Log in

Global Stability and Numerical Analysis of a Compartmental Model of the Transmission of the Hepatitis A Virus (HAV): A Case Study in Tunisia

  • Original Paper
  • Published:
International Journal of Applied and Computational Mathematics Aims and scope Submit manuscript

Abstract

This paper deals with the transmission and spread of the hepatitis A virus in central west Tunisia (the city of Thala). The target of this framework is to determine the global stability of a SEIRD epidemiological model where the infectious compartment is split into symptomatic and asymptomatic compartments. We study the global stability of the equilibrium state using the Lyapunov function which depends on the value of the basic reproduction number \(R_0\). Therefore, we prove that when \(R_0<1\), the disease-free equilibrium (DFE) is globally stable, but when \(R_0>1\), the DFE is unstable, and therefore the the endemic equilibrium is globally stable.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Availability of data and materials

In our previous study [6], we developed an age-structured epidemiological model to assess the impact of introducing vaccination. The study was conducted in Thala, a predominantly rural area in west-central Tunisia (Kasserine governorate); covering 34,508 inhabitants; according to the 2014 national census. The study population consisted of 1379 individuals, representing 5% of the target population and selected by a cross-sectional household survey conducted between January and June 2014. Permanent residents aged 5 to 75 were screened for hepatitis A virus antibodies. In [6], we estimated adjusted parameters for seroprevalence, incidence, and strength of infection by a linear compartmental SEIR (Susceptible-Exposed-Infectious-Recovered) model structured by age. Then, a vaccine model was constructed to assess the impact on the epidemiology of hepatitis A virus.

References

  1. Abdal Aziz, A.M., Awad, M.A.M.: Seroprevalence of hepatitis a virus antibodies among a sample of egyptian children. EMHJ-Eastern Mediterranean Health J. 14(5), 1028–1035 (2008)

  2. Alkhalidi, J., Alenezi, B., Al-Mufti, S., al.: Seroepidemiology of hepatitis A virus in kuwait. World J. Gastroenterol.: WJG 15(1), 102 (2009)

  3. Allahamou, A., Azroul, E., Hammouch, Z., Alaoui, A.L.: Modeling and numerical investigation of a conformable co-infection model for describing hantavirus of the european moles. Math. Methods Appl. Sci. (2021)

  4. Almuneef, M., Memish, Z., Balkhy, H., Qahtani, M., Alotaibi, B., Hajeer, A., Qasim, L., Al Knawy, B.: Epidemiologic shift in the prevalence of hepatitis a virus in Saudi Arabia: a case for routine hepatitis a vaccination. Vaccine 24(27–28), 5599–5603 (2006)

    Google Scholar 

  5. Ayouni, K., Kharroubi, G., Mallekh, R., Hammami, W., Marouani, R., Mhamdi, M., Ben Salah, A., Triki, H., Bettaieb, J.: Seroprevalence of hepatitis a virus infection in central-west of Tunisia. J. Med. Virol. 93(6), 3666–3671 (2021)

    Google Scholar 

  6. Ayouni, K., Naffeti, B., Ben Aribi, W., Bettaieb, J., Hammami, W., Ben Salah, A., Ammar, H., Ben Miled, S., Triki, H.: Hepatitis a virus infection in central-west Tunisia: an age structured model of transmission and vaccination impact. BMC Infect. Dis. 20(1), 1–13 (2020)

    Google Scholar 

  7. Babaei, A., Ahmadi, M., Jafari, H., Liya, A.: A mathematical model to examine the effect of quarantine on the spread of coronavirus. Chaos Solitons Fractals 142, 110418 (2021)

    MathSciNet  MATH  Google Scholar 

  8. Babaei, A., Jafari, H., Ahmadi, M.: A fractional order HIV/AIDS model based on the effect of screening of unaware infectives. Math. Methods Appl. Sci. 42(7), 2334–2343 (2019)

    MathSciNet  MATH  Google Scholar 

  9. Babaei, A., Jafari, H., Banihashemi, S., Ahmadi, M.: Mathematical analysis of a stochastic model for spread of coronavirus. Chaos Solitons Fractals 145, 110788 (2021)

    MathSciNet  MATH  Google Scholar 

  10. Babaei, A., Jafari, H., Liya, A.: Mathematical models of HIV/AIDS and drug addiction in prisons. Eur. Phys. J. Plus 135(5), 1–12 (2020)

    Google Scholar 

  11. Bauch, C., Rao, A.S.S., Pham, B., Krahn, M., Gilca, V., Duval, B., Chen, M., Tricco, A.: A dynamic model for assessing universal hepatitis A vaccination in Canada. Vaccine 25(10), 1719–1726 (2007)

    Google Scholar 

  12. Bener, A., Al-Kaabi, S., Derbala, M., Al-Marri, A., Rikabi, A.: The epidemiology of viral hepatitis in qatar. Saudi J. Kidney Diseases Transplant. 20(2), 300 (2009)

    Google Scholar 

  13. Bhatia, N.P., Szegö, G.P.: Dynamical Systems: Stability Theory and Applications. Springer, New York (2006)

    MATH  Google Scholar 

  14. Boudaoui, A., El hadj Moussa, Y., Hammouch, Z., Ullah, S.: A fractional-order model describing the dynamics of the novel coronavirus (covid-19) with nonsingular kernel. Chaos, Solitons and Fractals 146, 110859 (2021)

  15. Dhankhar, P., Nwankwo, C., Pillsbury, M., Lauschke, A., Goveia, M.G., Acosta, C.J., Elbasha, E.H.: Public Health Impact and Cost-Effectiveness of Hepatitis A Vaccination in the United States: a disease transmission dynamic modeling approach. Value Health 18(4), 358–367 (2015). https://doi.org/10.1016/j.jval.2015.02.004

    Article  Google Scholar 

  16. Dhankhar, P., Nwankwo, C., Pillsbury, M., Lauschke, A., Goveia, M.G., Acosta, C.J., Elbasha, E.H.: Public health impact and cost-effectiveness of hepatitis a vaccination in the United States: a disease transmission dynamic modeling approach. Value Health 18(4), 358–367 (2015)

    Google Scholar 

  17. Van den Driessche, P., Watmough, J.: Reproduction numbers and sub-threshold endemic equilibria for compartmental models of disease transmission. Math. Biosci. 180(1–2), 29–48 (2002)

    MathSciNet  MATH  Google Scholar 

  18. Georgescu, P., Hsieh, Y.H.: Global stability for a virus dynamics model with nonlinear incidence of infection and removal. SIAM J. Appl. Math. 67(2), 337–353 (2006)

    MathSciNet  MATH  Google Scholar 

  19. Guenifi, W., Laouamri, S., Lacheheb, A.: Changes in prevalence of hepatitis a and associated factors in Setif-Algeria. Rev. Epidemiol. Sante Publique 65(6), 437–442 (2017)

    Google Scholar 

  20. Guo, H., Li, M., Shuai, Z.: A graph-theoretic approach to the method of global Lyapunov functions. Proc. Am. Math. Soc. 136(8), 2793–2802 (2008)

    MathSciNet  MATH  Google Scholar 

  21. Guo, H., Li, M.Y., Shuai, Z.: Global stability of the endemic equilibrium of multigroup SIR epidemic models. Can. Appl. Math. Q. 14(3), 259–284 (2006)

    MathSciNet  MATH  Google Scholar 

  22. Hamou, A.A., Azroul, E., Hammouch, Z., Alaoui, A.L.: A fractional multi-order model to predict the Covid-19 outbreak in morocco. Appl. Comput. Math 20(1), 177–203 (2020)

    MathSciNet  MATH  Google Scholar 

  23. Hens, N., Shkedy, Z., Aerts, M., Faes, C., Van Damme, P., Beutels, P.: Modeling Infectious Disease Parameters Based on Serological and Social Contact Data: A Modern Statistical Perspective. Springer, New York (2012)

    MATH  Google Scholar 

  24. Hethcote, H.W.: An age-structured model for pertussis transmission. Math. Biosci. 145(2), 89–136 (1997)

    MathSciNet  MATH  Google Scholar 

  25. Hethcote, H.W., Van Ark, J.W.: Epidemiological models for heterogeneous populations: proportionate mixing, parameter estimation, and immunization programs. Math. Biosci. 84(1), 85–118 (1987)

    MathSciNet  MATH  Google Scholar 

  26. Huang, G., Ma, W., Takeuchi, Y.: Global properties for virus dynamics model with bedding ton-deangelis functional response. Appl. Math. Lett. 22(11), 1690–1693 (2009)

    MathSciNet  MATH  Google Scholar 

  27. Huang, G., Takeuchi, Y.: Global analysis on delay epidemiological dynamic models with nonlinear incidence. J. Math. Biol. 63(1), 125–139 (2011)

    MathSciNet  MATH  Google Scholar 

  28. Jacobsen, K., Koopman, J.: The effects of socioeconomic development on worldwide hepatitis A virus seroprevalence patterns. Int. J. Epidemiol. 34(3), 600–609 (2005)

    Google Scholar 

  29. Jacobsen, K., Wiersma, S.: Hepatitis A virus seroprevalence by age and world region, 1990 and 2005. Vaccine 28(41), 6653–6657 (2010)

    Google Scholar 

  30. Jacobsen, K.H.: Hepatitis A virus in west Africa: Is an epidemiological transition beginning? Niger. Med. J.: J. Nigeria Med.l Assoc. 55(4), 279 (2014)

    Google Scholar 

  31. Jung, Y., Kim, J.: Epidemiology and clinical features of acute hepatitis A: from the domestic perspective. Korean J. Hepatol. 15(4), 438–445 (2009)

    Google Scholar 

  32. Korobeinikov, A.: Lyapunov functions and global properties for SEIR and SEIS epidemic models. Math. Med. Biol.: J. IMA 21(2), 75–83 (2004)

    MATH  Google Scholar 

  33. Korobeinikov, A.: Global properties of SIR and SEIR epidemic models with multiple parallel infectious stages. Bull. Math. Biol. 71(1), 75–83 (2009)

    MathSciNet  MATH  Google Scholar 

  34. Korobeinikov, A., Maini, P.K.: A Lyapunov function and global properties for SIR and SEIR epidemiological models with nonlinear incidence. Math. Bio Sci. Eng. 1(1), 57–60 (2004)

    MathSciNet  MATH  Google Scholar 

  35. Korobeinikov, A., Wake, G.C.: Lyapunov functions and global stability for SIR, SIRS, and SIS epidemiological models. Appl. Math. Lett. 15(8), 955–960 (2002)

    MathSciNet  MATH  Google Scholar 

  36. Letaief, A., Kaabia, N., Gaha, R.: Age-specific seroprevalence of hepatitis a among school children in central Tunisia. Am. J. Trop. Med. Hygiene 73(1), 40–43 (2005)

    Google Scholar 

  37. Li, M.Y., Muldowney, J.S.: Global stability for the SEIR model in epidemiology. Math. Bio Sci. 125(2), 155–164 (1995)

    MathSciNet  MATH  Google Scholar 

  38. Li, M.Y., Shuai, Z.: Global-stability problem for coupled systems of differential equations on networks. J. Differ. Equ. 248(1), 1–20 (2010)

    MathSciNet  MATH  Google Scholar 

  39. Li, M.Y., Shuai, Z., Wang, C.: Global stability of multi-group epidemic models with distributed delays. J. Math. Anal. Appl. 361(1), 38–47 (2010)

    MathSciNet  MATH  Google Scholar 

  40. Melgaco, J.G., Morgado, L.N., Santiago, M.A., de Oliveira, J.M., Lewis-**menez, L.L., Hasselmann, B., Cruz, O.G., Pinto, M.A., Vitral, C.L.: A single dose of inactivated hepatitis a vaccine promotes hav-specific memory cellular response similar to that induced by a natural infection. Vaccine 33(32), 3813–3820 (2015)

    Google Scholar 

  41. Melhem, N., Talhouk, R., Rachidi, H., Ramia, S.: Hepatitis a virus in the middle east and north Africa region: a new challenge. J. Viral Hepatitis 21(9), 605–615 (2014)

    Google Scholar 

  42. Memish, Z., Knawy, B., El-Saed, A.: Incidence trends of viral hepatitis A, B, and C seropositivity over eight years of surveillance in Saudi Arabia. Int. J. Infect. Dis. 14(2), e115–e120 (2010)

    Google Scholar 

  43. Organization, W.H.: Who position paper on hepatitis A vaccines-June 2012. Weekly Epidemiological Record 87(28-29), 261–276 (2012)

  44. Rezig, D., Ouneissa, R., Mhiri, L., Mejri, S., Haddad-Boubaker, S., Alaya, N.B., Triki, H.: Seroprevalences of hepatitis A and E infections in Tunisia. Pathol. Biol. (Paris) 56, 148–153 (2008)

    Google Scholar 

  45. Röst, G.: SEIR epidemiological model with varying infectivity and infinite delay. Math. Biosci. Eng. 5(2), 389–402 (2008)

    MathSciNet  MATH  Google Scholar 

  46. Saberifiroozi, M.: Hepatitis A virus infection: Is it an important hazard to public health? Hepatitis Monthly 2011, 235–237 (2011)

  47. Sacy, R., Haddad, M., Baasiri, G., al.: Hepatitis A in lebanon: a changing epidemiological pattern. Am. J. Trop. Med. Hygiene 73(2), 453–456 (2005)

  48. Sahoo, P., Mondal, H.S., Hammouch, Z., Abdeljawad, T., Mishra, D., Reza, M.: On the necessity of proper quarantine without lock down for 2019-ncov in the absence of vaccine. Results Phys. 25, 104063 (2021)

    Google Scholar 

  49. Sharar, Z., Rajah, J., Parsons, H.: Childhood seroprevalence of hepatitis A in the United Arab Emirates. Trop. Doct. 38(1), 65–66 (2008)

    Google Scholar 

  50. Smith, H.L., Waltman, P.: The Theory of the Chemostat: Dynamics of Microbial Competition. Cambridge University Press, Cambridge (1995)

    MATH  Google Scholar 

  51. Tufenkeji, H.: Hepatitis A shifting epidemiology in the middle East and Africa. Vaccine 18, S65–S67 (2000)

    Google Scholar 

  52. Van Effelterre, T., Guignard, A., Marano, C., Rojas, R., Jacobsen, K.H.: Modeling the hepatitis A epidemiological transition in Brazil and Mexico. Human Vaccines Immunotherap. 13(8), 1942–1951 (2017)

    Google Scholar 

  53. Van Effelterre, T., Marano, C., Jacobsen, K.H.: Modeling the hepatitis A epidemiological transition in thailand. Vaccine 34(4), 555–562 (2016)

    Google Scholar 

  54. Wang, J., Huang, G., Takeuchi, Y., Liu, S.: SVEIR epidemiological model with varying infectivity and distributed delays. Math. Biosci. Eng. 8(3), 875 (2011)

    MathSciNet  MATH  Google Scholar 

  55. Wasley, A., Fiore, A., Bell, B.: Hepatitis A in the era of vaccination. Epidemiol. Rev. 28(1), 101–11 (2006)

    Google Scholar 

  56. Xu, R.: Global stability of a delayed epidemic model with latent period and vaccination strategy. Appl. Math. Model. 36(11), 5293–5300 (2012)

    MathSciNet  MATH  Google Scholar 

  57. Zhou, L., Wang, Y., **ao, Y., Li, M.Y.: Global dynamics of a discrete age-structured SIR epidemic model with applications to measles vaccination strategies. Math. Biosci. 308, 27–37 (2019)

    MathSciNet  MATH  Google Scholar 

Download references

Funding

The authors have not disclosed any funding.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the conception and design of the study. Formal analysis and investigation, Writing the first and original draft preparation: [Walid BEN ARIBI]; Writing and editing: [Walid BEN ARIBI, Kaouther AYOUNI]. Conceptualization: [Walid BEN ARIBI, Slimane BEN MILED]. Mathematical methodology: [Walid BEN ARIBI, Amira KEBIR]. Numerical analysis: [Bechir NAFFETI]. Critically revised and commented the manuscript: [Amia KEBIR, Hamadi AMMAR, Slimane BEN MILED]. Data curation: [Henda Triki]. Supervision: [Slimane BEN MILED]. All authors have read and approved the final manuscript.

Corresponding author

Correspondence to Walid Ben Aribi.

Ethics declarations

Conflict of Interests

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

A Computation of the Basic Reproductive Number \(R_0\)

A Computation of the Basic Reproductive Number \(R_0\)

Using the system (2) we denote by X(t) a small perturbation about the equilibrium point \(P_{0}^{*}\), defined by

$$\begin{aligned} \begin{array}{l} x(t)=S(t)-S^{*} \\ y(t)=E(t)-E^{*} \\ z(t)=A s(t)-As^{*} \\ T(t)=S y(t)-S y^{*} \end{array} \end{aligned}$$
(19)

Then, by linearizing the system (2) around \(P^{*}\) we have:

$$\begin{aligned} X(t)=A X(t)=F(X(t)) \end{aligned}$$
(20)

Where A is the matrix which is given by:

$$\begin{aligned} \left( \begin{array}{cccc} -\left( diag\left( B\left( As^{*}+Sy^{*}\right) \right) +diag\left( e+\mu ^{S}\right) \right) &{} 0 &{} -diag\left( S^{*}\right) B &{} -diag\left( S^{*}\right) B \\ diag\left( B\left( As^{*}+Sy^{*}\right) \right) &{} -diag\left( \delta +\mu ^{E}\right) &{} diag\left( S^{*}\right) B &{} diag\left( S^{*}\right) B \\ 0 &{} (1-\alpha ) diag(\delta ) &{} -diag\left( \sigma +\mu ^{\varLambda 5}\right) &{} 0 \\ 0 &{} diag(\delta ) &{} 0 &{} -diag\left( \sigma +\mu ^{S y}\right) \end{array}\right) \end{aligned}$$

and X(t) is a function of \({\mathbf {R}}_{+}^{4 n},\) where diag(E) is defined by the matrix, where the diagonal is equals to the components of the vector E and \(\forall i \ne j\) is the coefficient equals to 0,  and equivalent to

$$\begin{aligned} {\begin{array}{llll} {\dot{x}}(t)=-\left( diag\left( B\left( A s^{*}+s y^{*}\right) \right) +diag\left( e+\mu ^{s}\right) \right) x(t)-diag\left( s^{*}\right) B z(t)-diag\left( s^{*}\right) B T(t) \\ {\dot{y}}(t)=diag\left( B\left( A s^{*}+s y^{*}\right) \right) x(t)-diag\left( \delta +\mu ^{E}\right) y(t)+diag\left( s^{*}\right) B z(t)+diag\left( s^{*}\right) B T(t) \\ {\dot{z}}(t)=(1-\alpha ) diag(\delta ) y(t)-diag\left( \sigma +\mu ^{A s}\right) z(t) \\ {\dot{T}}(t)=diag(\delta ) y(t)-diag\left( \sigma +\mu ^{s y}\right) T(t) \end{array}} \end{aligned}$$
(21)

Lets \(F_{a}(y, z, T)\) the rate of appearance of new infected in the infectious compartment, \(F_{t}(y, z, T)\) the transfer rate of the individuals in to and out of the infectious compartment of the system (21) defined by Van Den Driessche [17].

$$\begin{aligned} F_{a}(y, z, T)=\left( \begin{array}{c} diag\left( B\left( A s^{*}+s y^{*}\right) \right) x(t)+diag\left( s^{*}\right) B z(t)+diag\left( s^{*}\right) B T(t) \\ 0 \\ 0 \end{array}\right) \end{aligned}$$

And

$$\begin{aligned} F_{t}(y, z, T)=\left( \begin{array}{c} -diag\left( \delta +\mu ^{E}\right) y(t) \\ (1-\alpha ) diag(\delta ) y(t)-diag\left( \sigma +\mu ^{A s}\right) z(t) \\ diag(\delta ) y(t)-diag\left( \sigma +\mu ^{5 y}\right) \tau (t) \end{array}\right) \end{aligned}$$

Then

$$\begin{aligned} F=\left( \begin{array}{ccc} 0 &{} diag\left( s^{*}\right) B &{} diag\left( s^{*}\right) B \\ 0 &{} 0 &{} 0 \\ 0 &{} 0 &{} 0 \end{array}\right) \end{aligned}$$

And

$$\begin{aligned} V=\left( \begin{array}{ccc} -diag\left( \delta +\mu ^{E}\right) &{} 0 &{} 0 \\ (1-\alpha ) diag(\delta ) &{} -diag\left( \sigma +\mu ^{A s}\right) &{} 0 \\ diag(\delta ) &{} 0 &{} -diag\left( \sigma +\mu ^{s y}\right) \end{array}\right) \end{aligned}$$

Consequently

$$\begin{aligned} M=-F V^{-1}=\left( \frac{\beta _{k j} S_{k}^{0} \delta \left( (1-\alpha )\left( \sigma _{k}+\mu _{k}^{S y}\right) +\alpha \left( \sigma _{k}+\mu _{k}^{A s}\right) \right) }{\left( \delta +\mu _{k}^{E}\right) \left( \sigma _{k}+\mu _{k}^{A s}\right) \left( \sigma _{k}+\mu _{k}^{S y}\right) }\right) _{1 \le k, j \le n} \end{aligned}$$

Then, \(R_{0}=\rho (M),\) where \(S_{k}^{0}=\frac{\varLambda _{k}}{e_{k}+\mu _{k}^{S}}\)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ben Aribi, W., Naffeti, B., Ayouni, K. et al. Global Stability and Numerical Analysis of a Compartmental Model of the Transmission of the Hepatitis A Virus (HAV): A Case Study in Tunisia. Int. J. Appl. Comput. Math 8, 126 (2022). https://doi.org/10.1007/s40819-022-01326-0

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s40819-022-01326-0

Keywords

Navigation