al. Efficient carrier transport via dual-function interfacial engineering using cesium iodide for high-performance perovskite solar cells based on NiOx hole transporting materials. Nano Res. 14, 3864–3872 (2021). https://doi.org/10.1007/s12274-021-3306-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-021-3306-2

Key Words

Navigation