Log in

Towards Higher-Degree Fuzzy Projection

  • Published:
International Journal of Fuzzy Systems Aims and scope Submit manuscript

Abstract

Fuzzy projection is a mathematical operator inspired by the inverse fuzzy transform that is used to approximate functions. The fuzzy projection is designed such that the coefficients of the linear combination of the basis functions (fuzzy sets in a fuzzy partition) are optimized to obtain the best approximation of the functions from a global perspective, as opposed to the fuzzy transform, where the approximation focuses on fitting functions locally. The aim of this paper is to extend the fuzzy projection to a higher degree, similarly to the fuzzy transform, where the coefficients of the linear combination of the basis functions are expressed by polynomials. In this way, we can significantly improve the quality of the approximation by combining the settings of the fuzzy partition and the degree of polynomnials. In this paper, we show that a higher-order fuzzy projection can be computed using matrix calculus, leading to an easy algorithmization of the method. We also give its approximation properties and its applicability to discrete functions. The usefulness of higher-order fuzzy projection is demonstrated on two tasks, namely continuous function approximation and audio signal compression and decompression, where the results are compared with other relevant methods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data Availability

Not applicable.

Notes

  1. Note that here we consider the F-transform designed for discrete functions that is used in data processing.

  2. We use \(\lceil x \rceil\) to denote the ceiling function, e.g., \(\lceil 4.6\rceil =5\).

  3. \(H^{m}(a,b)\) is a Hilbert space of functions that are m-times weakly differentiable on (ab) endowed with the inner product

    $$\begin{aligned} \langle f,g\rangle _{H^m}=\sum _{k=0}^{m}\langle \partial ^kf,\partial ^kg\rangle _{L^2},\quad f,g\in H^m(a,b), \end{aligned}$$

    where \(\partial ^kf\) and \(\partial ^kg\) are the k-times weak derivative of f and g, respectively.

  4. This condition ensures that the nodes \(x_k\in \{0,1,\ldots ,n\}\) and the bandwidth h is a natural number.

  5. Compression ratio means the ratio between the size of the compressed signal and the size of the original signal.

References

  1. Perfilieva, I.: Fuzzy transforms: theory and applications. Fuzzy Sets Syst. 157, 993–1023 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  2. Mamdani, E.H., Assilian, S.: An experiment in linguistic synthesis with a fuzzy logic controller. Int. J. Man-mach. Stud. 7(1), 1–13 (1975)

    Article  MATH  Google Scholar 

  3. Takagi, T., Sugeno, M.: Fuzzy identification of systems and its application to modeling and control. IEEE Trans. Syst., Man, Cybern.: Syst. 15(1), 116–132 (1985)

    Article  MATH  Google Scholar 

  4. Ghobadi, M., Matinfar, M., Allahviranloo, T.: Numerical solution of second order ivp by fuzzy transform method. Int. J. Nonlinear Anal. Appl. 12(1), 143–156 (2021)

    Google Scholar 

  5. Hurtik, P., Tomasiello, S.: A review on the application of fuzzy transform in data and image compression. Soft Comput. 23, 1–13 (2019)

    Article  MATH  Google Scholar 

  6. Alibabaie, N., Latif, A.: Adaptive periodic noise reduction in digital images using fuzzy transform. J. Math. Imaging Vis. 63(4), 503–527 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  7. Nguyen, L., Novák, V.: Forecasting seasonal time series based on fuzzy techniques. Fuzzy Sets Syst. 361, 114–129 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  8. Lee, W.-J., Jung, H.-Y., Yoon, J.H., Choi, S.H.: A novel forecasting method based on f-transform and fuzzy time series. Int. J. Fuzzy Syst. 19(6), 1793–1802 (2017)

    Article  Google Scholar 

  9. Holčapek, M., Nguyen, L., Tichý, T.: Polynomial alias higher degree fuzzy transform of complex-valued functions. Fuzzy Sets Syst. 342, 1–31 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  10. Perfilieva, I., Daňková, M., Bede, B.: Towards a higher degree F-transform. Fuzzy Sets Syst. 180, 3–19 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  11. Di Martino, F., Sessa, S., Perfilieva, I.: First order fuzzy transform for images compression. J. Signal Inform. Process. 8(03), 178 (2017)

    Article  Google Scholar 

  12. Crouzet, J.-F.: Fuzzy projection versus inverse fuzzy transform as sampling/interpolation schemes. Fuzzy Sets Syst. 193, 108–121 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  13. Patanè, G.: Fuzzy transform and least-squares approximation: analogies, differences, and generalizations. Fuzzy Sets Syst. 180(1), 41–54 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  14. Min, H.-J., Shim, J.-W., Han, H.-J., Park, C.-H., Jung, H.-Y.: Fuzzy transform and least-squares fuzzy transform: comparison and application. Int. J. Fuzzy Syst. 24, 1–13 (2022)

    Article  Google Scholar 

  15. Holčapek, M., Perfilieva, I., Novák, V., Kreinovich, V.: Necessary and sufficient conditions for generalized uniform fuzzy partitions. Fuzzy Sets syst. 277, 97–121 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  16. Debnath, L., Mikusinski, P.: Introduction to Hilbert Spaces with Applications. Academic press, San Diego, California (2005)

    MATH  Google Scholar 

  17. Nguyen, L., Holčapek, M., Novák, V.: Multivariate fuzzy transform of complex-valued functions determined by monomial basis. Soft Comput. 21, 3641–3658 (2017)

    Article  MATH  Google Scholar 

  18. Levine, W.S.: The Control Handbook (Three Volume Set). CRC Press, Florida (2018)

    Book  Google Scholar 

  19. Loia, V., Tomasiello, S., Vaccaro, A.: Fuzzy transform based compression of electric signal waveforms for smart grids. IEEE Trans. Syst., Man, Cybern.: Syst. 47(1), 121–132 (2016)

    Article  Google Scholar 

  20. Walczak, B., Massart, D.: Noise suppression and signal compression using the wavelet packet transform. Chemom. Intell. Lab. Syst. 36(2), 81–94 (1997)

    Article  Google Scholar 

  21. Stein, E.M.: Singular Integrals and Differentiability Properties of Functions, vol. 2. Princeton University Press, New Jersey (1970)

    MATH  Google Scholar 

  22. Ciarlet, P.G.: The finite element method for elliptic problems. Studies in mathematics and its applications 4, North-Holland (1978)

Download references

Acknowledgements

This work has been partially supported by the Czech Science Foundation through the project No. 23-06280 S.

Funding

Not applicable.

Author information

Authors and Affiliations

Authors

Contributions

Not applicable.

Corresponding author

Correspondence to Linh Nguyen.

Ethics declarations

Conflict of interest

Not applicable

Ethics approval

Not applicable

Consent to participate

Not applicable.

Consent for publication

Not applicable.

Appendices

Appendix A Lemma 6

Proof

For any \(\phi _{k,i}\in \mathcal {B}^m_{\mathcal {A}}\), \(k\in \mathcal {M}\), \(i=0,\ldots ,m\), we have

$$\begin{aligned} \langle f,\phi _{k,i}\rangle _{L^2}&=\int _{a}^{b}f(x)\left( \frac{x-a}{h}-k\alpha \right) ^iA_k\left( x\right) dx\\&=\int _{\text{Supp}A_k}f(x)\left( \frac{x-a}{h}-k\alpha \right) ^iA_k\left( x\right) dx. \end{aligned}$$

If \(k<\frac{1}{\alpha }\), then \(\text{Supp}A_k=[a,x_k+h]\), where \(x_k\) is the k-th node of the fuzzy partition. It follows that

$$\begin{aligned} \langle f,\phi _{k,i}\rangle _{L^2}=\int _{a}^{x_k+h}f(x)\left( \frac{x-a}{h}-k\alpha \right) ^iA_k\left( x\right) dx\\ =\int _{a}^{x_k+h}f(x)\left( \frac{x-a}{h}-k\alpha \right) ^iK\left( \frac{x-a}{h}-k\alpha \right) dx. \end{aligned}$$

Putting \(u=\frac{x-a}{h}-k\alpha\), we obtain

$$\begin{aligned} \langle f,\phi _{k,i}\rangle _{L^2}&=h\cdot \int _{-k\alpha }^{1}f(a+k\alpha h+hu)u^iK\left( u\right) du\\&=h\cdot \int _{-k\alpha }^{1}f_k(x)x^iK\left( x\right) dx. \end{aligned}$$

The two remaining cases, i.e., \(k>N-\frac{1}{\alpha }\) and \(\frac{1}{\alpha }\le k\le N-\frac{1}{\alpha }\), can be proved by similar arguments.□

Appendix B Lemma 8

Proof

Assume that \(k\ge \ell\). For any \(i,j=0,\ldots ,m\), we have

$$\begin{aligned}&\langle \phi _{k,i},\phi _{\ell ,j}\rangle _{L^2}=\int _{a}^{b}\left( \frac{x-a}{h}-\alpha k\right) ^i\left( \frac{x-a}{h}-\alpha \ell \right) ^j\\&\times A_k\left( x\right) A_\ell \left( x\right) dx\\&=\int _{\text{Supp}A_k\cap \text{Supp}A_\ell }\left( \frac{x-a}{h}-\alpha k\right) ^i\left( \frac{x-a}{h}-\alpha \ell \right) ^j\\&\times A_k\left( x\right) A_\ell \left( x\right) dx. \end{aligned}$$

For \(k-\ell \ge \frac{2}{\alpha }\), we simply find that \(\text{Supp}A_k\cap \text{Supp}A_\ell =\emptyset\). Therefore, \(\langle \phi _{k,i},\phi _{\ell ,j}\rangle _{L^2}=0\). Further, let us consider that \(k-\ell <\frac{2}{\alpha }\), i.e., \(\text{Supp}A_k\cap \text{Supp}A_\ell \not =\emptyset\). Here, we can distinguish three following cases: \(\text{Supp}A_k\cap \text{Supp}A_\ell =[a,x_\ell +h]\), if \(k<\frac{1}{\alpha }\), \(\text{Supp}A_k\cap \text{Supp}A_\ell =[x_k-h,b]\), if \(\ell >N-\frac{1}{\alpha }\), and \(\text{Supp}A_k\cap \text{Supp}A_\ell =[x_k-h,x_\ell +h]\), otherwise, where \(x_k\) and \(x_\ell\) are the k-th and \(\ell\)-th nodes, respectively. Since all cases can be verified by analogy, we prove here only the last case, i.e., \(\text{Supp}A_k\cap \text{Supp}A_\ell =[x_k-h,x_\ell +h]\). For this case, we have

$$\begin{aligned}&\langle \phi _{k,i},\phi _{\ell ,j}\rangle _{L^2}=\int _{x_k-h}^{x_\ell +h}\left( \frac{x-a}{h}-k\alpha \right) ^i\left( \frac{x-a}{h}-\ell \alpha \right) ^j\\&\times A_k(x)A_\ell (x)dx\\&=\int _{x_k-h}^{x_\ell +h}\left( \frac{x-a}{h}-\alpha k\right) ^i\left( \frac{x-a}{h}-\alpha \ell \right) ^j\\&\times K\left( \frac{x-a}{h}-\alpha k\right) K\left( \frac{x-a}{h}-\alpha \ell \right) dx. \end{aligned}$$

Put \(u=\frac{x-a}{h}-\ell \alpha\). Then, we obtain that

$$\begin{aligned} \langle \phi _{k,i},\phi _{\ell ,j}\rangle _{L^2}&=h\cdot \int _{(k-\ell )\alpha -1}^{1}\left( u-(k-\ell )\alpha \right) ^iu^j\\&\times K\left( u-(k-\ell )\alpha \right) K\left( u\right) du\\&=h\cdot \int _{d_{k\ell }-1}^{1}\left( x-d_{k\ell } \right) ^ix^j\mathcal {K}_{k\ell }(x)dx, \end{aligned}$$

and the proof is finished.□

Appendix C Theorem 15

Proof

Let \(x_k\), \(k\in \mathcal {M}\), be the k-th node of the fuzzy partition \(\mathcal {A}\). Since \(f\in H^{m+1}(a,b)\), we obtain from Theorem 5 in Chapter VI of [21] that f can be extended to a function \(f^*\) defined on the interval \(I=(x_{-M_\alpha }-h,\ldots ,x_{N+M_\alpha }+h)\) such that \(f^*\in H^{m+1}(I)\) and \(\Vert f^*\Vert _{H^{m+1}(I)}\le B\cdot \Vert f\Vert _{H^{m+1}(a,b)}\), where B is a positive constant. Let \(F^m_k[f^*]\), \(k\in \mathcal {M}\), be the k-th component of the direct F\(^m\)-transform of \(f^*\) with respect to \(\mathcal {A}\), whose basic functions are extended to I. Since the direct F\(^m\)-transform preserves polynomials of degree up to m, we obtain from Theorem 3.1.4 in [22] that there exists a constant \(C_0>0\) independent of h such that

$$\begin{aligned} \Vert f^*-F^m_k[f^*]\Vert _{L^2(I_k)}\le C_0\cdot h^{m+1}\cdot \Vert \partial ^{m+1}f^*\Vert _{L^2(I_k)}, \end{aligned}$$

where \(I_k=(x_k-h,x_k+h)\). Denote \(\Omega _k=I_k\cap (a,b)\). Since \(\Vert \partial ^{m+1}f^*\Vert _{L^2(I_k)}\le \Vert f^*\Vert _{H^{m+1}(I)}\) and \(\Vert f^*-F^m_k[f^*]\Vert _{L^2(\Omega _k)}\le \Vert f^*-F^m_k[f^*]\Vert _{L^2(I_k)}\), we find that

$$\begin{aligned} \Vert f^*-F^m_k[f^*]\Vert _{L^2(\Omega _k)}\le C_0\cdot h^{m+1}\cdot B\cdot \Vert f\Vert _{H^{m+1}(a,b)}. \end{aligned}$$

Since \(h=\frac{b-a}{\alpha N}\), there exists a constant \(C_1>0\) independent of N such that

$$\begin{aligned} \Vert f^*-F^m_k[f^*]\Vert _{L^2(\Omega _k)}\le C_1\cdot N^{-m-1}, \end{aligned}$$
(C1)

for any \(k\in \mathcal {M}\). Let \(\xi\) be defined as follows:

$$\begin{aligned} \xi (x)=\sum _{k=-M_\alpha }^{N+M_\alpha }F^m_k[f^*](x)A_k(x),\quad x\in [a,b]. \end{aligned}$$
(C2)

We see that \(\xi \in G^m_{\mathcal {A}}\). Moreover, for any \(x\in (a,b)\), the sum in (C2) has at most \(2(M_\alpha +1)\) non-zero summands. Therefore, we obtain that

$$\begin{aligned}&|(f^*-\xi )(x)|^2=\Big |\sum _{k=-M_\alpha }^{N+M_\alpha }\left( f^*-F^m_k[f^*]\right) (x)\cdot A_k(x)\Big |^2\\&\le 2(M_\alpha +1)\sum _{k=-M_\alpha }^{N+M_\alpha }|\left( f^*-F^m_k[f^*]\right) (x)\cdot A_k(x)|^2, \end{aligned}$$

where the inequality follows from the Bunyakovsky-Cauchy-Schwarz inequality. Hence, we obtain that

$$\begin{aligned} \Vert f^*-\xi \Vert ^2_{L^2(a,b)}\le 2(M_\alpha +1)\sum _{k=-M_\alpha }^{N+M_\alpha }\Vert f^*-F^m_k[f^*]\Vert _{L^2(\Omega _k)}^2. \end{aligned}$$

By substituting (C1) into this inequality, we get

$$\begin{aligned}&\Vert f^*-\xi \Vert ^2_{L^2(a,b)}\le 2(M_\alpha +1)\sum _{k=-M_\alpha }^{N+M_\alpha }{C_1}^2\cdot N^{-2(m+1)}\nonumber \\&=2(M_\alpha +1)(2M_\alpha +N+1){C_1}^2\cdot N^{-2(m+1)}\nonumber \\&=2(M_\alpha +1)\left( \frac{2M_\alpha +1}{N}+1\right) {C_1}^2\cdot N^{-2m-1}\nonumber \\&\le 2(M_\alpha +1)\left( M_\alpha +3/2\right) {C_1}^2\cdot N^{-2m-1}. \end{aligned}$$
(C3)

Therefore, there exists a constant \(C>0\) independent of N such that \(\Vert f^*-\xi \Vert _{L^2(a,b)}\le C\cdot N^{-m-\frac{1}{2}}.\) Putting \(L^2=L^2(a,b)\) and considering that f and \(f^*\) coincide on (ab), we obtain that \(\Vert f-\xi \Vert _{L^2}\le C\cdot N^{-m-\frac{1}{2}}.\) It follows from (16) that

$$\begin{aligned} \Vert f-P^m[f]\Vert _{L^2}\le \Vert f-\xi \Vert _{L^2}\le C\cdot N^{-m-\frac{1}{2}}, \end{aligned}$$

and the proof is finished.□

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nguyen, L., Holčapek, M. Towards Higher-Degree Fuzzy Projection. Int. J. Fuzzy Syst. 25, 2234–2249 (2023). https://doi.org/10.1007/s40815-023-01506-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40815-023-01506-0

Keywords

Navigation