Log in

Photosynthetic Algal Microbial Fuel Cell (PAMFC) for Wastewater Removal and Energy Recovery: A Review

  • Published:
Current Pollution Reports Aims and scope Submit manuscript

Abstract

Purpose of Review

Microalgae-based photosynthetic algal biofuel cells (PAMFCs) are effective devices for purifying wastewater and fixing carbon, nitrogen, and phosphorus, converting light energy into electricity for integrated bioelectricity, biodiesel feedstock, and more. This paper reviewed the great potential of PAMFC for wastewater treatment and energy utilization, providing new ideas for wastewater treatment and green energy development.

Recent Findings

The concept of the PAMFC is to convert pollutants into bioelectricity by using the metabolic activity of microbial populations in the wastewater, and the microalgae at the cathode make it possible to convert solar energy into green energy. The construction and type of PAMFC, biotic and abiotic factors all have an impact on its wastewater treatment and energy production. Considering the above facts, the drawbacks of PAMFC were summarized and the future development for its application in wastewater treatment and energy use was prospected.

Summary

This paper reviewed the use of PAMFC systems to recover resources in the form of nutrients, bioelectricity, and biodiesel feedstock in wastewater treatment. The selection of reactor configuration, cathode and anode materials, electrogenic microorganisms, and system optimization conditions were analyzed. The limitations of PAMFC in terms of reactor performance and scale in practical production applications were discussed and future directions for PAMFC were proposed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: •   Of importance •• Of major importance

  1. • Abazarian E, Gheshlaghi R, Mahdavi MA. Impact of light/dark cycle on electrical and electrochemical characteristics of algal cathode sediment microbial fuel cells. J Power Sources. 2020;475:228686. https://doi.org/10.1016/j.jpowsour.2020.228686. This article reports on the effect of light/dark cycling on the electrical production characteristics of algal cathodic sediments MFC.

  2. Heredia C, Guédron S, Point D, Perrot V, Campillo S, Verin C, et al. Anthropogenic eutrophication of Lake Titicaca (Bolivia) revealed by carbon and nitrogen stable isotopes fingerprinting. Sci Total Environ. 2022;845:157286. https://doi.org/10.1016/j.scitotenv.2022.157286

  3. Abbas M, Dia S, Deutsch ES, Alameddine I. Analyzing eutrophication and harmful algal bloom dynamics in a deep Mediterranean hypereutrophic reservoir. Environ Sci Pollut R. 2022. https://doi.org/10.1007/s11356-022-24804-w.

    Article  Google Scholar 

  4. Wang J, Chen Y, Cai P, Gao Q, Zhong H, Sun W, et al. Impacts of municipal wastewater treatment plant discharge on microbial community structure and function of the receiving river in Northwest Tibetan Plateau J Hazard Mater. 2022;423:127170. https://doi.org/10.1016/j.jhazmat.2021.127170

  5. Santos EN, László Z, Hodúr C, Arthanareeswaran G, Veréb G. Photocatalytic membrane filtration and its advantages over conventional approaches in the treatment of oily wastewater: a review. Asia‐Pac J Chem Eng. 2020;15(5):e2533. https://doi.org/10.1002/apj.2533

  6. Lv Y, Wu S, Liao J, Qiu Y, Dong J, Liu C, et al. An integrated adsorption-and membrane-based system for high-salinity aniline wastewater treatment with zero liquid discharge. Desalination. 2022;527:115537. https://doi.org/10.1016/j.desal.2021.115537

  7. Su Y, Fan T, Bai H, Guan H, Ning X, Yu M, et al. Bioinspired superhydrophobic and superlipophilic nanofiber membrane with pine needle-like structure for efficient gravity-driven oil/water separation. Sep Purif Technol. 2021;274:119098. https://doi.org/10.1016/j.seppur.2021.119098

  8. Ezugbe EO, Rathilal S. Membrane technologies in wastewater treatment: a review. Membranes. 2020;10(5):89. https://doi.org/10.3390/membranes10050089.

    Article  CAS  Google Scholar 

  9. Rachida S, Taylor MB. Potentially infectious novel hepatitis a virus strains detected in selected treated wastewater discharge sources, South Africa. Viruses. 2020;12(12):1468. https://doi.org/10.3390/v12121468.

    Article  CAS  Google Scholar 

  10. Liu L, Tan W, Suib SL, Qiu G, Zheng L, Su S. Enhanced adsorption removal of arsenic from mining wastewater using birnessite under electrochemical redox reactions. Chem Eng J. 2019;375:122051. https://doi.org/10.1016/j.cej.2019.122051

  11. Perera MK, Englehardt JD, Dvorak AC. Technologies for recovering nutrients from wastewater: a critical review. Environ Eng Sci. 2019;36(5):511–29. https://doi.org/10.1089/ees.2018.0436.

    Article  CAS  Google Scholar 

  12. Liu L, Chen Z, Zhang J, Shan D, Wu Y, Bai L, et al. Treatment of industrial dye wastewater and pharmaceutical residue wastewater by advanced oxidation processes and its combination with nanocatalysts: A review. J Water Process Eng. 2021;42:102122. https://doi.org/10.1016/j.jwpe.2021.102122

  13. Huang L, Wan H, Song S, Liu D, Puma GL. Complete removal of heavy metals with simultaneous efficient treatment of etching terminal wastewater using scaled-up microbial electrolysis cells. Chem Eng J. 2022;439:135763. https://doi.org/10.1016/j.cej.2022.135763

  14. Liu X, Yuan W, Di M, Li Z, Wang J. Transfer and fate of microplastics during the conventional activated sludge process in one wastewater treatment plant of China. Chem Eng J. 2019;362:176–82. https://doi.org/10.1016/j.cej.2019.01.033.

    Article  CAS  Google Scholar 

  15. Fanta AB, Nair AM, Saegrov S, Østerhus SW. Phosphorus removal from industrial discharge impacted municipal wastewater using sequencing batch moving bed biofilm reactor. J Water Process Eng. 2021;41:102034. https://doi.org/10.1016/j.jwpe.2021.102034

  16. Wang QR, Hong Y, Li LH. Insights into differences between spore-assisted and pellet-assisted microalgae harvesting using a highly efficient fungus: efficiency, high-value substances, and mechanisms. Sci Total Environ. 2023;877:162945. https://doi.org/10.1016/j.scitotenv.2023.162945

  17. Makopondo RO, Rotich LK, Kamau CG. Potential use and challenges of constructed wetlands for wastewater treatment and conservation in game lodges and resorts in Kenya. Sci World J. 2020;2020:9184192. https://doi.org/10.1155/2020/9184192.

    Article  CAS  Google Scholar 

  18. Zhang Z, Sun D, Cheng KW, Chen F. Investigation of carbon and energy metabolic mechanism of mixotrophy in Chromochloris zofingiensis. Biotechnol Biofuels. 2021;14(1):1–16. https://doi.org/10.1186/s13068-021-01890-5.

    Article  CAS  Google Scholar 

  19. Bo Y, Chu R, Sun D, Deng X, Zhou C, Yan X, et al. Mixotrophic culture of bait microalgae for biomass and nutrients accumulation and their synergistic carbon metabolism. Bioresource Technol. 2023;367:128301. https://doi.org/10.1016/j.biortech.2022.128301

  20. Sayed ET, Shehata N, Abdelkareem MA, Atieh MA. Recent progress in environmentally friendly bio-electrochemical devices for simultaneous water desalination and wastewater treatment. Sci Total Environ. 2020;748:141046. https://doi.org/10.1016/j.scitotenv.2020.141046

  21. Enamala MK, Dixit R, Tangellapally A, Singh M, Dinakarrao SMP, Chavali M, et al. Photosynthetic microorganisms (Algae) mediated bioelectricity generation in microbial fuel cell: Concise review. Environ Technol Inno. 2020;19:100959. https://doi.org/10.1016/j.eti.2020.100959

  22. Cao X, Huang X, Liang P, **ao K, Zhou Y, Zhang X, et al. A new method for water desalination using microbial desalination cells. Environ Sci Technol. 2009;43(18):7148–52. https://doi.org/10.1021/es901950j.

    Article  CAS  Google Scholar 

  23. Velasquez-Orta S, Werner D, Varia J, Mgana S. Microbial fuel cells for inexpensive continuous in-situ monitoring of groundwater quality. Water Res. 2017;117:9–17. https://doi.org/10.1016/j.watres.2017.03.040.

    Article  CAS  Google Scholar 

  24. Elshobary ME, Zabed HM, Yun J, Zhang G, Qi X. Recent insights into microalgae-assisted microbial fuel cells for generating sustainable bioelectricity. Int J Hydrogen Energ. 2021;46(4):3135–59. https://doi.org/10.1016/j.ijhydene.2020.06.251.

    Article  CAS  Google Scholar 

  25. Shukla M, Kumar S. Algal growth in photosynthetic algal microbial fuel cell and its subsequent utilization for biofuels. Renew Sust Energ Rev. 2018;82:402–14. https://doi.org/10.1016/j.rser.2017.09.067.

    Article  CAS  Google Scholar 

  26. Tan C, Li M, Zhou M, Tian X, He H, Gu T. Photosynthetic algal microbial fuel cell for simultaneous NH3-N removal and bioelectricity generation. In Microbial Electrochemical Technologies, CRC Press: 2020;145–154. https://doi.org/10.1201/9780429487118-10

  27. Curtis TP. Low-energy wastewater treatment: strategies and technologies. Environ Microbiol. 2010;2. https://doi.org/10.1002/9780470495117.ch13

  28. Liu XY, Hong Y. Microalgae-based wastewater treatment and recovery with biomass and value-added products: a brief review. Curr Pollut Rep. 2021;7:227–45. https://doi.org/10.1007/s40726-021-00184-6.

    Article  CAS  Google Scholar 

  29. Wang X, Hong Y. Microalgae biofilm and bacteria symbiosis in nutrient removal and carbon fixation from wastewater: a review. Curr Pollut Rep. 2022;8(2):128–146. https://doi.org/10.1007/s40726-022-00214-x

  30. del Campo AG, Perez JF, Cañizares P, Rodrigo MA, Fernandez FJ, Lobato J. Characterization of light/dark cycle and long-term performance test in a photosynthetic microbial fuel cell. Fuel. 2015;140:209–16. https://doi.org/10.1016/j.fuel.2014.09.087.

    Article  CAS  Google Scholar 

  31. Yang Z, Pei H, Hou Q, Jiang L, Zhang L, Nie C. Algal biofilm-assisted microbial fuel cell to enhance domestic wastewater treatment: nutrient, organics removal and bioenergy production. Chem Eng J. 2018;332:277–85. https://doi.org/10.1016/j.cej.2017.09.096.

    Article  CAS  Google Scholar 

  32. Butti SK, Velvizhi G, Sulonen ML, Haavisto JM, Koroglu EO, Cetinkaya AY, et al. Microbial electrochemical technologies with the perspective of harnessing bioenergy: maneuvering towards upscaling. Renew Sust Energ Rev. 2016;53:462–76. https://doi.org/10.1016/j.rser.2015.08.058.

    Article  CAS  Google Scholar 

  33. • Reddy CN, Nguyen HT, Noori MT, Min B. Potential applications of algae in the cathode of microbial fuel cells for enhanced electricity generation with simultaneous nutrient removal and algae biorefinery: Current status and future perspectives. Bioresource Technol. 2019;292:122010. https://doi.org/10.1016/j.biortech.2019.122010. This article reviews the application of PAMFC with algal-assisted cathodes for enhanced power generation and nutrient removal, as well as provides an outlook for the future.

  34. Gajda I, Greenman J, Melhuish C, Ieropoulos I. Self-sustainable electricity production from algae grown in a microbial fuel cell system. Biomass Bioenerg. 2015;82:87–93. https://doi.org/10.1016/j.biombioe.2015.05.017.

    Article  CAS  Google Scholar 

  35. Zhang Y, Noori JS, Angelidaki I. Simultaneous organic carbon, nutrients removal and energy production in a photomicrobial fuel cell (PFC). Energ Environ Sci. 2011;4(10):4340–6. https://doi.org/10.1039/C1EE02089G.

    Article  CAS  Google Scholar 

  36. •• Bazdar E, Roshandel R, Yaghmaei S, Mardanpour MM. The effect of different light intensities and light/dark regimes on the performance of photosynthetic microalgae microbial fuel cell. Bioresource Technol. 2018; 261: 350–360. https://doi.org/10.1016/j.biortech.2018.04.026. This article investigates the effects of different light intensities and light-dark states on the power production performance of PAMFC, laying an important foundation for the development of PAMFC.

  37. Khan MD, Thimmappa R, Anwer AH, Khan N, Tabraiz S, Li D, et al. Redox mediator as cathode modifier for enhanced degradation of azo dye in a sequential dual chamber microbial fuel cell-aerobic treatment process. Int J Hydrogen Energ. 2021;46(79):39427–37. https://doi.org/10.1016/j.ijhydene.2021.09.151.

    Article  CAS  Google Scholar 

  38. Wang G, Pan J, Yang H. Gas phase electrochemical conversion of humidified CO2 to CO and H2 on proton-exchange and alkaline anion-exchange membrane fuel cell reactors. J CO2 Util. 2018;23:152–158. https://doi.org/10.1016/j.jcou.2017.11.010

  39. Zhou J, Zhang H, Zuo T, Jia Q, Wang L, Tian Y, et al. Enhanced copper-containing wastewater treatment with MnO2/CNTs modified anode microbial fuel cell. Process Saf Environ. 2022;159:157–67. https://doi.org/10.1016/j.psep.2021.12.060.

    Article  CAS  Google Scholar 

  40. Singh G, Patidar S. Development and applications of attached growth system for microalgae biomass production. BioEnergy Res. 2021;14(3):709–22. https://doi.org/10.1007/s12155-020-10195-8.

    Article  CAS  Google Scholar 

  41. ElMekawy A, Hegab HM, Vanbroekhoven K, Pant D. Techno-productive potential of photosynthetic microbial fuel cells through different configurations. Renew Sust Energ Rev. 2014;39:617–27. https://doi.org/10.1016/j.rser.2014.07.116.

    Article  CAS  Google Scholar 

  42. Wang H, Song X, Zhang H, Tan P, Kong F. Removal of hexavalent chromium in dual-chamber microbial fuel cells separated by different ion exchange membranes. J Hazard Mater. 2020;384:121459. https://doi.org/10.1016/j.jhazmat.2019.121459

  43. Arun S, Sinharoy A, Pakshirajan K, Lens PN. Algae based microbial fuel cells for wastewater treatment and recovery of value-added products. Renew Sust Energ Rev. 2020;132:110041. https://doi.org/10.1016/j.rser.2020.110041

  44. Saba B, Christy AD, Yu Z, Co AC. Sustainable power generation from bacterio-algal microbial fuel cells (MFCs): an overview. Renew Sust Energ Rev. 2017;73:75–84. https://doi.org/10.1016/j.rser.2017.01.115.

    Article  CAS  Google Scholar 

  45. Li M, Zhou M, Luo J, Tan C, Tian X, Su P, et al. Carbon dioxide sequestration accompanied by bioenergy generation using a bubbling-type photosynthetic algae microbial fuel cell. Bioresource Technol. 2019;280:95–103. https://doi.org/10.1016/j.biortech.2019.02.038.

    Article  CAS  Google Scholar 

  46. Li M, Zhou M, Tan C, Tian X. Enhancement of CO2 biofixation and bioenergy generation using a novel airlift type photosynthetic microbial fuel cell. Bioresource Technol. 2019;272:501–9. https://doi.org/10.1016/j.biortech.2018.10.078.

    Article  CAS  Google Scholar 

  47. Nookwam K, Cheirsilp B, Maneechote W, Boonsawang P, Sukkasem C. Microbial fuel cells with photosynthetic-cathodic chamber in vertical cascade for integrated bioelectricity, biodiesel feedstock production and wastewater treatment. Bioresource Technol. 2022;346:126559. https://doi.org/10.1016/j.biortech.2021.126559

  48. Yang Z, Nie C, Hou Q, Zhang L, Zhang S, Yu Z, et al. Coupling a photosynthetic microbial fuel cell (PMFC) with photobioreactors (PBRs) for pollutant removal and bioenergy recovery from anaerobically digested effluent. Chem Eng J. 2019;359:402–8. https://doi.org/10.1016/j.cej.2018.11.136.

    Article  CAS  Google Scholar 

  49. Gajda I, Greenman J, Melhuish C, Ieropoulos I. Photosynthetic cathodes for microbial fuel cells. Int J Hydrogen Energ. 2013;38(26):11559–64. https://doi.org/10.1016/j.ijhydene.2013.02.111.

    Article  CAS  Google Scholar 

  50. Ge Z, Wu L, Zhang F, He Z. Energy extraction from a large-scale microbial fuel cell system treating municipal wastewater. J Power Sources. 2015;297:260–4. https://doi.org/10.1016/j.jpowsour.2015.07.105.

    Article  CAS  Google Scholar 

  51. Dong Y, Qu Y, He W, Du Y, Liu J, Han X, et al. A 90-liter stackable baffled microbial fuel cell for brewery wastewater treatment based on energy self-sufficient mode. Bioresource Technol. 2015;195:66–72. https://doi.org/10.1016/j.biortech.2015.06.026.

    Article  CAS  Google Scholar 

  52. Liang P, Duan R, Jiang Y, Zhang X, Qiu Y, Huang X. One-year operation of 1000-L modularized microbial fuel cell for municipal wastewater treatment. Water Res. 2018;141:1–8. https://doi.org/10.1016/j.watres.2018.04.066.

    Article  CAS  Google Scholar 

  53. • Yang Z, Zhang L, Nie C, Hou Q, Zhang S, Pei H. Multiple anodic chambers sharing an algal raceway pond to establish a photosynthetic microbial fuel cell stack: voltage boosting accompany wastewater treatment. Water Res. 2019;164:114955. https://doi.org/10.1016/j.watres.2019.114955. This article investigates the sharing of an algal raceway pond by multiple anode chambers in a PAMFC to enhance the voltage accompanying the treatment of wastewater.

  54. Nguyen HT, Min B. Leachate treatment and electricity generation using an algae-cathode microbial fuel cell with continuous flow through the chambers in series. Sci Total Environ. 2020;723:138054.https://doi.org/10.1016/j.scitotenv.2020.138054

  55. Mohamed SN, Jayabalan T, Muthukumar K. Simultaneous bioenergy generation and carbon dioxide sequestration from food wastewater using algae microbial fuel cell. Energ Source Part A. 2019. https://doi.org/10.1080/15567036.2019.1666932.

    Article  Google Scholar 

  56. Zhang Y, Zhao Y, Zhou M. A photosynthetic algal microbial fuel cell for treating swine wastewater. Environ Sci Pollut Res. 2019;26(6):6182–90. https://doi.org/10.1007/s11356-018-3960-4.

    Article  CAS  Google Scholar 

  57. Corbella C, Hartl M, Fernandez-gatell M, Puigagut J. MFC-based biosensor for domestic wastewater COD assessment in constructed wetlands. Sci Total Environ. 2019;660:218–26. https://doi.org/10.1016/j.scitotenv.2018.12.347.

    Article  Google Scholar 

  58. Wu S, Lv T, Lu Q, Ajmal Z, Dong R. Treatment of anaerobic digestate supernatant in microbial fuel cell coupled constructed wetlands: evaluation of nitrogen removal, electricity generation, and bacterial community response. Sci Total Environ. 2017;580:339–46. https://doi.org/10.1016/j.scitotenv.2016.11.138.

    Article  CAS  Google Scholar 

  59. Wu LC, Chen CY, Lin TK, Su YY, Chung YC. Highly efficient removal of victoria blue R and bioelectricity generation from textile wastewater using a novel combined dual microbial fuel cell system. Chemosphere. 2020;258:127326. https://doi.org/10.1016/j.chemosphere.2020.127326

  60. Ma J, Ni H, Su D, Meng X. Bioelectricity generation from pig farm wastewater in microbial fuel cell using carbon brush as electrode. Int J Hydrogen Energ. 2016;41(36):16191–5. https://doi.org/10.1016/j.ijhydene.2016.05.255.

    Article  CAS  Google Scholar 

  61. Schröder U. A basic introduction into microbial fuel cells and microbial electrocatalysis. ChemTexts. 2018;4(4):1–6. https://doi.org/10.1007/s40828-018-0072-1.

    Article  CAS  Google Scholar 

  62. Zuo Y, **ng D, Regan JM, Logan BE. Isolation of the exoelectrogenic bacterium Ochrobactrum anthropi YZ-1 by using a U-tube microbial fuel cell. Appl Environ Microb. 2008;74(10):3130–7. https://doi.org/10.1128/AEM.02732-07.

    Article  CAS  Google Scholar 

  63. Arkatkar A, Mungray AK, Sharma P. Effect of microbial growth on internal resistances in MFC: A case study. In Innovations in Infrastructure, Springer: 2019; pp 469–479. https://doi.org/10.1007/978-981-13-1966-2_42

  64. Aiyer KS. Synergistic effects in a microbial fuel cell between co-cultures and a photosynthetic alga Chlorella vulgaris improve performance. Heliyon. 2021;7(1):e05935. https://doi.org/10.1016/j.heliyon.2021.e05935

  65. Mohamed SN, Hiraman PA, Muthukumar K, Jayabalan T. Bioelectricity production from kitchen wastewater using microbial fuel cell with photosynthetic algal cathode. Bioresource Technol. 2020;295:122226. https://doi.org/10.1016/j.biortech.2019.122226

  66. Sharma A, Chhabra M. Performance evaluation of a photosynthetic microbial fuel cell (PMFC) using Chlamydomonas reinhardtii at cathode. Bioresource Technol. 2021;338:125499. https://doi.org/10.1016/j.biortech.2021.125499

  67. Arun S, Ramasamy S, Pakshirajan K, Pugazhenthi G. Bioelectricity production and shortcut nitrogen removal by microalgal-bacterial consortia using membrane photosynthetic microbial fuel cell. J Environ Manage. 2022;301:113871. https://doi.org/10.1016/j.jenvman.2021.113871

  68. Behera M, Jana PS, Ghangrekar M. Performance evaluation of low cost microbial fuel cell fabricated using earthen pot with biotic and abiotic cathode. Bioresource Technol. 2010;101(4):1183–9. https://doi.org/10.1016/j.biortech.2009.07.089.

    Article  CAS  Google Scholar 

  69. Nayak JK, Ghosh UK. Post treatment of microalgae treated pharmaceutical wastewater in photosynthetic microbial fuel cell (PMFC) and biodiesel production. Biomass Bioenerg. 2019;131:105415. https://doi.org/10.1016/j.biombioe.2019.105415

  70. Cusick RD, Bryan B, Parker DS, Merrill MD, Mehanna M, Kiely PD, et al. Performance of a pilot-scale continuous flow microbial electrolysis cell fed winery wastewater. Appl Microbiol Biot. 2011;89(6):2053–63. https://doi.org/10.1007/s00253-011-3130-9.

    Article  CAS  Google Scholar 

  71. Velasquez-Orta SB, Curtis TP, Logan BE. Energy from algae using microbial fuel cells. Biotechnol Bioeng. 2009;103(6):1068–76. https://doi.org/10.1002/bit.22346.

    Article  CAS  Google Scholar 

  72. Dave K, Darji P, Gandhi F, Singh S, Jadav D. Bioelectrochemical sysytem: an eco-friendly approach to generate electricity utilizing plants and microorganisms. 2020. https://doi.org/10.21203/rs.3.rs-64793/v1

  73. Kuleshova T, Rao A, Bhadra S, Garlapati VK, Sharma S, Kaushik A, et al. Plant microbial fuel cells as an innovative, versatile agro-technology for green energy generation combined with wastewater treatment and food production. Biomass Bioenerg. 2022;167:106629. https://doi.org/10.1016/j.biombioe.2022.106629

  74. Arulmani SRB, Gnanamuthu HL, Kandasamy S, Govindarajan G, Alsehli M, Elfasakhany A, et al. Sustainable bioelectricity production from Amaranthus viridis and Triticum aestivum mediated plant microbial fuel cells with efficient electrogenic bacteria selections. Process Biochem. 2021;107:27–37. https://doi.org/10.1016/j.procbio.2021.04.015.

    Article  CAS  Google Scholar 

  75. • Wang Y, Lin Z, Su X, Zhao P, Zhou J, He Q, et al. Cost-effective domestic wastewater treatment and bioenergy recovery in an immobilized microalgal-based photoautotrophic microbial fuel cell (PMFC). Chem Eng J. 2019;372:956–965. https://doi.org/10.1016/j.cej.2019.05.004. This article explores low-cost domestic wastewater treatment and bioenergy recovery in a PAMFC based on immobilised microalgae.

  76. Christwardana M, Hadiyanto H, Motto SA, Sudarno S, Haryani K. Performance evaluation of yeast-assisted microalgal microbial fuel cells on bioremediation of cafeteria wastewater for electricity generation and microalgae biomass production. Biomass Bioenerg. 2020;139:105617.https://doi.org/10.1016/j.biombioe.2020.105617

  77. Hadiyanto H, Christwardana M, Pratiwi WZ, Purwanto P, Sudarno S, Haryani K, et al. Response surface optimization of microalgae microbial fuel cell (MMFC) enhanced by yeast immobilization for bioelectricity production. Chemosphere. 2022;287:132275. https://doi.org/10.1016/j.chemosphere.2021.132275

  78. del Campo AG, Cañizares P, Rodrigo MA, Fernández FJ, Lobato J. Microbial fuel cell with an algae-assisted cathode: a preliminary assessment. J Power Sources. 2013;242:638–45. https://doi.org/10.1016/j.jpowsour.2013.05.110.

    Article  CAS  Google Scholar 

  79. Hou Q, Cheng J, Nie C, Pei H, Jiang L, Zhang L, et al. Features of Golenkinia sp. and microbial fuel cells used for the treatment of anaerobically digested effluent from kitchen waste at different dilutions. Bioresource Technol. 2017;240:130–136. https://doi.org/10.1016/j.biortech.2017.02.092

  80. Nguyen HT, Kakarla R, Min B. Algae cathode microbial fuel cells for electricity generation and nutrient removal from landfill leachate wastewater. Int J Hydrogen Energ. 2017;42(49):29433–42. https://doi.org/10.1016/j.ijhydene.2017.10.011.

    Article  CAS  Google Scholar 

  81. Hadiyanto H, Christwardana M, da Costa C. Electrogenic and biomass production capabilities of a microalgae–microbial fuel cell (MMFC) system using tapioca wastewater and Spirulina platensis for COD reduction. Energ Source Part A. 2019. https://doi.org/10.1080/15567036.2019.1668085.

    Article  Google Scholar 

  82. Kim KY, Yang W, Evans PJ, Logan BE. Continuous treatment of high strength wastewaters using air-cathode microbial fuel cells. Bioresour Technol. 2016;221:96–101. https://doi.org/10.1016/j.biortech.2016.09.031.

    Article  CAS  Google Scholar 

  83. Liu H, Cheng S, Huang L, Logan BE. Scale-up of membrane-free single-chamber microbial fuel cells. J Power Sources. 2008;179(1):274–9. https://doi.org/10.1016/j.jpowsour.2007.12.120.

    Article  CAS  Google Scholar 

  84. Fazli N, Mutamim NSA, Jafri NMA, Ramli NAM. Microbial fuel cell (MFC) in treating spent caustic wastewater: varies in hydraulic retention time (HRT) and mixed liquor suspended solid (MLSS). J Environ Chem Eng. 2018;6(4):4339–46. https://doi.org/10.1016/j.jece.2018.05.059.

    Article  CAS  Google Scholar 

  85. Barceló-Villalobos M, Fernández-del Olmo P, Guzmán J, Fernández-Sevilla J, Fernández FA. Evaluation of photosynthetic light integration by microalgae in a pilot-scale raceway reactor. Bioresource Technol. 2019;280:404–11. https://doi.org/10.1016/j.biortech.2019.02.032.

    Article  CAS  Google Scholar 

  86. Lan JCW, Raman K, Huang CM, Chang CM. The impact of monochromatic blue and red LED light upon performance of photo microbial fuel cells (PMFCs) using Chlamydomonas reinhardtii transformation F5 as biocatalyst. Biochem Eng J. 2013;78:39–43. https://doi.org/10.1016/j.bej.2013.02.007.

    Article  CAS  Google Scholar 

  87. Xu Z, Chen S, Guo S, Wan D, Xu H, Yan W, et al. New insights in light-assisted microbial fuel cells for wastewater treatment and power generation: a win-win cooperation. J Power Sources 2021;501:230000. https://doi.org/10.1016/j.jpowsour.2021.230000

  88. Logan BE, Wallack MJ, Kim KY, He W, Feng Y, Saikaly PE. Assessment of microbial fuel cell configurations and power densities. Environ Sci Tech Let. 2015;2(8):206–14. https://doi.org/10.1021/acs.estlett.5b00180.

    Article  CAS  Google Scholar 

  89. Powell EE, Mapiour ML, Evitts RW, Hill GA. Growth kinetics of Chlorella vulgaris and its use as a cathodic half cell. Bioresource Technol. 2009;100(1):269–74. https://doi.org/10.1016/j.biortech.2008.05.032.

    Article  CAS  Google Scholar 

  90. Hosseini NS, Shang H, Scott JA. Biosequestration of industrial off-gas CO2 for enhanced lipid productivity in open microalgae cultivation systems. Renew Sust Energ Rev. 2018;92:458–69. https://doi.org/10.1016/j.rser.2018.04.086.

    Article  CAS  Google Scholar 

  91. Chiu SY, Kao CY, Tsai MT, Ong SC, Chen CH, Lin CS. Lipid accumulation and CO2 utilization of Nannochloropsis oculata in response to CO2 aeration. Bioresource Technol. 2009;100(2):833–8. https://doi.org/10.1016/j.biortech.2008.06.061.

    Article  CAS  Google Scholar 

  92. Kannan N, Donnellan P. Algae-assisted microbial fuel cells: a practical overview. Bioresource Technol Rep. 2021;15:100747. https://doi.org/10.1016/j.biteb.2021.100747

  93. Angioni S, Millia L, Mustarelli P, Doria E, Temporiti M, Mannucci B, et al. Photosynthetic microbial fuel cell with polybenzimidazole membrane: synergy between bacteria and algae for wastewater removal and biorefinery. Heliyon. 2018;4(3):e00560. https://doi.org/10.1016/j.heliyon.2018.e00560

  94. Fischer F. Photoelectrode, photovoltaic and photosynthetic microbial fuel cells. Renew Sust Energ Rev. 2018;90:16–27. https://doi.org/10.1016/j.rser.2018.03.053.

    Article  CAS  Google Scholar 

  95. Wang DB, Song TS, Guo T, Zeng Q, **e J. Electricity generation from sediment microbial fuel cells with algae-assisted cathodes. Int J Hydrogen Energ. 2014;39(25):13224–30. https://doi.org/10.1016/j.ijhydene.2014.06.141.

    Article  CAS  Google Scholar 

  96. Fradinho J, Domingos J, Carvalho G, Oehmen A, Reis M. Polyhydroxyalkanoates production by a mixed photosynthetic consortium of bacteria and algae. Bioresource Technol. 2013;132:146–53. https://doi.org/10.1016/j.biortech.2013.01.050.

    Article  CAS  Google Scholar 

  97. Ángeles R, Rodero Z, Carvajal A, Muñoz R, Lebrero R. Potential of microalgae for wastewater treatment and its valorization into added value products. In Application of Microalgae in Wastewater Treatment, Springer: 2019;281–315. https://doi.org/10.1007/978-3-030-13909-4_13

  98. Suganya T, Varman M, Masjuki H, Renganathan S. Macroalgae and microalgae as a potential source for commercial applications along with biofuels production: a biorefinery approach. Renew Sust Energ Rev. 2016;55:909–41. https://doi.org/10.1016/j.rser.2015.11.026.

    Article  CAS  Google Scholar 

  99. Lu Q, **ao Y. From manure to high-value fertilizer: the employment of microalgae as a nutrient carrier for sustainable agriculture. Algal Res. 2022;67:102855. https://doi.org/10.1016/j.algal.2022.102855

  100. Wang K, Jiao X, Chu J, Liu P, Han S, Hu Z, et al. Bait microalga harboring antimicrobial peptide for controlling Vibrio infection in Argopecten irradians aquaculture. Aquaculture 2023;565:739128. https://doi.org/10.1016/j.aquaculture.2022.739128

  101. Peter AP, Koyande AK, Chew KW, Ho SH, Chen WH, Chang JS, et al. Continuous cultivation of microalgae in photobioreactors as a source of renewable energy: current status and future challenges. Renew Sust Energ Rev. 2022;154:111852. https://doi.org/10.1016/j.rser.2021.111852

Download references

Funding

This research is funded by the National Natural Science Foundation of China (No. 52270021).

Author information

Authors and Affiliations

Authors

Contributions

**aoyan Wang wrote the first draft of the manuscript. Yu Hong revised the manuscript and provided funding support for it. Yuewen Zhang revised the manuscript. All authors reviewed the manuscript.

Corresponding author

Correspondence to Yu Hong.

Ethics declarations

Conflict of Interest

The authors declare no competing interests. We declare that we do not have any commercial or associative interest that represents a conflict of interest in connection with the work submitted.

Human and Animal Rights and Informed Consent

This article does not contain any study with human and animals performed by any of the authors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, X., Hong, Y. & Zhang, Y. Photosynthetic Algal Microbial Fuel Cell (PAMFC) for Wastewater Removal and Energy Recovery: A Review. Curr Pollution Rep 9, 359–373 (2023). https://doi.org/10.1007/s40726-023-00267-6

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40726-023-00267-6

Keywords

Navigation