Log in

Numerical Approximation of Fractional Telegraph Equation via Legendre Collocation Technique

  • Original Paper
  • Published:
International Journal of Applied and Computational Mathematics Aims and scope Submit manuscript

Abstract

The present study concerns with the numerical solution of space-time fractional-order telegraph equations (FOTE) on the transmission line. The Legendre collocation method is used to approximate the FOTE in space and time direction simultaneously with the help of the Kronecker product. Numerical solutions for some examples of fractional-order telegraph equations are obtained using the proposed scheme and are compared with the existing methods in the literature. The comparison shows the effectiveness and reliability of the proposed scheme. The scheme’s main feature is that fewer nodes are required in space and time direction both to achieve reasonable accuracy. Thus it is time-efficient, much easier to apply and requires less computational cost. Also, the error analysis is presented to show the stability and convergence of the proposed technique.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Zhao, Z., Li, C.: Fractional difference/finite element approximations for the time-space fractional telegraph equation. Appl. Math. Comput. 219(6), 2975–2988 (2012)

    MathSciNet  MATH  Google Scholar 

  2. Lock, C.G.J., Greeff, J., Joubert, S.: Modelling of telegraph equations in transmission lines. PhD thesis, Tshwane University of Technology (2007)

  3. Okubo, A.: Application of the telegraph equation to oceanic diffusion: another mathematical model. Technical report (1971)

  4. Chang, C.-C., Werner, J.: A solution of the telegraph equation with application to two dimensional supersonic shear flow. J. Math. Phys. 31(1–4), 91–101 (1952)

    Article  MathSciNet  Google Scholar 

  5. Podlubny, I.: Fractional Differential Equations: An Introduction to Fractional Derivatives, Fractional Differential Equations, to Methods of Their Solution and Some of Their Applications. Elsevier, New York (1998)

    MATH  Google Scholar 

  6. Oldham, K.B., Spanier, J.: The Fractional Calculus, vol. 111 of Mathematics in Science and Engineering (1974)

  7. Khater, M.M.A., Anwar, S., Tariq, K.U., Mohamed, M.S.: Some optical soliton solutions to the perturbed nonlinear Schrödinger equation by modified Khater method. AIP Adv. 11(2), 025130 (2021)

    Article  Google Scholar 

  8. Khater, M.M.A., Elagan, S.K., Mousa, A.A., El-Shorbagy, M.A., Alfalqi, S.H., Alzaidi, J.F., Lu, D.: Sub-10-fs-pulse propagation between analytical and numerical investigation. Results Phys. 104133, 104133 (2021)

    Article  Google Scholar 

  9. Khater, M.M.A., Mohamed, M.S., Elagan, S.K.: Diverse accurate computational solutions of the nonlinear Klein–Fock–Gordon equation. Results Phys. 23, 104003 (2021)

    Article  Google Scholar 

  10. Huang, F.: Analytical solution for the time-fractional telegraph equation. J. Appl. Math. 2009, Hindawi (2009)

  11. Dhunde, R.R., Waghmare, G.L.: Double Laplace transform method for solving space and time fractional telegraph equations. Int. J. Math. Math. Sci. 2016, Hindawi (2016)

  12. Fino, A.Z., Ibrahim, H.: Analytical solution for a generalized space-time fractional telegraph equation. Math. Methods Appl. Sci. 36(14), 1813–1824 (2013)

    Article  MathSciNet  Google Scholar 

  13. Mittal, R.C., Bhatia, R.: Numerical solution of second order one dimensional hyperbolic telegraph equation by cubic b-spline collocation method. Appl. Math. Comput. 220, 496–506 (2013)

    MathSciNet  MATH  Google Scholar 

  14. Nazir, T., Abbas, M., Yaseen, M.: Numerical solution of second-order hyperbolic telegraph equation via new cubic trigonometric b-splines approach. Cogent Math. Stat. 4(1), 1382061 (2017)

    Article  MathSciNet  Google Scholar 

  15. Bansu, H., Kumar, S.: Numerical solution of space and time fractional telegraph equation: a meshless approach. Int. J. Nonlinear Sci. Numer. Simul. 20(3–4), 325–337 (2019)

    Article  MathSciNet  Google Scholar 

  16. Asgari, M., Ezzati, R., Allahviranloo, T.: Numerical solution of time-fractional order telegraph equation by Bernstein polynomials operational matrices. Math. Probl. Eng. 2016, Hindawi (2016)

  17. Khater, M.M.A., Mohamed, M.S., Attia, R.A.M.: On semi analytical and numerical simulations for a mathematical biological model; the time-fractional nonlinear kolmogorov-petrovskii-piskunov (kpp) equation. Chaos Solitons Fractals 144, 110676 (2021)

    Article  MathSciNet  Google Scholar 

  18. Khater, M.M.A., Mousa, A.A., El-Shorbagy, M.A., Attia, R.A.M.: Analytical and semi-analytical solutions for phi-four equation through three recent schemes. Results Phys. 22, 103954 (2021)

    Article  Google Scholar 

  19. Nikan, O., Avazzadeh, Z., Tenreiro Machado, J.A.: A local stabilized approach for approximating the modified time-fractional diffusion problem arising in heat and mass transfer. J. Adv. Res. Elsevier (2021)

  20. Nikan, O., Avazzadeh, Z., Machado, J.A.T.: Numerical approximation of the nonlinear time-fractional telegraph equation arising in neutron transport. Commun. Nonlinear Sci. Numer. Simul. 99, 105755 (2021)

    Article  MathSciNet  Google Scholar 

  21. Nikan, O., Machado, J.A.T., Golbabai, A., Rashidinia, J.: Numerical evaluation of the fractional Klein–Kramers model arising in molecular dynamics. J. Comput. Phys. 428, 109983 (2021)

    Article  MathSciNet  Google Scholar 

  22. Saadatmandi, A., Dehghan, M.: A tau approach for solution of the space fractional diffusion equation. Comput. Math. Appl. 62(3), 1135–1142 (2011)

    Article  MathSciNet  Google Scholar 

  23. Khader, M.M., Swetlam, N.H., Mahdy, A.M.S.: The Chebyshev collection method for solving fractional order Klein-Gordon equation. Wseas Trans. Math 13, 2224–2880 (2014)

    Google Scholar 

  24. Jaleb, H., Adibi, H.: On a novel modification of the Legendre collocation method for solving fractional diffusion equation. Comput. Methods Differ. Equ. 7(3), 480–496 (2019)

    MathSciNet  MATH  Google Scholar 

  25. Saadatmandi, A., Dehghan, M.: A new operational matrix for solving fractional-order differential equations. Comput. Math. Appl. 59(3), 1326–1336 (2010)

    Article  MathSciNet  Google Scholar 

  26. Canuto, C., Hussaini, M.Y., Quarteroni, A., Zang, T.A.: Spectral Methods: Fundamentals in Single Domains. Springer, New York (2007)

    Book  Google Scholar 

  27. Mohebbi, A., Abbaszadeh, M., Dehghan, M.: The meshless method of radial basis functions for the numerical solution of time fractional telegraph equation. Int. J. Numer Methods Heat Fluid Flow, Emerald Group Publishing Limited (2014)

  28. Kumar, D., Singh, J., Kumar, S.: Analytic and approximate solutions of space-time fractional telegraph equations via Laplace transform. Walailak J. Sci. Technol. (WJST) 11(8), 711–728 (2014)

    Google Scholar 

  29. Dehghan, M., Abbaszadeh, M.: A Legendre spectral element method (SEM) based on the modified bases for solving neutral delay distributed-order fractional damped diffusion-wave equation. Math. Methods Appl. Sci. 41(9), 3476–3494 (2018)

    Article  MathSciNet  Google Scholar 

  30. Laub, A.: Matrix Analysis for Scientists and Engineers, vol. 91. Siam, Philadelphia (2005)

    Book  Google Scholar 

  31. Hosseini, V.R., Chen, W., Avazzadeh, Z.: Numerical solution of fractional telegraph equation by using radial basis functions. Eng. Anal. Boundary Elem. 38, 31–39 (2014)

    Article  MathSciNet  Google Scholar 

  32. Kumar, A., Bhardwaj, A., Dubey, S.: A local meshless method to approximate the time-fractional telegraph equation. In: Engineering with Computers, pp. 1–16 (2020)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Arvind Kumar Mishra.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

If a matrix \(P \in {R}^{m\times n }\) and \(Q \in {R}^{s\times t }\) then the Kronecker product of matrix P and Q can be defined as [30]:

$$\begin{aligned} {P\otimes Q} = \begin{bmatrix} a_{11}Q &{} \quad {a}_{12}Q &{} \quad . &{} \quad . &{} \quad .&{} \quad &{} \quad &{} \quad {a}_{1N }Q \\ {a}_{21}Q&{} \quad {a}_{22}Q &{} \quad . &{} \quad . &{} \quad .&{} \quad &{} \quad &{} {a}_{2N }Q\\ . &{} \quad . &{} \quad . &{} \quad .&{} \quad . \\ {a}_{n1}Q &{} \quad {a}_{n2}Q &{} \quad . &{} \quad . &{} \quad .&{} \quad &{} \quad &{} \quad {a}_{nN }Q \end{bmatrix}. \end{aligned}$$

The important characteristics of the Kronecker product are that for any matrices P, Q and R which fulfill the condition of matrix multiplication,we will have :

$$\begin{aligned} vec(PQR)= (R^{T}\otimes P)vec(Q) \end{aligned}$$

vec(Q) is obtained by stacking the columns of Q on top of one another [30].

Table 4 \(L_{\infty }\) error for different value of \(\beta \), \( \gamma \), node points in space N and n
Table 5 \(L_\infty \) and \(L_{rms}\) errors along with CPU time for \(\beta = 1.9\) and different values of m [32]
Table 6 \(L_\infty \) and \(L_{rms}\) error at different value \(\beta \), at \(\gamma =2 \) for different nodes in time and space direction for Eq. (7.4)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mishra, A.K., Kumar, S. & Shukla, A.K. Numerical Approximation of Fractional Telegraph Equation via Legendre Collocation Technique. Int. J. Appl. Comput. Math 7, 198 (2021). https://doi.org/10.1007/s40819-021-01133-z

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s40819-021-01133-z

Keywords

Mathematics Subject Classification

Navigation