Log in

Influence of Intracellular Delay on the Dynamics of Hepatitis C Virus

  • Original Paper
  • Published:
International Journal of Applied and Computational Mathematics Aims and scope Submit manuscript

Abstract

In this paper, we present a delay induced model for hepatitis C virus incorporating the healthy and infected hepatocytes as well as infectious and noninfectious virions. The model is mathematically analyzed and characterized, both for the steady states and the dynamical behavior of the model. It is shown that time delay does not affect the local asymptotic stability of the uninfected steady state. However, it can destabilize the endemic equilibrium, leading to Hopf bifurcation to periodic solutions with realistic data sets. The model is also validated using 12 patient data obtained from the study, conducted at the University of Sao Paulo Hospital das clinicas.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Alkahtani, B.S.T., Atangana, A., Koca, I.: Novel analysis of the fractional Zika model using the Adams type predictor-corrector rule for non-singular and non-local fractional operators. J. Nonlinear Sci. Appl. 10, 3191–3200 (2017)

    Article  MathSciNet  Google Scholar 

  2. Atangana, A., Goufo, E.F.D.: On the mathematical analysis of ebola hemorrhagic fever: deathly infection disease in West African Countries. BioMed Res. Int. 2014, 1–7 (2014)

    Google Scholar 

  3. Baccam, P., Beauchemin, C., Macken, C.A., Hayden, F.G., Perelson, A.S.: Kinetics of influenza A virus infection in humans. J. Virol. 80, 7590–7599 (2006)

    Article  Google Scholar 

  4. Banerjee, S., Keval, R., Gakkhar, S.: Modeling the dynamics of Hepatitis C virus with combined antiviral drug therapy: interferon and Ribavirin. Math. Biosci. 245, 235–248 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  5. Bekkering, F.C., Brouwer, J.T., Leroux-Roels, G., Vlierberghe, H.V., Elewaut, A., Schalm, S.W.: Ultrarapid hepatitis C virus clearance by daily high-dose interferon in non-responders to standard therapy. J. Hepatol. 28(6), 960–964 (1998)

    Article  Google Scholar 

  6. Bekkering, F.C., Brouwer, J.T., Schalm, S., Elewaut, A.: Hepatitis C: viral kinetics. Hepatolog 26(6), 1691–1693 (1997)

    Article  Google Scholar 

  7. Bodenheimer Jr., H.C., Lindsay, K.L., Davis, G.L., Lewis, J.H., Thung, S.N., Seeff, L.B.: Tolerance and efficiency of oral ribavirin treatment of chronic hepatitis C: a multitrial. Hepatology 26(2), 473–477 (1997)

    Article  Google Scholar 

  8. Chakrabarty, S.P., Joshi, H.R.: Optimally controlled treatment strategy using interferon and ribavirin for hepatitis C. J. Biol. Syst. 17, 97–110 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  9. Cooke, K., Van Den Driessche, P.: On zeroes of some transcendental equations. Funkcialaj Ekvacioj 29, 77–90 (1986)

    MathSciNet  MATH  Google Scholar 

  10. Culshaw, R.V., Ruan, S.: A delay-differential equation model of HIV infection of CD4+ T-cells. Math. Biosci. 165, 27–39 (2000)

    Article  MATH  Google Scholar 

  11. Dahari, H., Araujo, E.S.A.D., Haagmans, B.L., Layden, T.J., Cotler, S.J., Barone, A.A., Neumann, A.U.: Pharmacodynamics of PEG-IFN-\(\alpha \)-2a in HIV/HCV co-infected patients: Implications for treatment outcomes. J. Hepatol. 53, 460–467 (2010)

    Article  Google Scholar 

  12. Dahari, H., Lo, A., Ribeiro, R.M., Perelson, A.S.: Modeling hepatitis C virus dynamics: liver regeneration and critical drug efficacy. J. Theor. Biol. 247, 371–381 (2007)

    Article  MathSciNet  Google Scholar 

  13. Di Bisceglie, A.M., Conjeevaram, H.S., Fried, M.W., Sallie, R., Park, Y., Yurdaydin, C., Swain, M.G., Kleiner, D.E., Mahaney, K., Hoofnagle, J.H.: Ribavirin as therapy for chronic hepatitis C. A randomized, double-blind, placebo-controlled trial. Ann. Intern. Med. 123(12), 897–903 (1995)

    Article  Google Scholar 

  14. Di Bisceglie, A.M., Shindo, M., Fong, T.L., Fried, M.W., Swain, M.G., Bergasa, N.V., Axiotis, C.A., Waggoner, J.G., Park, Y., Hoofnagle, J.H.: A pilot study of ribavirin therapy for chronic hepatitis C. Hepatology 16(3), 649–654 (1992)

    Article  Google Scholar 

  15. Dieudonn, J.: Foundations of Modern Analysis. Academic Press, New York (1960)

    Google Scholar 

  16. Dixit, N.M.: Advances in the mathematical modelling of hepatitis C virus dynamics. J. Indian Inst. Sci. 88, 37–43 (2008)

    Google Scholar 

  17. Dixit, N.M., Layden-Almer, J.E., Layden, T.J., Perelson, A.S.: Modelling how ribavirin improves interferon response rates in hepatitis C virus infection. Nature 432, 922–924 (2004)

    Article  Google Scholar 

  18. Dixit, N.M., Perelson, A.S.: Complex patterns of viral load decay under antiretroviral therapy: influence of pharmacokinetics and intracellular delay. J. Theor. Biol. 226, 95–109 (2004)

    Article  MathSciNet  Google Scholar 

  19. Dixit, N.M., Perelson, A.S.: HIV dynamics with multiple infections of target cells. PNAS USA 102, 8198–8203 (2005)

    Article  Google Scholar 

  20. Feld, J.J., Hoofnagle, J.H.: Mechanism of action of interferon and ribavirin in treatment of hepatitis C. Nature 436, 967–972 (2005)

    Article  Google Scholar 

  21. Freedman, H., Rao, V.S.H.: The trade-off between mutual interference and time lags in predator-prey systems. Bull. Math. Biol. 45, 991–1004 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  22. Gourley, S.A., Kuang, Y., Nagy, J.D.: Dynamics of a delay differential equation model of hepatitis B virus infection. J. Biol. Dyn. 2, 140–153 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  23. Graci, J.D., Cameron, C.E.: Mechanisms of action of ribavirin against distinct viruses. Rev. Med. Virol. 16, 37–48 (2006)

    Article  Google Scholar 

  24. Guatelli, J.G., Gingeras, T.R., Richman, D.D.: Alternative splice acceptor utilization during human immunodeficiency virus type 1 infection of cultured cells. J. Virol. 64, 4093–4098 (1990)

    Google Scholar 

  25. Hassard, B.D., Kazariniff, N.D, Wan, Y.H.: Theory and applications of Hopf bifurcation. London math society lecture note series 41. Cambridge University Press, Cambridge (1981)

  26. Herrmann, E., Lee, J.H., Marinos, G., Modi, M., Zeuzem, S.: Effect of ribavirin on hepatitis C viral kinetics in patients treated with pegylated interferon. Hepatology 37(6), 1351–1358 (2003)

    Article  Google Scholar 

  27. Lam, N.P., Neumann, A.U., Gretch, D.R., Wiley, T.E., Perelson, A.S., Layden, A.J.: Dose dependent acute clearence of hepatitis C genotype1 virus with interferon alpha. Hepatology 26(1), 226–231 (1997)

    Article  Google Scholar 

  28. Layden-Almer, J.E., Ribeiro, R.M., Wiley, T., Perelson, A.S., Layden, T.J.: Viral dynamics and response differences in HCV infected African American and white patients treated with IFN and ribavirin. Hepatology 37(6), 1343–1350 (2003)

    Article  Google Scholar 

  29. Lewin, S.R., Ribeiro, R.M., Walters, T., Lau, G.K., Bowden, S., Locarnini, S., Perelson, A.S.: Analysis of hepatitis B viral load decline under potent therapy: complex decay profiles observed. Hepatology 34, 1012–1020 (2001)

    Article  Google Scholar 

  30. Nelson, P.W., Perelson, A.S.: Mathematical analysis of delay differential equations models of HIV-1 infection. Math. Biosci. 179, 73–94 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  31. Neumann, A.U., Lam, N.P., Dahari, H., Gretch, D.R., Wiley, T.E., Layden, T.J., Perelson, A.S.: Hepatitis C viral dynamics in vivo and the antiviral efficacy of interferon-\(\alpha \) therapy. Science 282, 103–107 (1998)

    Article  Google Scholar 

  32. Nowak, M.A., Bonhoeffer, S., Hill, A.M., Boehme, R., Thomas, H.C., McDade, H.: Viral dynamics in hepatitis B virus infection. PNAS USA 93, 4398–4402 (1996)

    Article  Google Scholar 

  33. Pawlotsky, J.M., Dahari, H., Neumann, A.U., Hezode, C., Germanidis, G., Lonjon, I., Castera, L., Dhumeaux, D.: Antiviral action of ribavirin in chronic hepatitis C. Gastroenterology 126(3), 703–714 (2004)

    Article  Google Scholar 

  34. Perelson, A.S., Nelson, P.W.: Mathematical models of HIV-dynamics in vivo. SIAM Rev. 41, 3–44 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  35. Riesz, F.: Sur une espéce de géométrie analytique des systémes de fonctions sommables. Comptes rendus de l’Académie des sciences Paris 144, 1409–1411 (1907)

    MATH  Google Scholar 

  36. Zeuzem, S., Schmidt, J.M., Lee, J.H., Wager, M.V., Teubar, G., Roth, W.K.: Hepatitis C virus dynamics in vivo: effect of ribavirin and inteferon alpha on viral turnover. Hepatology 28(1), 245–252 (1998)

    Article  Google Scholar 

Download references

Acknowledgements

The authors are very much grateful to the anonymous referees for their useful suggestions and comments for further improvement of this paper. This study was supported by the IndoFrench Center for Applied Mathematics (IFCAM) (Grant No. MA/IFCAM/15/168).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sandip Banerjee.

Appendix: Calculation of \(W_{20}(\theta )\) and \(W_{11}(\theta )\)

Appendix: Calculation of \(W_{20}(\theta )\) and \(W_{11}(\theta )\)

From (30) and (32), we have

$$\begin{aligned} {\dot{W}}={\dot{x}}_{t}-{\dot{z}} q-\dot{{\bar{z}}}{\bar{q}}= & {} \left\{ \begin{array}{ll} {A W- 2 \text {Re}\{\bar{q^{*}}(0)f_{0} q (\theta )\},~~~~~~ if \theta \in [-1, 0),}\\ {A W-2 \text {Re}\{\bar{q^{*}}(0)f_{0} q (0)\}+f_{0},~~if \theta =0}, \end{array}\right. \nonumber \\= & {} A W+H(z, {\bar{z}}, \theta )~~~~(say), \end{aligned}$$
(38)

where

$$\begin{aligned} H(z, {\bar{z}}, \theta )=H_{20}(\theta )\frac{z^{2}}{2}+H_{11}(\theta )z {\overline{z}} +H_{02}(\theta )\frac{{\overline{z}}^{2}}{2} +... \end{aligned}$$
(39)

Substituting the corresponding series into (38) and comparing the coefficients, we obtain

$$\begin{aligned} (A-2 \text {i} \tau _{0}\omega _{0})W_{20}(\theta ) =-H_{20}(\theta ), A W_{11}(\theta )=-H_{11}(\theta ),... \end{aligned}$$
(40)

From (38), we know that for \(\theta \in [-1, 0),\)

$$\begin{aligned} H(z, {\bar{z}}, \theta ) =-\bar{q^{*}}(0)f_{0} q (\theta )- q^{*}(0) \bar{f_{0}} {\bar{q}}(\theta )=-g(z, {\bar{z}})q(\theta )-{\bar{g}}(z, {\bar{z}}){\bar{q}}(\theta ). \end{aligned}$$
(41)

Comparing the corresponding coefficients with that of (39), we get,

$$\begin{aligned} H_{20}(\theta ) =-g_{20}q(\theta )-{\bar{g}}_{02}{\bar{q}}(\theta ), H_{11}(\theta ) =-g_{11}q(\theta )-{\bar{g}}_{11}{\bar{q}}(\theta ). \end{aligned}$$
(42)

From (40),(42) and the definition of A, it follows that

$$\begin{aligned} \dot{W_{20}}(\theta )=2 \text {i}\omega _{0}\tau _{k}W_{20}(\theta )+g_{20}(\theta )q(\theta )+{\bar{g}}_{02}{\bar{q}}(\theta ). \end{aligned}$$

Note that \(q(\theta )=(1, a, b, c_{1})^{T}e^{\text {i} \omega _{0}\tau _{j}\theta }\), hence

$$\begin{aligned} W_{20}(\theta )=\frac{\text {i}g_{20}}{\omega _{0}\tau _{j}}q(0)e^{\text {i} \omega _{0}\tau _{j}\theta }+\frac{\text {i}{\bar{g}}_{02}}{3\omega _{0}\tau _{j}}{\bar{q}}(0)e^{-\text {i} \omega _{0}\tau _{j}\theta }+E_{1}e^{2\text {i} \omega _{0}\tau _{j}\theta }, \end{aligned}$$
(43)

Here \(E_{1}=(E_{1}^{(1)}, E_{1}^{(2)}, E_{1}^{(3)}, E_{1}^{(4)})\in R^{4}\) is a constant vector. Similarly, from (40) and (43), we get

$$\begin{aligned} W_{11}(\theta )=-\frac{\text {i}g_{11}}{\omega _{0}\tau _{j}}q(0)e^{\text {i} \omega _{0}\tau _{j}\theta }+\frac{\text {i}{\bar{g}}_{11}}{3\omega _{0}\tau _{j}}{\bar{q}}(0)e^{-\text {i} \omega _{0}\tau _{j}\theta }+E_{2}, \end{aligned}$$
(44)

where \(E_{2}=(E_{2}^{(1)}, E_{2}^{(2)}, E_{2}^{(3)}, E_{2}^{(4)})\in R^{4}\) is also a constant vector. Now, we have to find an appropriate constant vector \(E_1\) and \(E_2\) which satisfy the above conditions. From the definition of A and (40), we obtain

$$\begin{aligned} \int _{-1}^{0} d \eta (\theta ) W_{20}(\theta )= 2 \text {i}\omega _{0} \tau _{j}W_{20}(\theta )-H_{20}(\theta ), \end{aligned}$$
(45)

and

$$\begin{aligned} \int _{-1}^{0} d \eta (\theta ) W_{11}(\theta )= -H_{11}(0), \end{aligned}$$
(46)

where \(\eta (\theta )=\eta (0, \theta ).\) Using (38), we have

$$\begin{aligned} H_{20}(0)=-g_{20}q(0)-{\bar{g}}_{20}{\bar{q}}(0)+2 \tau _{j}\left( \begin{array}{c} -(1+a)\frac{r}{T_{max}}-(1-c\eta _{1})\alpha b e^{-2 \text {i} \omega _{0}\tau _{j}} \\ (1-c\eta _{1})\alpha b e^{-2 \text {i} \omega _{0}\tau _{j}} \\ 0 \\ 0 \\ \end{array} \right) \end{aligned}$$
(47)

and

$$\begin{aligned} H_{11}(0)=-g_{11}q(0)-{\bar{g}}_{11}{\bar{q}}(0)+2 \tau _{j}\left( \begin{array}{c} -(1+Re(a))\frac{r}{T_{max}}-(1-c\eta _{1})\alpha Re(b) \\ (1-c\eta _{1})\alpha Re(b) \\ 0 \\ 0 \\ \end{array} \right) \end{aligned}$$
(48)

Substituting (43) and (47) into (45), we obtain

\(\left( 2 \text {i}\omega _{0} \tau _{j} I-\int _{-1}^{0}e^{2 \text {i} \omega _{0}\tau _{j}\theta } d \eta (\theta )\right) E_{1}=2 \tau _{j}\left( \begin{array}{c} -(1+a)\frac{r}{T_{max}}-(1-c\eta _{1})\alpha b e^{-2 \text {i} \omega _{0}\tau _{j}} \\ (1-c\eta _{1})\alpha b e^{-2 \text {i} \omega _{0}\tau _{j}} \\ 0 \\ 0 \\ \end{array} \right) \)

which leads to

$$\begin{aligned}&\left( \begin{array}{cccc} i \omega _{0}-F&{} \frac{r T^{*}}{T_{max}}&{}(1-c \eta _{1})\alpha T^{*}&{}0\\ -(1-c \eta _{1})\alpha V_{I}^{*}e^{-i \omega _{0}\tau _{j}} &{}i \omega _{0}+d_{2} &{} -(1-c \eta _{1})\alpha T^{*}e^{-i \omega _{0}\tau _{j}}&{}0 \\ 0 &{} -\left( 1-\frac{\eta _{r}+\eta _{1}}{2}\right) \beta &{} i \omega _{0}+d_{3} &{} 0 \\ 0 &{} -\left( \frac{\eta _{r}+\eta _{1}}{2}\right) \beta &{} 0 &{} i \omega _{0}+d_{3}\\ \end{array} \right) \left( \begin{array}{c} E_{1}^{(1)}\\ E_{1}^{(2)} \\ E_{1}^{(3)} \\ E_{1}^{(4)} \\ \end{array}\right) \\&\quad =2\left( \begin{array}{c} -(1+a)\frac{r}{T_{max}}-(1-c\eta _{1})\alpha b e^{-2 \text {i} \omega _{0}\tau _{j}} \\ (1-c\eta _{1})\alpha b e^{-2 \text {i} \omega _{0}\tau _{j}} \\ 0 \\ 0 \\ \end{array} \right) \end{aligned}$$

From above, we can easily calculate a constant vector \(E_{1}=(E_{1}^{(1)}, E_{1}^{(2)}, E_{1}^{(3)}, E_{1}^{(4)})\in R^{4}\). Similarly, substituting (44) and (48) into (46), we can get

$$\begin{aligned}&\left( \begin{array}{cccc} F&{} -\frac{r T^{*}}{T_{max}}&{}-(1-c \eta _{1})\alpha T^{*}&{}0\\ -(1-c \eta _{1})\alpha V_{I}^{*} &{}-d_{2} &{} -(1-c \eta _{1})\alpha T^{*}&{}0 \\ 0 &{} \left( 1-\frac{\eta _{r}+\eta _{1}}{2}\right) \beta &{} -d_{3} &{} 0 \\ 0 &{} \left( \frac{\eta _{r}+\eta _{1}}{2}\right) \beta &{} 0 &{} -d_{3}\\ \end{array} \right) \left( \begin{array}{c} E_{2}^{(1)}\\ E_{2}^{(2)} \\ E_{2}^{(3)} \\ E_{2}^{(4)} \\ \end{array}\right) \\&\quad =2 \left( \begin{array}{c} -(1+Re(a))\frac{r}{T_{max}}-(1-c\eta _{1})\alpha Re(b) \\ (1-c\eta _{1})\alpha Re(b) \\ 0 \\ 0 \\ \end{array} \right) \end{aligned}$$

In the similar manner, we can calculate the constant vector \(E_{2}=(E_{2}^{(1)}, E_{2}^{(2)}, E_{2}^{(3)}, E_{2}^{(4)})\in R^{4}.\)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Banerjee, S., Keval, R. Influence of Intracellular Delay on the Dynamics of Hepatitis C Virus. Int. J. Appl. Comput. Math 4, 89 (2018). https://doi.org/10.1007/s40819-018-0519-5

Download citation

  • Published:

  • DOI: https://doi.org/10.1007/s40819-018-0519-5

Keywords

Mathematics Subject Classification

Navigation