Log in

Some Terminating K-Balanced Clausen Hypergeometric Summation Theorems

  • Original Paper
  • Published:
International Journal of Applied and Computational Mathematics Aims and scope Submit manuscript

Abstract

The main aim of this paper is to establish some new hypergeometric summation theorems (14), (34) and the results (41), (42), (43) and (44) (not recorded earlier and numerically verified using Mathematica software) for k-balanced terminating Clausen series in terms of the ratio of the product of Pochhammer symbols, by using a relation between two terminating Clausen series, decomposition of the ratio of two Pochhammer symbols, Chu–Vandermonde summation theorem, algebraic properties of gamma functions and Pochhammer symbols, representation of a linear, quadratic, cubic, bi-quadratic polynomials in terms of Pochhammer symbols and series rearrangement technique.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Data Availability

Enquiries about data availability should be directed to the authors.

References

  1. Andrews, G.E., Askey, R., Roy, R.: Special Functions. Cambridge University Press, Cambridge (1999)

    Book  MATH  Google Scholar 

  2. Arora, K., Rathie, A.K.: Some summation formulas for the series \(_3F_2\). Math. Educ. (Siwān) 28(2), 111–112 (1994)

    MATH  Google Scholar 

  3. Bailey, W.N.: Products of generalized hypergeometric series. Proc. Lond. Math. Soc. 28(2), 242–254 (1928). https://doi.org/10.1112/plms/s2-28.1.242

    Article  MathSciNet  MATH  Google Scholar 

  4. Bühring, W.: The behavior at unit argument of the hypergeometric function \(_3F_2\). SIAM J. Math. Anal. 18, 1227–1234 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  5. Bühring, W.: Generalized hypergeometric functions at unit argument. Proc. Am. Math. Soc. 114, 145–153 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  6. Bühring, W.: Transformation formulas for terminating Saalschützian hypergeometric series of unit argument. J. Appl. Math. Stoch. Anal. 8(2), 189–194 (1995)

    Article  MATH  Google Scholar 

  7. Choi, J., Rathie, A.K., Chopra, P.: A new proof of the extended Saalschütz’s summation theorem for the series \(_4F_3\) and its applications. Honam Math. J. 35(3), 407–415 (2013). https://doi.org/10.5831/HMJ.2013.35.3.407

    Article  MathSciNet  MATH  Google Scholar 

  8. Clausen, T.: Ueber die Fälle wenn die Reihe von der Form \(y=1+\frac{\alpha .\beta }{1.\gamma }x+\cdots \) ein quadrat von der Form \(z=1+\frac{\alpha ^{\prime }\beta ^{\prime }\gamma ^{\prime }}{1.\delta ^{\prime }c^{\prime }}x+\cdots \)hat. J. für die reine und Angew. Math. 3, 89–91 (1828)

    MathSciNet  MATH  Google Scholar 

  9. De Branges, L.: A proof of the Bieberbach conjecture. Acta Math. 154, 137–152 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  10. Erdelyi, A., et al.: Tables of Integral Transforms, vol. 2. McGraw Hill, New York (1954)

    MATH  Google Scholar 

  11. Kim, Y.S., Pogány, T.K., Rathie, A.K.: On a summation formula for the Clausen’s series \(_3F_2\) with applications. Miskolc Math. Notes 10(2), 145–153 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  12. Kim, Y.S., Rathie, A.K.: Comment on ’A summation formula for Clausen’s series \(_3F_21)\) with an application to Goursat’s function \(_2F_2(x)\)’, J. Phys. A: Math. Theor. 41(7), 078001(2pp) (2008). https://doi.org/10.1088/1751-8113/41/7/078001

  13. Kim, Y.S., Rathie, A.K.: A new proof of Saalschütz’s theorem for the series \(_3F_{2}(1)\) and its contiguous results with applications. Commun. Korean Math. Soc. 27(1), 129–135 (2012). https://doi.org/10.4134/CKMS.2012.27.1.129

    Article  MathSciNet  MATH  Google Scholar 

  14. Kim, Y.S., Rathie, A.K., Paris, R.B.: An extension of Saalschütz’s summation theorem for the series \(_{r+3}F_{r+2}\). Integral Transform. Spec. Funct. 24(11), 916–921 (2013). https://doi.org/10.1080/10652469.2013.777721

    Article  MATH  Google Scholar 

  15. Lebedev, N.N.: Special Functions and their Applications. (Translated by Richard A, Silverman), Prentice-Hall Inc, Englewood Cliffs, New Jersey (1965)

  16. Miller, A.R.: A summation formula for Clausen’s series \(_3F_2(1)\) with an application to Goursat’s function \(_2F_2(x)\). J. Phys. A: Math. Gen. 38(16), 3541–3545 (2005). https://doi.org/10.1088/0305-4470/38/16/005

    Article  MATH  Google Scholar 

  17. Prudnikov, A.P., Brychkov, Yu, A., Marichev, O.I.: Integrals and Series, Vol.3: More special functions, Nauka, Moscow, 1986 (In Russian); (Translated from the Russian by G. G. Gould), Gordon and Breach Science Publishers, New York, Philadelphia, London, Paris, Montreux, Tokyo, Melbourne (1990)

  18. Qureshi, M.I., Malik, S.H.: A general double-series identity and its application in hypergeometric reduction formulas. Turk. J. Math. 45, 2759–2772 (2021). https://doi.org/10.3906/mat-2105-101

    Article  MathSciNet  MATH  Google Scholar 

  19. Rainville, E.D.: Special Functions, The Macmillan Company, New York 1960. Reprinted by Chelsea Publ. Co., Bronx, New York (1971)

  20. Rakha, M.A., Rathie, A.K.: Extensions of Euler type II transformation and Saalschütz’s theorem. Bull. Korean Math. Soc. 48(1), 151–156 (2011). https://doi.org/10.4134/KMS.2011.48.1.151

    Article  MathSciNet  MATH  Google Scholar 

  21. Sahai, V., Verma, A.: Recursion formulas for q-hypergeometric and q-Appell series. Commun. Korean Math. Soc. 33(1), 207–236 (2018). https://doi.org/10.4134/CKMS.c170121

    Article  MathSciNet  MATH  Google Scholar 

  22. Slater, L.J.: Generalized Hypergeometric Functions. Cambridge University Press, Cambridge (1966)

    MATH  Google Scholar 

  23. Srivastava, H.M.: A survey of some recent developments on higher transcendental functions of analytic number theory and applied mathematics, Symmetry, 13. Article ID 2294, 1–22 (2021)

    Google Scholar 

  24. Srivastava, H.M.: An introductory overview of fractional-calculus operators based upon the Fox–Wright and related higher transcendental functions. J. Adv. Eng. Comput. 5, 135–166 (2021)

    Article  Google Scholar 

  25. Srivastava, H.M., Choi, J.: Zeta and \(q\)-Zeta Functions and Associated Series and Integrals. Elsevier Science Publishers, Amsterdam (2012)

    MATH  Google Scholar 

  26. Srivastava, H.M., Karlsson, P.W.: Multiple Gaussian Hypergeometric Series, Halsted Press. Ellis Horwood Limited, Chichester, John Wiley and Sons, New York, Chichester, Brisbane and Toronto (1985)

  27. Srivastava, H.M., Kashyap, B.R.K.: Special Functions in Queuing Theory and Related Stochastic Processes. Academic Press, New York (1982)

    MATH  Google Scholar 

  28. Srivastava, H.M., Manocha, H.L.: A Treatise on Generating Functions, Halsted Press (Ellis Horwood Limited, Chichester, U.K.) Wiley, New York, Chichester, Brisbane and Toronto (1984)

  29. Srivastava, H.M., Qureshi, M.I., Quraishi, K.A., Singh, R.: Applications of some hypergeometric summation theorems involving double series. J. Appl. Math. Stat. Inform. 8(2), 37–48 (2012). https://doi.org/10.2478/v10294-012-0013-3

    Article  MATH  Google Scholar 

  30. Srivastava, H.M., Qureshi, M.I., Jabee, S.: Some general series identities and summation theorems for Clausen’s hypergeometric function with negative integer numerator and denominator parameters. J. Nonlinear Convex Anal. 21, 805–819 (2020)

    MathSciNet  MATH  Google Scholar 

  31. Verma, A., Yadav, S.: Recursion formulas for Srivastava’s general triple q-hypergeometric series. Afr. Mat. 31, 869–885 (2020). https://doi.org/10.1007/s13370-020-00766-5

    Article  MathSciNet  MATH  Google Scholar 

  32. Whipple, F.J.W.: Well-poised series and other generalized hypergeometric series. Proc. Lond. Math. Soc. 25(2), 525–544 (1926)

    Article  MATH  Google Scholar 

Download references

Acknowledgements

The authors are very thankful to the reviewer for carefully reading the manuscript and for giving valuable suggestions and comments which significantly improve the understandability of the revised version of the paper.

Funding

The authors have not disclosed any funding.

Author information

Authors and Affiliations

Authors

Contributions

Our article has two authors (Both are contributed equally).

Corresponding author

Correspondence to Shakir Hussain Malik.

Ethics declarations

Conflict of interest

The authors declare that they have no conflicts of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

The roots IRS of the cubic equation \( Mx^3+Vx^2+Wx+Y=0,\) are calculated by using Wolfram Mathematica 9.0 Software or Cardan’s method (Cardon’s method). The values of IR and S are given as follows:

  • $$\begin{aligned}{} & {} I=\frac{-V}{3M}\nonumber \\{} & {} \quad -\frac{2^\frac{1}{3}(-V^2+3MW)}{3M\left\{ -2V^3+9MVW-27M^2Y +\sqrt{4(-V^2+3MW)^3+(-2V^3+9MVW-27M^2Y)^2}~\right\} ^\frac{1}{3}}\nonumber \\{} & {} \quad +\frac{\left\{ -2V^3+9MVW-27M^2Y+\sqrt{4(-V^2+3MW)^3 +(-2V^3+9MVW-27M^2Y)^2}\right\} ^\frac{1}{3}}{3\times 2^\frac{1}{3}M}\nonumber \\ \end{aligned}$$
    (51)
  • $$\begin{aligned}{} & {} R=\frac{-V}{3M}\nonumber \\{} & {} \quad +\frac{(1+i\sqrt{3})(-V^2+3MW)}{3\times 2^\frac{2}{3}M\left\{ -2V^3+9MVW-27M^2Y +\sqrt{4(-V^2+3MW)^3+(-2V^3+9MVW-27M^2Y)^2}\right\} ^\frac{1}{3}}\nonumber \\{} & {} \qquad -\frac{(1-i\sqrt{3})\left\{ -2V^3+9MVW-27M^2Y+\sqrt{4(-V^2+3MW)^3 +(-2V^3+9MVW-27M^2Y)^2}\right\} ^\frac{1}{3}}{6\times 2^\frac{1}{3}M}\nonumber \\ \end{aligned}$$
    (52)
  • $$\begin{aligned}{} & {} S=\frac{-V}{3M}\nonumber \\{} & {} \quad +\frac{(1-i\sqrt{3})(-V^2+3MW)}{3\times 2^\frac{2}{3}M\left\{ -2V^3+9MVW-27M^2Y +\sqrt{4(-V^2+3MW)^3+(-2V^3+9MVW-27M^2Y)^2}\right\} ^\frac{1}{3}}\nonumber \\{} & {} \quad -\frac{(1+i\sqrt{3})\left\{ -2V^3+9MVW-27M^2Y+\sqrt{4(-V^2+3MW)^3 +(-2V^3+9MVW-27M^2Y)^2}\right\} ^\frac{1}{3}}{6\times 2^\frac{1}{3}M}\nonumber \\ \end{aligned}$$
    (53)

    Therefore,

    $$\begin{aligned} I+R+S=\frac{-V}{M} \end{aligned}$$
    (54)
    $$\begin{aligned} IR+RS+SI=\frac{W}{M} \end{aligned}$$
    (55)

    and

    $$\begin{aligned} IRS=\frac{-Y}{M} ~~or~ MIRS=-Y=-T(T+1)(T+2)U(U+1)(U+2) \end{aligned}$$
    (56)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Qureshi, M.I., Malik, S.H. Some Terminating K-Balanced Clausen Hypergeometric Summation Theorems. Int. J. Appl. Comput. Math 9, 59 (2023). https://doi.org/10.1007/s40819-023-01536-0

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s40819-023-01536-0

Keywords

Mathematics Subject Classification

Navigation