Log in

NA Operator-Based Interval-Valued q-Rung Orthopair Fuzzy PSI-COPRAS Group Decision-Making Method

  • Published:
International Journal of Fuzzy Systems Aims and scope Submit manuscript

Abstract

Interval-valued q-rung orthopair fuzzy numbers (IVq-ROFNs) have been widely used to address uncertain or imprecision data in practical decision-making. One contribution of this study is to develop a new score function for comparing the magnitude of IVq-ROFNs. We construct the variance value-based index for analyzing different score functions and the results show that the developed score function well improves the fluctuation of IVq-ROFNs and has much stronger ability to distinguish IVq-ROFNs. The second contribution is that interval-valued q-rung orthopair fuzzy neutral operational law is investigated and a new interval-valued q-rung orthopair fuzzy weighted average neutral aggregating (IVq-ROFWANA) operator is proposed. We conduct a detail comparison analysis with the existing operators and show that the calculated results obtained by them are consistent. The third contribution is that a new interval-valued q-rung orthopair fuzzy preference selection index and complex proportional assessment (PSI-COPRAS) method is developed. On the one hand, we propose the similarity-proximity degree based-weight determination method for identifying the experts’ weights and modify the classical PSI method to identify weights of attributes under IVq-ROFNs environments. On the other hand, we introduce interval-valued q-rung orthopair fuzzy COPRAS to rank alternatives. Finally, the proposed method is implemented in warning risk evaluation of hypertension in residents to demonstrate its applicability. Comparing with the classical TOPSIS, MOORA and MABAC, the biggest advantage of the developed method is that that it can not only fully consider the influences of the maximum and minimum attribute indices but also allow both the weights of attributes and experts to be completely unknown in advance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Atanassov, K.T.: Intuitionistic fuzzy sets. Fuzzy Sets Syst. 20(1), 87–96 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  2. Yager, R.R.: Pythagorean membership grades in multicriteria decision making. IEEE Trans. Fuzzy Syst. 22(4), 958–965 (2013)

    Article  Google Scholar 

  3. Zhang, X.L., Xu, Z.S.: Extension of TOPSIS to multiple criteria decision making with Pythagorean fuzzy sets. Int. J. Intell Syst. 29(12), 1061–1078 (2014)

    Article  MathSciNet  Google Scholar 

  4. Zhang, X.L.: Multicriteria Pythagorean fuzzy decision analysis: a hierarchical QUALIFLEX approach with the closeness index-based ranking methods. Inf. Sci. 330, 104–124 (2016)

    Article  Google Scholar 

  5. Yager, R.R.: Generalized orthopair fuzzy sets. IEEE Trans. Fuzzy Syst. 25(5), 1222–1230 (2016)

    Article  Google Scholar 

  6. Sun, C., Sun, J.F., Alrasheedi, M., et al.: A New Extended VIKOR Approach Using q-Rung orthopair fuzzy sets for sustainable enterprise risk management assessment in manufacturing small and medium-sized enterprises. Int. J. Fuzzy Syst. 1–23 (2021)

  7. Joshi, B.P., Singh, A., Bhatt, P.K., et al.: Interval valued q-rung orthopair fuzzy sets and their properties. J. Intell. Fuzzy Syst. 35(5), 5225–5230 (2018)

    Article  Google Scholar 

  8. Gao, J., Xu, Z.: Differential calculus of interval-valued q-rung orthopair fuzzy functions and their applications. Int. J. Intell. Syst. 34(12), 3190–3219 (2019)

    Article  Google Scholar 

  9. Liang, D., Fu, Y., Xu, Z., et al.: Loss function Inform Fusion and decision rule deduction of three-way decisions by construing interval-valued q-rung orthopair fuzzy integral. IEEE Trans. Fuzzy Syst. (2021)

  10. Yang, Y., Chen, Z.S., Rodríguez R.M., et al.: Novel fusion strategies for continuous interval-valued q-rung orthopair fuzzy information: a case study in quality assessment of SmartWatch appearance design. Int. J. Mach. Learn Cybern. 1–24 (2021)

  11. Garg, H.: A new possibility degree measure for interval-valued q-rung orthopair fuzzy sets in decision-making. Int. J. Intell. Syst. 36(1), 526–557 (2021)

    Article  Google Scholar 

  12. Yin, S., Yang, Y., Yao, N., et al.: Possibility degree-based interval-valued q-rung orthopair fuzzy graphs. Soft. Comput. 1–16 (2021)

  13. Yang, Z., Zhang, L., Li, T.: Group decision making with incomplete interval-valued q-rung orthopair fuzzy preference relations. Int. J. Intell. Syst. 36(12), 7274–7308 (2021)

    Article  Google Scholar 

  14. Zhang, X.: A novel approach based on similarity measure for Pythagorean fuzzy multiple criteria group decision making. Int. J. Intell. Syst. 31(6), 593–611 (2016)

    Article  Google Scholar 

  15. Ju, Y., Luo, C., Ma, J., et al.: Some interval-valued q-rung orthopair weighted averaging operators and their applications to multiple-attribute decision making. Int. J. Intell. Syst. 34(10), 2584–2606 (2019)

    Article  Google Scholar 

  16. Yang, Z., Chang, I.: A multi-attribute decision-making-based site selection assessment algorithm for garbage disposal plant using interval q-rung orthopair fuzzy power Muirhead mean operator. Environ Res. 193, 110385 (2021)

    Article  Google Scholar 

  17. Yager, R.R.: On ordered weighted averaging aggregation operators in multicriteria decision making. IEEE Trans. Syst. Man Cybern. 18(1), 183–190 (1988)

    Article  MATH  Google Scholar 

  18. Bonferroni, C.: Sulle medie multiple di potenze. Bollettino Matematica Italiana. 5(3), 267–270 (1950)

    MathSciNet  MATH  Google Scholar 

  19. He, Y.D., Chen, H.Y., He, Z., Zhou, L.G.: Multi-attribute decision making based on neutral averaging operators for intuitionistic fuzzy information. Appl. Soft Comput. 27, 64–76 (2015)

    Article  Google Scholar 

  20. Garg, H.: Neutrality operations based Pythagorean fuzzy aggregation operators and its applications to multiple attribute group decision making process. J. Amb. Intel. Hum. Comput. 10, 1007 (2019)

    Google Scholar 

  21. Garg, H., Chen, S.M.: Multiattribute group decision making based on neutrality aggregation operators of q-rung orthopair fuzzy sets. Inf. Sci. 517, 427–447 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  22. **, C., Ran, Y., Zhang, G.: Interval-valued q-rung orthopair fuzzy FMEA application to improve risk evaluation process of tool changing manipulator. Appl. Soft Comput. 104, 107192 (2021)

    Article  Google Scholar 

  23. Khan, S., Mathew, M., Dominic, P., et al.: Evaluation and selection strategy for green supply chain using interval-valued q-rung orthopair fuzzy combinative distance-based assessment. Environ. Dev. Sustain. 1–33 (2021)

  24. Kaklauskas, A., Zavadskas, E.K., Raslanas, S., et al.: Selection of low-e windows in retrofit of public buildings by applying multiple criteria method COPRAS: a Lithuanian case. Energ. Bulid. 38(5), 454–462 (2006)

    Article  Google Scholar 

  25. Brauers, W.K., Zavadskas, E.K.: The MOORA method and its application to privatization in a transition economy. Contrl. Cybern. 35, 445–469 (2006)

    MathSciNet  MATH  Google Scholar 

  26. Hwang, C.L., Yoon, K.: Multiple Attribute Decision Making: Methods and Applications. Springer, Berlin (1981)

    Book  MATH  Google Scholar 

  27. Maniya, K., Bhatt, M.G.: A selection of material using a novel type decision-making method: preference selection index method. Mater. Des. 31(4), 1785–1789 (2010)

    Article  Google Scholar 

  28. Pamucar, D., Cirovic, G.: The selection of transport and handling resources in logistics centers using Multi-Attributive Border Approximation area Comparison (MABAC). Expert Syst. Appl. 42(6), 3016–3028 (2015)

    Article  Google Scholar 

  29. Zheng, Y., Xu, Z., He, Y., et al.: Severity assessment of chronic obstructive pulmonary disease based on hesitant fuzzy linguistic COPRAS method. Appl. Soft Comput. 69, 60–71 (2018)

    Article  Google Scholar 

  30. Valipour, A., Yahaya, N.: et, al: Hybrid SWARA-COPRAS method for risk assessment in deep foundation excavation project: an Iranian case study. J. Civ. Eng. Manag. 23(4), 524–532 (2017)

    Article  Google Scholar 

  31. Darko, A.P., Liang, D.: An extended COPRAS method for multiattribute group decision making based on dual hesitant fuzzy Maclaurin symmetric mean. Int. J. Intell. Syst. 35(6), 1021–1068 (2020)

    Article  Google Scholar 

  32. Xu, Z.S.: Methods for aggregating interval-valued intuitionistic fuzzy information and their application to decision making. Contr. Decis. 2, 019 (2007)

    Google Scholar 

  33. Wang, C.Y., Chen, S.M.: A new multiple attribute decision making method based on linear programming methodology and novel score function and novel accuracy function of interval-valued intuitionistic fuzzy values. Inf. Sci. 438, 145–155 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  34. Gong, R., Ma, L.Y.: A new score function and accuracy function of interval-valued intuitionistic fuzzy number and its application. Syst. Engin. Theory Pract. 9(2), 463–475 (2019)

    Google Scholar 

  35. Zhang, X.L., Xu, Z.S., Wang, H.: Heterogeneous multiple criteria group decision making with incomplete weight information: a deviation modeling approach. Inform. Fusion. 25, 49–62 (2015)

    Article  Google Scholar 

  36. Unger, T., Borghi, C., Charchar, F., et al.: 2020 International Society of Hypertension global hypertension practice guidelines. J. Hypertens. 1334–1357 (2020)

  37. Williams, B., Mancia, G., Spiering, W., et al.: 2018 ESC/ESH Guidelines for the management of arterial hypertension: the Task Force for the management of arterial hypertension of the European Society of Cardiology and the European Society of Hypertension. J. Hypertens. 36, 1953–2041 (2018)

    Article  Google Scholar 

  38. Xu, Z.S., Yager, R.R.: Some geometric aggregation operators based on intuitionistic fuzzy sets. Int. J. Gen. Syst. 35(4), 417–433 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  39. Hara, T., Uchiyama, M., Takahasi, S.E.: A refinement of various mean inequalities. J. Inequal Appl. 1998(4), 387–395 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  40. Yager, R.R.: On some new classes of implication operators and their role in approximate reasoning. Inf. Sci. 167(1), 193–216 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  41. Zhan, Q., Fu, C., Xue, M.: Distance-based large-scale group decision-making method with group influence. Int. J. Fuzzy Syst. 23(2), 535–554 (2021)

    Article  Google Scholar 

Download references

Acknowledgements

This work is supported in part by National Science Foundation of China under Grants 71901112, 71661010, and in part by Jiangxi Provincial Natural Science Foundation under Grant 20202BAB202006, and in part by Department of Shenzhen Local Science and Technology Development under Grant 2021Szvup052, and in part by Jiangxi Province of China under Grant GJJ180270. Finally, the authors are in debt to the anonymous reviewers with their constructive comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Benting Wan.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Appendices

Appendix 1

1.1 Proof of Theorem 3.1

Proof

According to definition of the developed score function \({\text{S}}\left( a \right)\), we take the partial derivative of \(v_{a}^{ - }\) and get:

\(\frac{\partial S\left( a \right)}{{\partial v_{a}^{ - } }} = - \frac{1}{3} \times \left[ \begin{gathered} \frac{1}{3} \times \left( {q \times \left( {(v_{a}^{ - } )^{q - 1} + \left( {\frac{{v_{a}^{ - } + v_{a}^{ + } }}{2}} \right)^{q - 1} \times \frac{1}{2}} \right)} \right) + \frac{1}{2}\left( {q \times (v_{a}^{ - } )^{q - 1} } \right) \hfill \\ + \frac{\pi }{2} \times \sin \left( {\left( {\frac{{((v_{a}^{ - } )^{q} + (v_{a}^{ + } )^{q} )}}{2}} \right)\frac{\pi }{2}} \right) \times \frac{{q \times (v_{a}^{ - } )^{q - 1} }}{2} \hfill \\ \end{gathered} \right]\).

It is easy to see that \(\frac{\partial S\left( a \right)}{{\partial v_{a}^{ - } }} < 0\) when \(u_{a}^{ - } ,u_{a}^{ + } ,v_{a}^{ + }\) remain unchanged.

Analogously, we take the partial derivative of \(v_{a}^{ + }\) and get:

\(\frac{\partial S\left( a \right)}{{\partial v_{a}^{ + } }} = - \frac{1}{3} \times \left[ \begin{gathered} \frac{1}{3} \times \left( {q \times \left( {(v_{a}^{ + } )^{q - 1} + \left( {\frac{{v_{a}^{ - } + v_{a}^{ + } }}{2}} \right)^{q - 1} \times \frac{1}{2}} \right)} \right) + \frac{1}{2}\left( {q \times (v_{a}^{ + } )^{q - 1} } \right) \hfill \\ + \frac{\pi }{2} \times \sin \left( {\left( {\frac{{((v_{a}^{ - } )^{q} + (v_{a}^{ + } )^{q} )}}{2}} \right)\frac{\pi }{2}} \right) \times \frac{{q \times (v_{a}^{ + } )^{q - 1} }}{2} \hfill \\ \end{gathered} \right]\).

It is easy to see that \(\frac{\partial S\left( a \right)}{{\partial v_{a}^{ + } }} < 0\) when \(u_{a}^{ - } ,u_{a}^{ + } ,v_{a}^{ - }\) remain unchanged. That is to say, the developed score function s (a) is monotonically decreasing with respect to \(v_{a}^{ - }\) and \(v_{a}^{ + }\).

On the other hand, we take the partial derivative of \(u_{a}^{ - }\) and get:

$$\frac{{\partial S\left( a \right)}}{{\partial u_{a}^{ - } }} = \frac{1}{3} \times {\text{ }}\left[ {\begin{array}{*{20}c} {\frac{1}{3} \times \left( {q \times \left( {(u_{a}^{ - } )^{{q - 1}} + \left( {\frac{{u_{a}^{ - } + u_{a}^{ + } }}{2}} \right)^{{q - 1}} \times \frac{1}{2}} \right)} \right) + \frac{1}{2}\left( {q \times (u_{a}^{ - } )^{{q - 1}} } \right)} \\ { + \frac{\pi }{2} \times \sin \left( {\left( {\frac{{((u_{a}^{ - } )^{q} + (u_{a}^{{ + ^{q} }} )}}{2}} \right)\frac{\pi }{2}} \right) \times \frac{{q \times (u_{a}^{ - } )^{{q - 1}} }}{2}} \\ \end{array} } \right].$$

It is easy to see that \(\frac{\partial S\left( a \right)}{{\partial u_{a}^{ - } }} > 0\) when \(u_{a}^{ + } ,v_{a}^{ - } ,v_{a}^{ + }\) remain unchanged.

We take the partial derivative of \(u_{a}^{ + }\) and get:

$$\frac{\partial S\left( a \right)}{{\partial u_{a}^{ + } }} = \frac{1}{3} \times \left[ \begin{gathered} \frac{1}{3} \times \left( {q \times \left( {(u_{a}^{ + } )^{q - 1} + \left( {\frac{{u_{a}^{ - } + u_{a}^{ + } }}{2}} \right)^{q - 1} \times \frac{1}{2}} \right)} \right) + \frac{1}{2}\left( {q \times (u_{a}^{ + } )^{q - 1} } \right) \hfill \\ + \frac{\pi }{2} \times \sin \left( {\left( {\frac{{((u_{a}^{ - } )^{q} + (u_{a}^{ + } )^{q} )}}{2}} \right)\frac{\pi }{2}} \right) \times \frac{{q \times (u_{a}^{ + } )^{q - 1} }}{2} \hfill \\ \end{gathered} \right]$$

It is easy to see that \(\frac{\partial S\left( a \right)}{{\partial u_{a}^{ + } }} > 0\) when \(u_{a}^{ - } ,v_{a}^{ - } ,v_{a}^{ + }\) remain unchanged. That is to say, the developed score function \(S\left( a \right)\) is monotonically increasing with respect to \(u_{a}^{ - }\) and \(u_{a}^{ + }\).

Therefore, we can conclude \({\text{ S}}\left( {a_{1} } \right)\) > \({\text{S}}\left( {a_{2} } \right)\) if they satisfy \(u_{{a_{1} }}^{ - } > u_{{a_{2} }}^{ - }\), \(u_{{a_{1} }}^{ + } > u_{{a_{2} }}^{ + }\), \(v_{{a_{1} }}^{ - } < v_{{a_{2} }}^{ - }\) and \(v_{{a_{1} }}^{ + } < v_{{a_{2} }}^{ + }\). Obviously, the proof of the property (4) is completed. Meanwhile, it can be seen from the proof (4) that the score value will be larger when the membership value u is larger and the non-membership value v is smaller. Thus, the score value of \(a_{{{\text{max}}}} = \left( {\left[ {1,1\left] , \right[0,0} \right]} \right)\) is the maximum, and the calculated value is \({\text{S}}\left( {a_{{{\text{max}}}} } \right)_{ } = 1\); while the score values of \(a_{{{\text{min}}}} = \left( {\left[ {0,0} \right],\left[ {1,1} \right]} \right)\) is the minimum, and it is calculated as \({\text{S}}\left( {a_{{{\text{min}}}} } \right)_{ } = - 1\). Therefore, the value range of score function is \(- 1 \le S\left( a \right) \le 1\). That is to say, the proofs of the properties (1–3) are also completed.

1.2 Proof of Definition 4.2

By Eq. (16) and when \(k = 2\), it can be obtained:

$$\begin{gathered} {\text{PS}}\left( {2\left( {\sqrt[{\text{q}}]{{\left( {u_{a}^{ - } } \right)^{{\text{q}}} + \left( {v_{a}^{ - } } \right)^{{\text{q}}} }}} \right)} \right) \hfill \\ = {\text{PS}}\left( {\sqrt[{\text{q}}]{{\left( {u_{a}^{ - } } \right)^{{\text{q}}} + \left( {v_{a}^{ - } } \right)^{{\text{q}}} }},{\text{PS}}\left( {\sqrt[{\text{q}}]{{\left( {u_{a}^{ - } } \right)^{{\text{q}}} + \left( {v_{a}^{ - } } \right)^{{\text{q}}} }}} \right)} \right) \hfill \\ = {\text{PS}}\left( {\sqrt[{\text{q}}]{{\left( {u_{a}^{ - } } \right)^{{\text{q}}} + \left( {v_{a}^{ - } } \right)^{{\text{q}}} }},\sqrt[{\text{q}}]{{1 - \left( {\pi _{a}^{ + } } \right)^{{\text{q}}} }}} \right) \hfill \\ = \sqrt[{\text{q}}]{{1 - \left( {1 - \left( {u_{a}^{ - } } \right)^{{\text{q}}} - \left( {v_{a}^{ - } } \right)^{{\text{q}}} } \right)\left( {1 - 1 + \left( {\pi _{a}^{ + } } \right)^{{\text{q}}} } \right)}} \hfill \\ = \sqrt[{\text{q}}]{{1 - \left( {\left( {\pi _{a}^{ + } } \right)^{{\text{q}}} } \right)^{2} }} \hfill \\ \end{gathered}$$

We suppose that the following equation holds for any \(n = k\), namely,

$$PS\left( {n\left( {\sqrt[q]{{\left( {u_{a}^{ - } } \right)^{q} + \left( {v_{a}^{ - } } \right)^{q} }}} \right)} \right) = \sqrt[q]{{1 - \left( {\left( {\pi_{a}^{ + } } \right)^{q} } \right)^{n} }}$$

Thus, when \(n = k + 1\), it can be obtained

$$\begin{gathered} {\text{PS}}\left( {\left( {n + 1} \right)\left( {\sqrt[{\text{q}}]{{\left( {u_{a}^{ - } } \right)^{{\text{q}}} + \left( {v_{a}^{ - } } \right)^{{\text{q}}} }}} \right)} \right) \hfill \\ = {\text{PS}}\left( {\sqrt[{\text{q}}]{{\left( {u_{a}^{ - } } \right)^{{\text{q}}} + \left( {v_{a}^{ - } } \right)^{{\text{q}}} }},{\text{PS}}\left( {{\text{n}}\sqrt[{\text{q}}]{{\left( {u_{a}^{ - } } \right)^{{\text{q}}} + \left( {v_{a}^{ - } } \right)^{{\text{q}}} }}} \right)} \right) \hfill \\ = {\text{PS}}\left( {\sqrt[{\text{q}}]{{\left( {u_{a}^{ - } } \right)^{{\text{q}}} + \left( {v_{a}^{ - } } \right)^{{\text{q}}} }},\sqrt[{\text{q}}]{{1 - \left( {\left( {\pi _{a}^{ + } } \right)^{{\text{q}}} } \right)^{{\text{n}}} }}} \right) \hfill \\ = \sqrt[{\text{q}}]{{1 - \left( {1 - \left( {u_{a}^{ - } } \right)^{{\text{q}}} - \left( {v_{a}^{ - } } \right)^{{\text{q}}} } \right)\left( {\left( {\pi _{a}^{ + } } \right)^{{\text{q}}} } \right)^{{\text{n}}} }} \hfill \\ = \sqrt[{\text{q}}]{{1 - \left( {\left( {\pi _{a}^{ + } } \right)^{{\text{q}}} } \right)^{{{\text{n}} + 1}} }} \hfill \\ \end{gathered}$$

That is to say, Eq. (16) holds when \(n = k + 1\). Thus, \({\text{PS}}\left( {k\left( {\sqrt[{\text{q}}]{{\left( {u_{a}^{ - } } \right)^{{\text{q}}} + \left( {v_{a}^{ - } } \right)^{{\text{q}}} }}} \right)} \right) =\) \(\sqrt[{\text{q}}]{{1 - (\left( {{\uppi }_{a}^{ + } } \right)^{{\text{q}}} )^{k} }}\). Similarity, we can also prove that \({\text{PS}}\left( {k\left( {\sqrt[{\text{q}}]{{\left( {u_{a}^{ + } } \right)^{{\text{q}}} + \left( {v_{a}^{ + } } \right)^{{\text{q}}} }}} \right)} \right) = \sqrt[{\text{q}}]{{1 - (\left( {{\uppi }_{a}^{ - } } \right)^{{\text{q}}} )^{k} }}.\)

1.3 Proof of Definition 4.3

For the case of \(k = 2\), it can be obtained:

$$\begin{gathered} {\text{MCS}}\left( {2a} \right) = \left({MCS^-}\left( {2a} \right),{MCS^+}\left( {2a} \right)\right)= \left( {\sqrt[{\text{q}}]{{\left( {u_{a}^{ - } } \right)^{{\text{q}}} + \left( {u_{a}^{ - } } \right)^{{\text{q}}} }},\sqrt[{\text{q}}]{{\left( {u_{a}^{ + } } \right)^{{\text{q}}} + \left( {u_{a}^{ + } } \right)^{{\text{q}}} }}} \right) \hfill \\ = \left( {\sqrt[{\text{q}}]{{2\left( {u_{a}^{ - } } \right)^{{\text{q}}} }},\sqrt[{\text{q}}]{{2\left( {u_{a}^{ + } } \right)^{{\text{q}}} }}} \right) = \sqrt[{\text{q}}]{2}\left( {u_{a}^{ - } ,u_{a}^{ + } } \right) \hfill \\ \end{gathered}$$

Thus, Eq. (20) holds when \(k = 2\).

We suppose that the following equation holds for any \(n = k\), namely,

\(MCS\left( {na} \right) = \left( {\sqrt[q]{n}u_{a}^{ - } ,\sqrt[q]{n}u_{a}^{ + } } \right)\).

When \(n = k + 1\), it can be obtained:

$$\begin{gathered} MCS\left( {\left( {n + 1} \right)a} \right) = MCS\left( {na,a} \right) = \left( {\sqrt[q]{{n\left( {u_{a}^{ - } } \right)^{q} + \left( {u_{a}^{ - } } \right)^{q} }},\sqrt[q]{{n\left( {u_{a}^{ + } } \right)^{q} + \left( {u_{a}^{ + } } \right)^{q} }}} \right) \hfill \\ = \left( {\sqrt[q]{{n + 1}}u_{a}^{ - } ,\sqrt[q]{{n + 1}}u_{a}^{ + } } \right) \hfill \\ \end{gathered}$$

That is to say, Eq. (20) holds when \({ } n = k + 1\). the proof process of Eq. (20) is completed. Analogously, we can also prove that Eq. (21) holds, namely, \(NCS\left( {ka} \right) = \left( {\sqrt[q]{k}v_{a}^{ - } ,\sqrt[q]{k}v_{a}^{ + } } \right)\).

1.4 Proof of Theorem 4.1

Proof. (1) According to Definition 4.1, it is easy to obtain:

$${a}_{1}{\Theta }_{NA}{a}_{2}=\left(\begin{array}{c}\left[\begin{array}{c} \sqrt[q]{\frac{{\left({u}_{{a}_{1}}^{-}\right)}^{q}+{\left({u}_{{a}_{2}}^{-}\right)}^{q}}{\left({\left({u}_{{a}_{1}}^{-}\right)}^{q}+{\left({v}_{{a}_{1}}^{-}\right)}^{q}+{\left({u}_{{a}_{2}}^{-}\right)}^{q}+{\left({v}_{{a}_{2}}^{-}\right)}^{q}\right)}\times \left(1-{\left({\pi }_{{a}_{1}}^{+}\right)}^{q}{\left({\pi }_{{a}_{2}}^{+}\right)}^{q}\right),}\\ \sqrt[q]{\frac{{\left({u}_{{a}_{1}}^{+}\right)}^{q}+{\left({u}_{2}^{+}\right)}^{q}}{\left({\left({u}_{{a}_{1}}^{+}\right)}^{q}+{\left({v}_{{a}_{1}}^{+}\right)}^{q}+{\left({u}_{{a}_{2}}^{+}\right)}^{q}+{\left({v}_{{a}_{2}}^{+}\right)}^{q}\right)}\times \left(1-{\left({\pi }_{{a}_{1}}^{-}\right)}^{q}{\left({\pi }_{{a}_{2}}^{-}\right)}^{q}\right),}\end{array}\right],\\ \left[\begin{array}{c} \sqrt[q]{\frac{{\left({v}_{{a}_{1}}^{-}\right)}^{q}+{\left({v}_{{a}_{2}}^{-}\right)}^{q}}{\left({\left({u}_{{a}_{1}}^{-}\right)}^{q}+{\left({v}_{{a}_{1}}^{-}\right)}^{q}+{\left({u}_{{a}_{2}}^{-}\right)}^{q}+{\left({v}_{{a}_{2}}^{-}\right)}^{q}\right)}\times \left(1-{\left({\pi }_{{a}_{1}}^{+}\right)}^{q}{\left({\pi }_{{a}_{2}}^{+}\right)}^{q}\right),}\\ \sqrt[q]{\frac{{\left({v}_{{a}_{1}}^{+}\right)}^{q}+{\left({v}_{{a}_{2}}^{+}\right)}^{q}}{\left({\left({u}_{{a}_{1}}^{+}\right)}^{q}+{\left({v}_{{a}_{1}}^{+}\right)}^{q}+{\left({u}_{{a}_{2}}^{+}\right)}^{q}+{\left({v}_{{a}_{2}}^{+}\right)}^{q}\right)}\times \left(1-{\left({\pi }_{{a}_{1}}^{-}\right)}^{q}{\left({\pi }_{{a}_{2}}^{-}\right)}^{q}\right),}\end{array}\right]\end{array}\right)=\left(\begin{array}{c}\left[\begin{array}{c} \sqrt[q]{\frac{{\left({u}_{{a}_{2}}^{-}\right)}^{q}+{\left({u}_{{a}_{1}}^{-}\right)}^{q}}{\left({\left({u}_{{a}_{2}}^{-}\right)}^{q}+{\left({v}_{{a}_{2}}^{-}\right)}^{q}+{\left({u}_{{a}_{1}}^{-}\right)}^{q}+{\left({v}_{{a}_{1}}^{-}\right)}^{q}\right)}\times \left(1-{\left({\pi }_{{a}_{2}}^{+}\right)}^{q}{\left({\pi }_{{a}_{1}}^{+}\right)}^{q}\right),}\\ \sqrt[q]{\frac{{\left({u}_{{a}_{2}}^{+}\right)}^{q}+{\left({u}_{{a}_{1}}^{+}\right)}^{q}}{\left({\left({u}_{{a}_{2}}^{+}\right)}^{q}+{\left({v}_{{a}_{2}}^{+}\right)}^{q}+{\left({u}_{{a}_{1}}^{+}\right)}^{q}+{\left({v}_{{a}_{1}}^{+}\right)}^{q}\right)}\times \left(1-{\left({\pi }_{{a}_{2}}^{-}\right)}^{q}{\left({\pi }_{{a}_{1}}^{-}\right)}^{q}\right),}\end{array}\right],\\ \left[\begin{array}{c} \sqrt[q]{\frac{{\left({v}_{{a}_{2}}^{-}\right)}^{q}+{\left({v}_{{a}_{1}}^{-}\right)}^{q}}{\left({\left({u}_{{a}_{2}}^{-}\right)}^{q}+{\left({v}_{{a}_{2}}^{-}\right)}^{q}+{\left({u}_{{a}_{1}}^{-}\right)}^{q}+{\left({v}_{{a}_{1}}^{-}\right)}^{q}\right)}\times \left(1-{\left({\pi }_{{a}_{1}}^{+}\right)}^{q}{\left({\pi }_{{a}_{2}}^{+}\right)}^{q}\right),}\\ \sqrt[q]{\frac{{\left({v}_{{a}_{1}}^{+}\right)}^{q}+{\left({v}_{{a}_{2}}^{+}\right)}^{q}}{\left({\left({u}_{{a}_{2}}^{+}\right)}^{q}+{\left({v}_{{a}_{2}}^{+}\right)}^{q}+{\left({u}_{{a}_{1}}^{+}\right)}^{q}+{\left({v}_{{a}_{1}}^{+}\right)}^{q}\right)}\times \left(1-{\left({\pi }_{{a}_{2}}^{-}\right)}^{q}{\left({\pi }_{{a}_{1}}^{-}\right)}^{q}\right),}\end{array}\right]\end{array}\right)={a}_{2}{\Theta }_{NA}{a}_{1}$$

(2) By Formulas (15) and (22), it is easy to obtain:

$$k{a}_{1}{\Theta }_{NA}{ka}_{2}=\left(\begin{array}{c}\left[\begin{array}{c}\begin{array}{c}\sqrt[q]{\frac{{{MCS}^{-}\left(k{a}_{1},{ka}_{2}\right)}^{q}}{{{MCS}^{-}\left(k{a}_{1},{ka}_{2}\right)}^{q}+{{NCS}^{-}\left(k{a}_{1},{ka}_{2}\right)}^{q}}}\times \\ PS\left(PS\left(k\sqrt[q]{{\left({u}_{{a}_{1}}^{-}\right)}^{q}+{\left({v}_{{a}_{1}}^{-}\right)}^{q}}\right),PS\left(k\sqrt[q]{{\left({u}_{{a}_{2}}^{-}\right)}^{q}+{\left({v}_{{a}_{2}}^{-}\right)}^{q}}\right)\right),\\ \end{array}\\ \sqrt[q]{\frac{{{MCS}^{+}\left(k{a}_{1},{ka}_{2}\right)}^{q}}{{{MCS}^{+}\left(k{a}_{1},{ka}_{2}\right)}^{q}+{{NCS}^{+}\left(k{a}_{1},{ka}_{2}\right)}^{q}}}\times \\ PS\left(PS\left(k\sqrt[q]{{\left({u}_{{a}_{1}}^{+}\right)}^{q}+{\left({v}_{{a}_{1}}^{+}\right)}^{q}}\right),PS\left(k\sqrt[q]{{\left({u}_{{a}_{2}}^{+}\right)}^{q}+{\left({v}_{{a}_{2}}^{+}\right)}^{q}}\right)\right)\end{array}\right],\\ \left[\begin{array}{c}\begin{array}{c}\sqrt[q]{\frac{{{NCS}^{-}\left(k{a}_{1},{ka}_{2}\right)}^{q}}{{{MCS}^{-}\left(k{a}_{1},{ka}_{2}\right)}^{q}+{{NCS}^{-}\left(k{a}_{1},{ka}_{2}\right)}^{q}}}\times \\ PS\left(PS\left(k\sqrt[q]{{\left({u}_{{a}_{1}}^{-}\right)}^{q}+{\left({v}_{{a}_{1}}^{-}\right)}^{q}}\right),PS\left(k\sqrt[q]{{\left({u}_{{a}_{2}}^{-}\right)}^{q}+{\left({v}_{{a}_{2}}^{-}\right)}^{q}}\right)\right),\\ \end{array}\\ \sqrt[q]{\frac{{{NCS}^{+}\left(k{a}_{1},{ka}_{2}\right)}^{q}}{{{MCS}^{+}\left(k{a}_{1},{ka}_{2}\right)}^{q}+{{NCS}^{+}\left(k{a}_{1},{ka}_{2}\right)}^{q}}}\times \\ PS\left(PS\left(k\sqrt[q]{{\left({u}_{{a}_{1}}^{+}\right)}^{q}+{\left({v}_{{a}_{1}}^{+}\right)}^{q}}\right),PS\left(k\sqrt[q]{{\left({u}_{{a}_{2}}^{+}\right)}^{q}+{\left({v}_{{a}_{2}}^{+}\right)}^{q}}\right)\right)\end{array}\right]\end{array}\right)=\left(\begin{array}{c}\left[\begin{array}{c}\sqrt[q]{\frac{k\left({{\left({u}_{{a}_{1}}^{-}\right)}^{q}+\left({u}_{{a}_{2}}^{-}\right)}^{q}\right)}{k\left({{\left({u}_{{a}_{1}}^{-}\right)}^{q}+\left({u}_{{a}_{2}}^{-}\right)}^{q}\right)+k\left({{\left({v}_{{a}_{1}}^{-}\right)}^{q}+\left({v}_{{a}_{2}}^{-}\right)}^{q}\right)}\times \left(1-{\left({{\pi }_{{a}_{1}}^{+}}^{q}\right)}^{k}{\left({{\pi }_{{a}_{2}}^{+}}^{q}\right)}^{k}\right)},\\ \sqrt[q]{\frac{k\left({{\left({u}_{{a}_{1}}^{+}\right)}^{q}+\left({u}_{{a}_{2}}^{+}\right)}^{q}\right)}{k\left({{\left({u}_{{a}_{1}}^{+}\right)}^{q}+\left({u}_{{a}_{2}}^{+}\right)}^{q}\right)+k\left({{\left({v}_{{a}_{1}}^{+}\right)}^{q}+\left({v}_{{a}_{2}}^{+}\right)}^{q}\right)}\times \left(1-{\left({{\pi }_{{a}_{1}}^{-}}^{q}\right)}^{k}{\left({{\pi }_{{a}_{2}}^{-}}^{q}\right)}^{k}\right)}\end{array}\right],\\ \left[\begin{array}{c}\sqrt[q]{\frac{k\left({{\left({v}_{{a}_{1}}^{-}\right)}^{q}+\left({v}_{{a}_{2}}^{-}\right)}^{q}\right)}{k\left({{\left({u}_{{a}_{1}}^{-}\right)}^{q}+\left({u}_{{a}_{2}}^{-}\right)}^{q}\right)+k\left({{\left({v}_{{a}_{1}}^{-}\right)}^{q}+\left({v}_{{a}_{2}}^{-}\right)}^{q}\right)}\times \left(1-{\left({{\pi }_{{a}_{1}}^{+}}^{q}\right)}^{k}{\left({{\pi }_{{a}_{2}}^{+}}^{q}\right)}^{k}\right)},\\ \sqrt[q]{\frac{k\left({{\left({v}_{{a}_{1}}^{+}\right)}^{q}+\left({v}_{{a}_{2}}^{+}\right)}^{q}\right)}{k\left({{\left({u}_{{a}_{1}}^{+}\right)}^{q}+\left({u}_{{a}_{2}}^{+}\right)}^{q}\right)+k\left({{\left({v}_{{a}_{1}}^{+}\right)}^{q}+\left({v}_{{a}_{2}}^{+}\right)}^{q}\right)}\times \left(1-{\left({{\pi }_{{a}_{1}}^{-}}^{q}\right)}^{k}{\left({{\pi }_{{a}_{2}}^{-}}^{q}\right)}^{k}\right)}\end{array}\right]\end{array}\right)=\left(\begin{array}{c}\left[\begin{array}{c}\sqrt[q]{\frac{{\left({u}_{{a}_{1}}^{-}\right)}^{q}+{\left({u}_{{a}_{2}}^{-}\right)}^{q}}{{\left({u}_{{a}_{1}}^{-}\right)}^{q}+{\left({u}_{{a}_{2}}^{-}\right)}^{q}+{\left({v}_{{a}_{1}}^{-}\right)}^{q}+{\left({v}_{{a}_{2}}^{-}\right)}^{q}}}PS\left(k\left(\sqrt[q]{1-{\left({\pi }_{{a}_{1}}^{+}\right)}^{q}({{\pi }_{{a}_{2}}^{+})}^{q}}\right)\right),\\ \sqrt[q]{\frac{{\left({u}_{{a}_{1}}^{+}\right)}^{q}+{\left({u}_{{a}_{2}}^{+}\right)}^{q}}{{\left({u}_{{a}_{1}}^{+}\right)}^{q}+{\left({u}_{{a}_{2}}^{+}\right)}^{q}+{\left({v}_{{a}_{1}}^{+}\right)}^{q}+{\left({v}_{{a}_{2}}^{+}\right)}^{q}}}PS\left(k\left(\sqrt[q]{1-{\left({\pi }_{{a}_{1}}^{-}\right)}^{q}({{\pi }_{{a}_{2}}^{-})}^{q}}\right)\right)\end{array}\right],\\ \left[\begin{array}{c}\sqrt[q]{\frac{{\left({v}_{{a}_{1}}^{-}\right)}^{q}+{\left({v}_{{a}_{2}}^{-}\right)}^{q}}{{\left({u}_{{a}_{1}}^{-}\right)}^{q}+{\left({u}_{{a}_{2}}^{-}\right)}^{q}+{\left({v}_{{a}_{1}}^{-}\right)}^{q}+{\left({v}_{{a}_{2}}^{-}\right)}^{q}}}PS\left(k\left(\sqrt[q]{1-{\left({\pi }_{{a}_{1}}^{+}\right)}^{q}({{\pi }_{{a}_{2}}^{+})}^{q}}\right)\right),\\ \sqrt[q]{\frac{{\left({v}_{{a}_{1}}^{+}\right)}^{q}+{\left({v}_{{a}_{2}}^{+}\right)}^{q}}{{\left({u}_{{a}_{1}}^{+}\right)}^{q}+{\left({u}_{{a}_{2}}^{+}\right)}^{q}+{\left({v}_{{a}_{1}}^{+}\right)}^{q}+{\left({v}_{{a}_{2}}^{+}\right)}^{q}}}PS\left(k\left(\sqrt[q]{1-{\left({\pi }_{{a}_{1}}^{-}\right)}^{q}({{\pi }_{{a}_{2}}^{-})}^{q}}\right)\right)\end{array}\right]\end{array}\right)=k({a}_{1}{\Theta }_{NA}{a}_{2})$$

(3) For any two real number \(k_{1} ,k_{2}\), using Eq. (22) we can obtain.

$${k}_{1}a=\left(\begin{array}{c}\left[\sqrt[q]{\frac{{{(u}_{a}^{-})}^{q}}{{{(u}_{a}^{-})}^{q}+{{(v}_{a}^{-})}^{q}}}\times \left(1-{({({\pi }_{a}^{+})}^{q})}^{{k}_{1}}\right),\sqrt[q]{\frac{{{(u}_{a}^{+})}^{q}}{{{(u}_{a}^{+})}^{q}+{{(v}_{a}^{+})}^{q}}}\times \left(1-{({({\pi }_{a}^{-})}^{q})}^{{k}_{1}}\right)\right],\\ \left[\sqrt[q]{\frac{{{(v}_{a}^{-})}^{q}}{{{(u}_{a}^{-})}^{q}+{{(v}_{a}^{-})}^{q}}}\times \left(1-{({({\pi }_{a}^{+})}^{q})}^{{k}_{1}}\right),\sqrt[q]{\frac{{{(v}_{a}^{+})}^{q}}{{{(u}_{a}^{+})}^{q}+{{(v}_{a}^{+})}^{q}}}\times \left(1-{({({\pi }_{a}^{-})}^{q})}^{{k}_{1}}\right)\right]\end{array}\right),$$
$$k_{2} a = \left( {\begin{array}{*{20}c} {\left[ {\sqrt[q]{{\frac{{(u_{a}^{ - } )^{q} }}{{(u_{a}^{ - } )^{q} + (v_{a}^{ - } )^{q} }}}} \times \left( {1 - ((\pi _{a}^{ + } )^{q} )^{{k_{2} }} } \right),\sqrt[q]{{\frac{{(u_{a}^{ + } )^{q} }}{{(u_{a}^{ + } )^{q} + (v_{a}^{ + } )^{q} }}}} \times \left( {1 - ((\pi _{a}^{ - } )^{q} )^{{k_{2} }} } \right)} \right],} \\ {\left[ {\sqrt[q]{{\frac{{(v_{a}^{ - } )^{q} }}{{(u_{a}^{ - } )^{q} + (v_{a}^{ - } )^{q} }}}} \times \left( {1 - ((\pi _{a}^{ + } )^{q} )^{{k_{2} }} } \right),\sqrt[q]{{\frac{{(v_{a}^{ + } )^{q} }}{{(u_{a}^{ + } )^{q} + (v_{a}^{ + } )^{q} }}}} \times \left( {1 - ((\pi _{a}^{ - } )^{q} )^{{k_{2} }} } \right)} \right]} \\ \end{array} } \right).$$

Using Eqs. (15) and (22) we can obtain

$$\left( {k_{1} a} \right)\Theta_{NA} \left( {k_{2} a} \right) =\left(\begin{array}{c}\left[\begin{array}{c}\sqrt[q]{\frac{{{MCS}^{-}({k}_{1}a,{k}_{2}a)}^{q}}{{{MCS}^{-}({k}_{1}a,{k}_{2}a)}^{q}+{{NCS}^{-}({k}_{1}a,{k}_{2}a)}^{q}}}\times PS\left(PS({k}_{1}\sqrt[q]{{({u}_{a}^{-})}^{q}+{({v}_{a}^{-})}^{q}}),PS({k}_{2}\sqrt[q]{{({u}_{a}^{-})}^{q}+{({v}_{a}^{-})}^{q}})\right),\\ \sqrt[q]{\frac{{{MCS}^{+}({k}_{1}a,{k}_{2}a)}^{q}}{{{MCS}^{+}({k}_{1}a,{k}_{2}a)}^{q}+{{NCS}^{+}({k}_{1}a,{k}_{2}a)}^{q}}}\times PS\left(PS({k}_{1}\sqrt[q]{{({u}_{a}^{+})}^{q}+{({v}_{a}^{+})}^{q}}),PS({k}_{2}\sqrt[q]{{({u}_{a}^{+})}^{q}+{({v}_{a}^{+})}^{q}})\right)\end{array}\right],\\ \left[\begin{array}{c}\sqrt[q]{\frac{{{NCS}^{-}({k}_{1}a,{k}_{2}a)}^{q}}{{{MCS}^{-}({k}_{1}a,{k}_{2}a)}^{q}+{{NCS}^{-}({k}_{1}a,{k}_{2}a)}^{q}}}\times PS\left(PS({k}_{1}\sqrt[q]{{({u}_{a}^{-})}^{q}+{({v}_{a}^{-})}^{q}}),PS({k}_{2}\sqrt[q]{{({u}_{a}^{-})}^{q}+{({v}_{a}^{-})}^{q}})\right),\\ \sqrt[q]{\frac{{{NCS}^{+}({k}_{1}a,{k}_{2}a)}^{q}}{{{MCS}^{+}({k}_{1}a,{k}_{2}a)}^{q}+{{NCS}^{+}({k}_{1}a,{k}_{2}a)}^{q}}}\times PS\left(PS({k}_{1}\sqrt[q]{{({u}_{a}^{+})}^{q}+{({v}_{a}^{+})}^{q}}),PS({k}_{2}\sqrt[q]{{({u}_{a}^{+})}^{q}+{({v}_{a}^{+})}^{q}})\right)\end{array}\right]\end{array}\right)=\left(\begin{array}{c}\left[\begin{array}{c}\sqrt[q]{\frac{({k}_{1}+{k}_{2}){({u}_{a}^{-})}^{q}}{({k}_{1}+{k}_{2}){({u}_{a}^{-})}^{q}+({k}_{1}+{k}_{2}){({v}_{a}^{-})}^{q}}}\times PS\left(\sqrt[q]{1-{({({\pi }_{a}^{+})}^{q})}^{{k}_{1}}},\sqrt[q]{1-{({({\pi }_{a}^{+})}^{q})}^{{k}_{2}}}\right),\\ \sqrt[q]{\frac{({k}_{1}+{k}_{2}){({u}_{a}^{+})}^{q}}{({k}_{1}+{k}_{2}){({u}_{a}^{+})}^{q}+({k}_{1}+{k}_{2}){({v}_{a}^{+})}^{q}}}\times PS\left(\sqrt[q]{1-{({({\pi }_{a}^{-})}^{q})}^{{k}_{1}}},\sqrt[q]{1-{({({\pi }_{a}^{-})}^{q})}^{{k}_{2}}}\right)\end{array}\right],\\ \left[\begin{array}{c}\sqrt[q]{\frac{({k}_{1}+{k}_{2}){({v}_{a}^{-})}^{q}}{({k}_{1}+{k}_{2}){({u}_{a}^{-})}^{q}+({k}_{1}+{k}_{2}){({v}_{a}^{-})}^{q}}}\times PS\left(\sqrt[q]{1-{({({\pi }_{a}^{+})}^{q})}^{{k}_{1}}},\sqrt[q]{1-{({({\pi }_{a}^{+})}^{q})}^{{k}_{2}}}\right),\\ \sqrt[q]{\frac{({k}_{1}+{k}_{2}){({v}_{a}^{+})}^{q}}{({k}_{1}+{k}_{2}){({u}_{a}^{+})}^{q}+({k}_{1}+{k}_{2}){({v}_{a}^{+})}^{q}}}\times PS\left(\sqrt[q]{1-{({({\pi }_{a}^{-})}^{q})}^{{k}_{1}}},\sqrt[q]{1-{({({\pi }_{a}^{-})}^{q})}^{{k}_{2}}}\right)\end{array}\right]\end{array}\right)=\left(\begin{array}{c}\left[\sqrt[q]{\frac{{({u}_{a}^{-})}^{q}}{{({u}_{a}^{-})}^{q}+{({v}_{a}^{-})}^{q}}\times \left(1-{({({\pi }_{a}^{+})}^{q})}^{({k}_{1}+{k}_{2})}\right)},\sqrt[q]{\frac{{({u}_{a}^{+})}^{q}}{{({u}_{a}^{+})}^{q}+{({v}_{a}^{+})}^{q}}\times \left(1-{({({\pi }_{a}^{-})}^{q})}^{({k}_{1}+{k}_{2})}\right)}\right],\\ \left[\sqrt[q]{\frac{{({v}_{a}^{-})}^{q}}{{({u}_{a}^{-})}^{q}+{({v}_{a}^{-})}^{q}}\times \left(1-{({({\pi }_{a}^{+})}^{q})}^{({k}_{1}+{k}_{2})}\right)},\sqrt[q]{\frac{{({v}_{a}^{+})}^{q}}{{({u}_{a}^{+})}^{q}+{({v}_{a}^{+})}^{q}}\times \left(1-{({({\pi }_{a}^{-})}^{q})}^{({k}_{1}+{k}_{2})}\right)}\right]\end{array}\right)=({k}_{1}+{k}_{2})a$$

Thus, the proof of Theorem 4.1 is completed.

1.5 Proof of Definition 4.5

Proof

When \(n = 1\), we have:

$$IVq - ROFWANA\left( {a_{1} } \right) ={\lambda }_{1}{a}_{1}=\left(\begin{array}{c}\left[\sqrt[q]{\frac{{\left({u}_{{a}_{1}}^{-}\right)}^{q}}{{\left({u}_{{a}_{1}}^{-}\right)}^{q}+{\left({v}_{{a}_{1}}^{-}\right)}^{q}}\times \left(1-{\left({\left({\pi }_{{a}_{1}}^{+}\right)}^{q}\right)}^{{\lambda }_{1}}\right)},\sqrt[q]{\frac{{\left({u}_{{a}_{1}}^{+}\right)}^{q}}{{\left({u}_{{a}_{1}}^{+}\right)}^{q}+{\left({v}_{{a}_{1}}^{+}\right)}^{q}}\times \left(1-{\left({\left({\pi }_{{a}_{1}}^{-}\right)}^{q}\right)}^{{\lambda }_{1}}\right)}\right],\\ \left[\sqrt[q]{\frac{{({v}_{{a}_{1}}^{-})}^{q}}{{({u}_{{a}_{1}}^{-})}^{q}+{({v}_{{a}_{1}}^{-})}^{q}}\times \left(1-{({({\pi }_{{a}_{1}}^{+})}^{q})}^{{\lambda }_{1}}\right)},\sqrt[q]{\frac{{({v}_{{a}_{1}}^{+})}^{q}}{{({u}_{{a}_{1}}^{+})}^{q}+{({v}_{{a}_{1}}^{+})}^{q}}\times \left(1-{({({\pi }_{{a}_{1}}^{-})}^{q})}^{{\lambda }_{1}}\right)}\right]\end{array}\right)$$

Suppose Eq. (14) holds when \(n = k\), that is to say:

$$IVq - ROFWANA\left( {a_{1} ,a_{2} , \ldots ,a_{k} } \right) =\left(\begin{array}{c}\left[\begin{array}{c}\sqrt[q]{\frac{\sum_{i=1}^{k}{\lambda }_{i}{\left({u}_{{a}_{i}}^{-}\right)}^{q}}{\sum_{i=1}^{k}{\lambda }_{i}\left({{\left({u}_{{a}_{i}}^{-}\right)}^{q}+\left({v}_{{a}_{i}}^{-}\right)}^{q}\right)}\times \left(1-\prod_{i=1}^{k}{\left({\left({\pi }_{{a}_{i}}^{+}\right)}^{q}\right)}^{{\lambda }_{i}}\right)},\\ \sqrt[q]{\frac{\sum_{i=1}^{k}{\lambda }_{i}{\left({u}_{{a}_{i}}^{+}\right)}^{q}}{\sum_{i=1}^{k}{\lambda }_{i}\left({{\left({u}_{{a}_{i}}^{+}\right)}^{q}+\left({v}_{{a}_{i}}^{+}\right)}^{q}\right)}\times \left(1-\prod_{i=1}^{k}{\left({\left({\pi }_{{a}_{i}}^{-}\right)}^{q}\right)}^{{\lambda }_{i}}\right)}\end{array}\right],\\ \left[\begin{array}{c}\sqrt[q]{\frac{\sum_{i=1}^{k}{\lambda }_{i}{\left({v}_{{a}_{i}}^{-}\right)}^{q}}{\sum_{i=1}^{k}{\lambda }_{i}\left({{\left({u}_{{a}_{i}}^{-}\right)}^{q}+\left({v}_{{a}_{i}}^{-}\right)}^{q}\right)}\times \left(1-\prod_{i=1}^{k}{\left({\left({\pi }_{{a}_{i}}^{+}\right)}^{q}\right)}^{{\lambda }_{i}}\right)},\\ \sqrt[q]{\frac{\sum_{i=1}^{k}{\lambda }_{i}{\left({v}_{{a}_{i}}^{+}\right)}^{q}}{\sum_{i=1}^{k}{\lambda }_{i}\left({{\left({u}_{{a}_{i}}^{+}\right)}^{q}+\left({v}_{{a}_{i}}^{+}\right)}^{q}\right)}\times \left(1-\prod_{i=1}^{k}{\left({\left({\pi }_{{a}_{i}}^{-}\right)}^{q}\right)}^{{\lambda }_{i}}\right)}\end{array}\right]\end{array}\right)$$

If \(n = k + 1\), we have:

$$IVq - ROFWANA\left( {a_{1} ,a_{2} ,a_{3} , \ldots ,a_{k} ,a_{k + 1} } \right)$$
$$= IVq - ROFWANA\left( {a_{1} ,a_{2} ,a_{3} , \ldots ,a_{k} } \right) \Theta_{NA} \left( {\lambda_{k + 1} a_{k + 1} } \right) =\left(\begin{array}{c}\left[\begin{array}{c}\sqrt[q]{\frac{{{MCS}^{-}\left(IVq-ROFWANA\left({a}_{1},{a}_{2},{a}_{3}\dots {a}_{k}\right),{\lambda }_{k+1}{a}_{k+1}\right)}^{q}}{\left(\begin{array}{c}{{MCS}^{-}\left(IVq-ROFWANA\left({a}_{1},{a}_{2},{a}_{3}\dots {a}_{k}\right),{\lambda }_{k+1}{a}_{k+1}\right)}^{q}\\ {{+NCS}^{-}\left(IVq-ROFWANA\left({a}_{1},{a}_{2},{a}_{3}\dots {a}_{k}\right),{\lambda }_{k+1}{a}_{k+1}\right)}^{q}\end{array}\right)}}\times PS\left(\begin{array}{c}\sqrt[q]{1-\prod_{i=1}^{k}{\left({\left({\pi }_{{a}_{i}}^{+}\right)}^{q}\right)}^{{\lambda }_{i}}},\\ \sqrt[q]{1-{\left({\left({\pi }_{{a}_{k+1}}^{+}\right)}^{q}\right)}^{{\lambda }_{k+1}}}\end{array}\right),\\ \sqrt[q]{\frac{{{MCS}^{+}\left(IVq-ROFWANA\left({a}_{1},{a}_{2},{a}_{3}\dots {a}_{k}\right),{\lambda }_{k+1}{a}_{k+1}\right)}^{q}}{\left(\begin{array}{c}{{MCS}^{+}\left(IVq-ROFWANA\left({a}_{1},{a}_{2},{a}_{3}\dots {a}_{k}\right),{\lambda }_{k+1}{a}_{k+1}\right)}^{q}\\ {{+NCS}^{+}\left(IVq-ROFWANA\left({a}_{1},{a}_{2},{a}_{3}\dots {a}_{k}\right),{\lambda }_{k+1}{a}_{k+1}\right)}^{q}\end{array}\right)}}\times PS\left(\begin{array}{c}\sqrt[q]{1-\prod_{i=1}^{k}{\left({\left({\pi }_{{a}_{i}}^{-}\right)}^{q}\right)}^{{\lambda }_{i}}},\\ \sqrt[q]{1-{\left({\left({\pi }_{{a}_{k+1}}^{-}\right)}^{q}\right)}^{{\lambda }_{k+1}}}\end{array}\right)\end{array}\right],\\ \left[\begin{array}{c}\sqrt[q]{\frac{{{NCS}^{-}\left(IVq-ROFWANA\left({a}_{1},{a}_{2},{a}_{3}\dots {a}_{k}\right),{\lambda }_{k+1}{a}_{k+1}\right)}^{q}}{\left(\begin{array}{c}{{MCS}^{-}\left(IVq-ROFWANA\left({a}_{1},{a}_{2},{a}_{3}\dots {a}_{k}\right),{\lambda }_{k+1}{a}_{k+1}\right)}^{q}\\ {{+NCS}^{-}\left(IVq-ROFWANA\left({a}_{1},{a}_{2},{a}_{3}\dots {a}_{k}\right),{\lambda }_{k+1}{a}_{k+1}\right)}^{q}\end{array}\right)}}\times PS\left(\begin{array}{c}\sqrt[q]{1-\prod_{i=1}^{k}{\left({\left({\pi }_{{a}_{i}}^{+}\right)}^{q}\right)}^{{\lambda }_{i}}},\\ \sqrt[q]{1-{\left({\left({\pi }_{{a}_{k+1}}^{+}\right)}^{q}\right)}^{{\lambda }_{k+1}}}\end{array}\right),\\ \sqrt[q]{\frac{{{NCS}^{+}\left(IVq-ROFWANA\left({a}_{1},{a}_{2},{a}_{3}\dots {a}_{k}\right),{\lambda }_{k+1}{a}_{k+1}\right)}^{q}}{\left(\begin{array}{c}{{MCS}^{+}\left(IVq-ROFWANA\left({a}_{1},{a}_{2},{a}_{3}\dots {a}_{k}\right),{\lambda }_{k+1}{a}_{k+1}\right)}^{q}\\ {{+NCS}^{+}\left(IVq-ROFWANA\left({a}_{1},{a}_{2},{a}_{3}\dots {a}_{k}\right),{\lambda }_{k+1}{a}_{k+1}\right)}^{q}\end{array}\right)}}\times PS\left(\begin{array}{c}\sqrt[q]{1-\prod_{i=1}^{k}{\left({\left({\pi }_{{a}_{i}}^{-}\right)}^{q}\right)}^{{\lambda }_{i}}},\\ \sqrt[q]{1-{\left({\left({\pi }_{{a}_{k+1}}^{-}\right)}^{q}\right)}^{{\lambda }_{k+1}}}\end{array}\right)\end{array}\right]\end{array}\right)$$

According to formula (14), we get:

$${\text{MCS}}\left( {IVq - ROFWANA\left( {a_{1} ,a_{2} ,a_{3} ,\ldots,a_{k} } \right),\left( {\lambda_{k + 1} a_{k + 1} } \right)} \right)^{{\text{q}}} = MCS\left( {IVq - ROFWANA\left( {a_{1} ,a_{2} ,a_{3} ,\ldots,a_{k} } \right)} \right)^{q} + MCS\left( {\lambda_{k + 1} a_{k + 1} } \right) = \left( {\mathop \sum \limits_{{{\text{i}} = 1}}^{{\text{k}}} \lambda_{{\text{i}}} \left( {u_{{a_{i} }}^{ - } } \right)^{{\text{q}}} + \lambda_{k + 1} \left( {u_{{a_{k + 1} }}^{ - } } \right)^{{\text{q}}} ,\mathop \sum \limits_{{{\text{i}} = 1}}^{{\text{k}}} \lambda_{{\text{i}}} \left( {u_{{a_{i} }}^{ + } } \right)^{{\text{q}}} + \lambda_{k + 1} \left( {u_{{a_{k + 1} }}^{ + } } \right)^{{\text{q}}} } \right)$$

Similarly, it is easy to obtain:

$${\text{NCS}}\left( {{\text{IVq}} - {\text{ROFWANA}}\left( {a_{1} ,a_{2} ,a_{3} ,\ldots,a_{k} } \right),\left( {\lambda_{k + 1} a_{k + 1} } \right)} \right)^{{\text{q}}} = {\text{NCS}}\left( {{\text{IVq}} - {\text{ROFWANA}}\left( {a_{1} ,a_{2} ,a_{3} ,\ldots,a_{k} } \right)} \right)^{{\text{q}}} + {\text{NCS}}\left( {\lambda_{k + 1} a_{k + 1} } \right) = \left( {\mathop \sum \limits_{{{\text{i}} = 1}}^{{\text{k}}} \lambda_{{\text{i}}} \left( {v_{{a_{i} }}^{ - } } \right)^{{\text{q}}} + \lambda_{k + 1} \left( {v_{{a_{k + 1} }}^{ - } } \right)^{{\text{q}}} ,\mathop \sum \limits_{{{\text{i}} = 1}}^{{\text{k}}} \lambda_{{\text{i}}} \left( {v_{{a_{i} }}^{ + } } \right)^{{\text{q}}} + \lambda_{k + 1} \left( {v_{{a_{k + 1} }}^{ + } } \right)^{{\text{q}}} } \right)$$

According to formula (14), we get:

$$IVq - ROFWANA\left( {a_{1} ,a_{2} ,a_{3} ,\ldots,a_{k + 1} } \right) =\left(\begin{array}{c}\left[\begin{array}{c}\sqrt[q]{\frac{\sum_{i=1}^{k+1}{\lambda }_{i}{\left({u}_{{a}_{i}}^{-}\right)}^{q}}{\sum_{i=1}^{k+1}{\lambda }_{i}\left({{\left({u}_{{a}_{i}}^{-}\right)}^{q}+\left({v}_{{a}_{i}}^{-}\right)}^{q}\right)}\times \left(1-\prod_{i=1}^{k+1}{\left({\left({\pi }_{{a}_{i}}^{+}\right)}^{q}\right)}^{{\lambda }_{i}}\right)},\\ \sqrt[q]{\frac{\sum_{i=1}^{k+1}{\lambda }_{i}{\left({u}_{{a}_{i}}^{+}\right)}^{q}}{\sum_{i=1}^{k+1}{\lambda }_{i}\left({{\left({u}_{{a}_{i}}^{+}\right)}^{q}+\left({v}_{{a}_{i}}^{+}\right)}^{q}\right)}\times \left(1-\prod_{i=1}^{k+1}{\left({\left({\pi }_{{a}_{i}}^{-}\right)}^{q}\right)}^{{\lambda }_{i}}\right)}\end{array}\right],\\ \left[\begin{array}{c}\sqrt[q]{\frac{\sum_{i=1}^{k+1}{\lambda }_{i}{\left({v}_{{a}_{i}}^{-}\right)}^{q}}{\sum_{i=1}^{k+1}{\lambda }_{i}\left({{\left({u}_{{a}_{i}}^{-}\right)}^{q}+\left({v}_{{a}_{i}}^{-}\right)}^{q}\right)}\times \left(1-\prod_{i=1}^{k+1}{\left({\left({\pi }_{{a}_{i}}^{+}\right)}^{q}\right)}^{{\lambda }_{i}}\right)},\\ \sqrt[q]{\frac{\sum_{i=1}^{k+1}{\lambda }_{i}{\left({v}_{{a}_{i}}^{+}\right)}^{q}}{\sum_{i=1}^{k+1}{\lambda }_{i}\left({{\left({u}_{{a}_{i}}^{+}\right)}^{q}+\left({v}_{{a}_{i}}^{+}\right)}^{q}\right)}\times \left(1-\prod_{i=1}^{k+1}{\left({\left({\pi }_{{a}_{i}}^{-}\right)}^{q}\right)}^{{\lambda }_{i}}\right)}\end{array}\right]\end{array}\right)$$

Therefore, the expression (23) holds for n = k + 1. According to the mathematical induction, the proof of Eq. (23) is completed.

1.6 Proof of Property 4.1

Proof \(IVq - ROFWANA\left( {a_{1} ,a_{2} ,a_{3} ,\ldots,a_{n} } \right)\)\(=\left(\begin{array}{c}\left[\begin{array}{c}\sqrt[q]{\frac{\sum_{i=1}^{n}{\lambda }_{i}{\left({u}_{{a}_{i}}^{-}\right)}^{q}}{\sum_{i=1}^{k}{\lambda }_{i}\left({{\left({u}_{{a}_{i}}^{-}\right)}^{q}+\left({v}_{{a}_{i}}^{-}\right)}^{q}\right)}\times \left(1-\prod_{i=1}^{n}{\left({\left({\pi }_{{a}_{i}}^{+}\right)}^{q}\right)}^{{\lambda }_{i}}\right)},\\ \sqrt[q]{\frac{\sum_{i=1}^{n}{\lambda }_{i}{\left({u}_{{a}_{i}}^{+}\right)}^{q}}{\sum_{i=1}^{n}{\lambda }_{i}\left({{\left({u}_{{a}_{i}}^{+}\right)}^{q}+\left({v}_{{a}_{i}}^{+}\right)}^{q}\right)}\times \left(1-\prod_{i=1}^{n}{\left({\left({\pi }_{{a}_{i}}^{-}\right)}^{q}\right)}^{{\lambda }_{i}}\right)}\end{array}\right],\\ \left[\begin{array}{c}\sqrt[q]{\frac{\sum_{i=1}^{n}{\lambda }_{i}{\left({v}_{{a}_{i}}^{-}\right)}^{q}}{\sum_{i=1}^{k}{\lambda }_{i}\left({{\left({u}_{{a}_{i}}^{-}\right)}^{q}+\left({v}_{{a}_{i}}^{-}\right)}^{q}\right)}\times \left(1-\prod_{i=1}^{n}{\left({\left({\pi }_{{a}_{i}}^{+}\right)}^{q}\right)}^{{\lambda }_{i}}\right)},\\ \sqrt[q]{\frac{\sum_{i=1}^{n}{\lambda }_{i}{\left({v}_{{a}_{i}}^{+}\right)}^{q}}{\sum_{i=1}^{n}{\lambda }_{i}\left({{\left({u}_{{a}_{i}}^{+}\right)}^{q}+\left({v}_{{a}_{i}}^{+}\right)}^{q}\right)}\times \left(1-\prod_{i=1}^{n}{\left({\left({\pi }_{{a}_{i}}^{-}\right)}^{q}\right)}^{{\lambda }_{i}}\right)}\end{array}\right]\end{array}\right)\)

$$=\left(\begin{array}{c}\left[\sqrt[\mathrm{q}]{\frac{{({u}_{a}^{-})}^{\mathrm{q}}}{{({u}_{a}^{-})}^{\mathrm{q}}+{({v}_{a}^{-})}^{\mathrm{q}}}\times \left(1-{({({\uppi }_{a}^{+})}^{\mathrm{q}})}^{\sum_{\mathrm{i}=1}^{\mathrm{n}}{\lambda }_{\mathrm{i}}}\right)},\sqrt[\mathrm{q}]{\frac{{({u}_{a}^{+})}^{\mathrm{q}}}{{({u}_{a}^{+})}^{\mathrm{q}}+{({v}_{a}^{+})}^{\mathrm{q}}}\times \left(1-{({({\uppi }_{a}^{-})}^{\mathrm{q}})}^{\sum_{\mathrm{i}=1}^{\mathrm{n}}{\lambda }_{\mathrm{i}}}\right)}\right],\\ \left[\sqrt[\mathrm{q}]{\frac{{({v}_{a}^{-})}^{\mathrm{q}}}{{({u}_{a}^{-})}^{\mathrm{q}}+{({v}_{a}^{-})}^{\mathrm{q}}}\times \left(1-{({({\uppi }_{a}^{+})}^{\mathrm{q}})}^{\sum_{\mathrm{i}=1}^{\mathrm{n}}{\lambda }_{\mathrm{i}}}\right)},\sqrt[\mathrm{q}]{\frac{{({v}_{a}^{+})}^{\mathrm{q}}}{{({u}_{a}^{+})}^{\mathrm{q}}+{({v}_{a}^{+})}^{\mathrm{q}}}\times \left(1-{({({\uppi }_{a}^{-})}^{\mathrm{q}})}^{\sum_{\mathrm{i}=1}^{\mathrm{n}}{\lambda }_{\mathrm{i}}}\right)}\right]\end{array}\right)=\left(\begin{array}{c}\left[\sqrt[\mathrm{q}]{\frac{{({u}_{a}^{-})}^{\mathrm{q}}}{{({u}_{a}^{-})}^{\mathrm{q}}+{({v}_{a}^{-})}^{\mathrm{q}}}\times \left({({u}_{a}^{-})}^{\mathrm{q}}+{({v}_{a}^{-})}^{\mathrm{q}}\right)},\sqrt[\mathrm{q}]{\frac{{({u}_{a}^{+})}^{\mathrm{q}}}{{({u}_{a}^{+})}^{\mathrm{q}}+{({v}_{a}^{+})}^{\mathrm{q}}}\times \left({({u}_{a}^{+})}^{\mathrm{q}}+{({v}_{a}^{+})}^{\mathrm{q}}\right)}\right],\\ \left[\sqrt[\mathrm{q}]{\frac{{({v}_{a}^{-})}^{\mathrm{q}}}{{({u}_{a}^{-})}^{\mathrm{q}}+{({v}_{a}^{-})}^{\mathrm{q}}}\times \left({({u}_{a}^{-})}^{\mathrm{q}}+{({v}_{a}^{-})}^{\mathrm{q}}\right)},\sqrt[\mathrm{q}]{\frac{{({v}_{a}^{+})}^{\mathrm{q}}}{{({u}_{a}^{+})}^{\mathrm{q}}+{({v}_{a}^{+})}^{\mathrm{q}}}\times \left({({u}_{a}^{+})}^{\mathrm{q}}+{({v}_{a}^{+})}^{\mathrm{q}}\right)}\right]\end{array}\right)=\left(\left[{{u}^{-}}_{a},{{u}^{+}}_{a}\right],\left[{{v}^{-}}_{a},{{v}^{+}}_{a}\right]\right)=a$$

Appendix 2

See Tables 13, 14, 15, 16 and Fig. 7

Table 13 Interval-valued q-rung orthopair fuzzy decision matrix
Table 14 Sensitive analysis of the parameter q
Table 15 The ranking values and the ranking orders of schemes obtained by different operators with case of different values of q
Table 16 The final ranking values and the ranking orders of schemes obtained by different decision-making methods with case of different values of q
Fig. 7
figure 7

GDM Flow based on the developed PSI-COPRAS method

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, X., Dai, L. & Wan, B. NA Operator-Based Interval-Valued q-Rung Orthopair Fuzzy PSI-COPRAS Group Decision-Making Method. Int. J. Fuzzy Syst. 25, 198–221 (2023). https://doi.org/10.1007/s40815-022-01375-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40815-022-01375-z

Keywords

Navigation