Log in

A photosynthetic algal microbial fuel cell for treating swine wastewater

  • Research Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

A photosynthetic algal (Chlorella vulgaris) microbial fuel cell (PAMFC) with double chambers was adopted for power production and removal of carbon and nitrogen in swine sewerage that could provide nutrients for the growth of C. vulgaris. C. vulgaris was expected to utilize carbon dioxide (CO2) delivered from the anode chamber and generate oxygen as an electron acceptor by photosynthesis. PAMFC presented a maximum voltage output of 0.747 V and a maximum power density of 3720 mW/m3 at 240 h, much higher than that of the standalone MFC. 85.6%, 70.2%, and 93.9% removal of ammonia nitrogen, total nitrogen (TN), and total organic carbon (TOC), respectively, were obtained in the anode chamber of the PAMFC system, while the corresponding removal in MFC was 83.1%, 56.0%, and 87.2%, respectively. PAMFC also presented a much higher removal of ammonia nitrogen (68.7%) in the cathode chamber than MFC (47.5%). The results indicated the superiority of the PAMFC device for carbon and nitrogen removal.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Spain)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Badger MR, Price GD (2003) CO2 concentrating mechanisms in cyanobacteria: molecular components, their diversity and evolution. J Exp Bot 54:609–622

    Article  CAS  Google Scholar 

  • Behera M, Ghangrekar MM (2009) Performance of microbial fuel cell in response to change in sludge loading rate at different anodic feed pH. Bioresour Technol 100:5114–5121

    Article  CAS  Google Scholar 

  • Cai C, Zhang H, Zhong X, Hou L (2014) Electrochemical enhanced heterogeneous activation of peroxydisulfate by Fe-Co/SBA-15 catalyst for the degradation of Orange II in water. Water Res 66:473–485

    Article  CAS  Google Scholar 

  • Campo AGD, Cañizares P, Rodrigo MA, Fernández FJ, Lobato J (2013) Microbial fuel cell with an algae-assisted cathode: a preliminary assessment. J Power Sources 242:638–645

    Article  CAS  Google Scholar 

  • Campo AGD, Perez JF, Cañizares P, Rodrigo MA, Fernandez FJ, Lobato J (2014) Study of a photosynthetic MFC for energy recovery from synthetic industrial fruit juice wastewater. Int J Hydrog Energy 39:21828–21836

    Article  CAS  Google Scholar 

  • Campo AGD, Perez JF, Cañizares P, Rodrigo MA, Fernandez FJ, Lobato J (2015) Characterization of light/dark cycle and long-term performance test in a photosynthetic microbial fuel cell. Fuel 140:209–216

    Article  CAS  Google Scholar 

  • Chan KY, Wong KH, Wong PK (1979) Nitrogen and phosphorus removal from sewage effluent with high salinity by Chlorella salina. Environ Pollut 18:139–146

    Article  CAS  Google Scholar 

  • Chen CY, Kueiling Y, Aisyah R, Duujong L, Chang JS, Pandey A, Lee DJ, Logan BE (2011) Cultivation, photobioreactor design and harvesting of microalgae for biodiesel production: a critical review. Bioresour Technol 102:71–81

    Article  CAS  Google Scholar 

  • Choi O, Das A, Yu CP, Hu Z (2010) Nitrifying bacterial growth inhibition in the presence of algae and cyanobacteria. Biotechnol Bioeng 107:1004–1011

    Article  CAS  Google Scholar 

  • Chojnacka K, Marquezrocha FJ (2004) Kinetic and stoichiometric relationships of the energy and carbon metabolism in the culture of microalgae. Biotechnology 3:21–34

  • Chow J, Kopp RJ, Portney PR (2003) Energy resources and global development. Science 302:1528–1531

    Article  Google Scholar 

  • Clauwaert P, Van dHD, Boon N, Verbeken K, Verhaege M, Rabaey K, Verstraete W (2007) Open air biocathode enables effective electricity generation with microbial fuel cells. Environ Sci Technol 41:7564–7569

    Article  CAS  Google Scholar 

  • Colombo A, Marzorati S, Lucchini G, Cristiani P, Pant D, Schievano A (2017) Assisting cultivation of photosynthetic microorganisms by microbial fuel cells to enhance nutrients recovery from wastewater. Bioresour Technol 237:240–248

    Article  CAS  Google Scholar 

  • Commault AS, Laczka O, Siboni N, Tamburic B, Crosswell JR, Seymour JR, Ralph PJ (2017) Electricity and biomass production in a bacteria- Chlorella based microbial fuel cell treating wastewater. J Power Sources 356:299–309

    Article  CAS  Google Scholar 

  • Cuellar-Bermudez SP, Aleman-Nava GS, Chandra R, Garcia-Perez JS, Contreras-Angulo JR, Markou G, Muylaert K, Rittmann BE, Parra-Saldivar R (2016) Nutrients utilization and contaminants removal. A review of two approaches of algae and cyanobacteria in wastewater. Algal Res 24:438–449

  • Deng H, Chen Z, Zhao F (2012) Energy from plants and microorganisms: progress in plant-microbial fuel cells. ChemSusChem 5:1006–1011

    Article  CAS  Google Scholar 

  • Ding W, Cheng S, Yu L, Huang H (2017) Effective swine wastewater treatment by combining microbial fuel cells with flocculation. Chemosphere 182:567–573

    Article  CAS  Google Scholar 

  • Doherty L, Zhao Y, Zhao X, Wang W (2015) Nutrient and organics removal from swine slurry with simultaneous electricity generation in an alum sludge-based constructed wetland incorporating microbial fuel cell technology. Chem Eng J 266:74–81

    Article  CAS  Google Scholar 

  • Dortch Q (1990) The interaction between ammonium and nitrate uptake in phytoplankton. Mar Ecol Prog Ser 61:183–201

  • Elmekawy A, Hegab HM, Vanbroekhoven K, Pant D (2014) Techno-productive potential of photosynthetic microbial fuel cells through different configurations. Renew Sustain Energy Rev 39:617–627

    Article  CAS  Google Scholar 

  • Gajda I, Greenman J, Melhuish C, Ieropoulos I, Thornley P, Tucker G, Donnison I (2015) Self-sustainable electricity production from algae grown in a microbial fuel cell system. International Bioenergy Conference, pp 87-93

  • Gonzalez LE, Baena S, Canizares RO (1997) Efficiency of ammonia and phosphorus removal from a colombian agroindustrial wastewater by the microalgae Chlorella vulgaris and Scenedesmus dimorphus. Bioresour Technol 60:259–262

    Article  CAS  Google Scholar 

  • Hailing-Sørensen B, Nyhohn N, Baun A (1996) Algal toxicity tests with volatile and hazardous compounds in air-tight flasks with CO2 enriched headspace. Chemosphere 32:1513–1526

    Article  Google Scholar 

  • He Z, Kan J, Mansfeld F, Angenent L, Nealson K (2009a) Self-sustained phototrophic microbial fuel cells based on the synergistic cooperation between photosynthetic microorganisms and heterotrophic bacteria. Environ Sci Technol 43:1648–1654

    Article  CAS  Google Scholar 

  • He Z, Kan J, Wang Y, Huang Y, Mansfeld F, Nealson KH (2009b) Electricity production coupled to ammonium in a microbial fuel cell. Environ Sci Technol 43:3391–3397

    Article  CAS  Google Scholar 

  • Heilmann J, Logan BE (2006) Production of electricity from proteins using a microbial fuel cell. Water Environ Res 78:531–537

    Article  CAS  Google Scholar 

  • IPCC Working Group III 2007 Report ‘Mitigation of Climate Change’, Bangkok

  • Kassim MA, Meng TK (2017) Carbon dioxide (CO2) biofixation by microalgae and its potential for biorefinery and biofuel production. Sci Total Environ 584-585:1121–1129

    Article  CAS  Google Scholar 

  • Kim JR, Zuo Y, Regan JM, Logan BE (2010) Analysis of ammonia loss mechanisms in microbial fuel cells treating animal wastewater. Biotechnol Bioeng 99:1120–1127

    Article  CAS  Google Scholar 

  • Kim T, An J, Jang JK, Chang IS (2015) Coupling of anaerobic digester and microbial fuel cell for COD removal and ammonia recovery. Bioresour Technol 195:217–222

    Article  CAS  Google Scholar 

  • Kuntke P, Smiech KM, Bruning H, Zeeman G, Saakes M, Sleutels TH, Hamelers HV, Buisman CJ (2012) Ammonium recovery and energy production from urine by a microbial fuel cell. Water Res 46:2627–2636

    Article  CAS  Google Scholar 

  • Li M, Zhou M, Tian X, Tan C, Mcdaniel CT, Hassett DJ, Gu T (2018) Microbial fuel cell (MFC) power performance improvement through enhanced microbial electrogenicity. Biotechnol Adv 36:1316–1327

    Article  CAS  Google Scholar 

  • Liang W, Yingkuan W, Paul C, Roger R (2010) Semi-continuous cultivation of Chlorella vulgaris for treating undigested and digested dairy manures. Appl Biochem Biotechnol 162:2324–2332

    Article  CAS  Google Scholar 

  • Lobato J, Cañizares P, Rodrigo MA, Ruiz-López C, Linares JJ (2008) Influence of the Teflon loading in the gas diffusion layer of PBI-based PEM fuel cells. J Appl Electrochem 38:793–802

    Article  CAS  Google Scholar 

  • Lobato J, Campo AGD, Fernández FJ, Cañizares P, Rodrigo MA (2013) Lagooning microbial fuel cells: a first approach by coupling electricity-producing microorganisms and algae. Appl Energy 110:220–226

    Article  CAS  Google Scholar 

  • Logan BE (2008) Microbial fuel cells. Wiley, New Jersey

    Google Scholar 

  • Märkl H (2010) CO2 Transport and photosynthetic productivity of a continuous culture of algae. Biotechnol Bioeng 19:1851–1862

    Article  Google Scholar 

  • Mohan SV, Srikanth S, Raghuvulu SV, Mohanakrishna G, Kumar AK, Sarma PN (2009) Evaluation of the potential of various aquatic eco-systems in harnessing bioelectricity through benthic fuel cell: effect of electrode assembly and water characteristics. Bioresour Technol 100:2240–2246

    Article  CAS  Google Scholar 

  • Nam JY, Kim HW, Shin HS (2010) Ammonia inhibition of electricity generation in single-chambered microbial fuel cells. J Power Sources 195:6428–6433

    Article  CAS  Google Scholar 

  • Pant D, Adholeya A (2009) Nitrogen removal from biomethanated spentwash using hydroponic treatment followed by fungal decolorization. Environ Eng Sci 26:559–565

    Article  CAS  Google Scholar 

  • Powell EE, Mapiour ML, Evitts RW, Hill GA (2009) Growth kinetics of Chlorella vulgaris and its use as a cathodic half cell. Bioresour Technol 100:269–274

    Article  CAS  Google Scholar 

  • Rabaey I, Ossieur W, Verhaege M, Verstraete W (2005) Continuous microbial fuel cells convert carbohydrates to electricity. Water Sci Technol J Int Assoc Water Pollut Res 52:515

    Article  CAS  Google Scholar 

  • Rittmann BE (2010) Opportunities for renewable bioenergy using microorganisms. Biotechnol Bioeng 100:203–212

    Article  CAS  Google Scholar 

  • Rodrigo MA, Cañizares P, Lobato J (2010) Effect of the electron-acceptors on the performance of a MFC. Bioresour Technol 101:7014–7018

    Article  CAS  Google Scholar 

  • Rosenbaum M, He Z, Angenent LT (2010) Light energy to bioelectricity: photosynthetic microbial fuel cells. Curr Opin Biotechnol 21:259–264

    Article  CAS  Google Scholar 

  • Rossi R, Yang W, Zikmund E, Pant D, Logan BE (2018) In situ biofilm removal from air cathodes in microbial fuel cells treating domestic wastewater. Bioresour Technol 265:200–206

    Article  CAS  Google Scholar 

  • Rossi R, Jones D, Myung J, Zikmund E, Yang W, Gallego YA, Pant D, Evans PJ, Page MA, Cropek DM, Logan BE (2019) Evaluating a multi-panel air cathode through electrochemical and biotic tests. Water Res 148:51–59

    Article  CAS  Google Scholar 

  • Ryu JH, Lee HL, Lee YP, Kim TS, Kim MK, Anh DTN, Tran HT, Ahn DH (2013) Simultaneous carbon and nitrogen removal from piggery wastewater using loop configuration microbial fuel cell. Process Biochem 48:1080–1085

    Article  CAS  Google Scholar 

  • Sakdaronnarong CK, Thanosawan S, Chaithong S, Sinbuathong N, Jeraputra C (2013) Electricity production from ethanol stillage in two-compartment MFC. Fuel 107:382–386

    Article  CAS  Google Scholar 

  • Sevda S, Sreekrishnan TR, Pous N, Puig S, Pant D (2018) Bioelectroremediation of perchlorate and nitrate contaminated water: a review. Bioresour Technol 255:331–339

    Article  CAS  Google Scholar 

  • Strik DPBTB, Hamelers HVM, Snel JFH, Buisman CJN (2008) Green electricity production with living plants and bacteria in a fuel cell. Int J Energy Res 32:870–876

    Article  CAS  Google Scholar 

  • Strik DPBTB, Hamelers HVM, Buisman CJN (2010) Solar energy powered microbial fuel cell with a reversible bioelectrode. Environ Sci Technol 44:532–537

    Article  CAS  Google Scholar 

  • Uggetti E, Puigagut J (2016) Photosynthetic membrane-less microbial fuel cells to enhance microalgal biomass concentration. Bioresour Technol 218:1016–1020

    Article  CAS  Google Scholar 

  • Venkata MS, Srikanth S, Chiranjeevi P, Arora S, Chandra R (2014) Algal biocathode for in situ terminal electron acceptor (TEA) production: synergetic association of bacteria-microalgae metabolism for the functioning of biofuel cell. Bioresour Technol 166:566–574

    Article  CAS  Google Scholar 

  • Vries BJMD, Vuuren DPV, Hoogwijk MM (2007) Renewable energy sources: their global potential for the first-half of the 21st century at a global level: an integrated approach. Energy Policy 35:2590–2610

    Article  Google Scholar 

  • **ao L, Young EB, Berges JA, He Z (2012) Integrated photo-bioelectrochemical system for contaminants removal and bioenergy production. Environ Sci Technol 46:11459–11466

    Article  CAS  Google Scholar 

  • Yan S, **ong W, **ng S, Shao Y, Guo R, Zhang H (2017) Oxidation of organic contaminant in a self-driven electro/natural maghemite/peroxydisulfate system: efficiency and mechanism. Sci Total Environ 599–600:1181–1190

    Article  CAS  Google Scholar 

  • Yang W, Watson VJ, Logan BE (2016) Substantial humic acid adsorption to activated carbon air cathodes produces a small reduction in catalytic activity. Environ Sci Technol 50:8904–8909

    Article  CAS  Google Scholar 

  • Yuan Y, Chen Q, Zhou S, Zhuang L, Hu P (2011) Bioelectricity generation and microcystins removal in a blue-green algae powered microbial fuel cell. J Hazard Mater 187:591–595

    Article  CAS  Google Scholar 

  • Zhang F, Ahn Y, Logan BE (2014) Treating refinery wastewaters in microbial fuel cells using separator electrode assembly or spaced electrode configurations. Bioresour Technol 152:46–52

    Article  CAS  Google Scholar 

  • Zhang E, Wang F, Yu Q, Scott K, Wang X, Diao G (2017) Durability and regeneration of activated carbon air-cathodes in long-term operated microbial fuel cells. J Power Sources 360:21–27

    Article  CAS  Google Scholar 

  • Zhang Y, Liu M, Zhou M, Yang H, Liang L, Gu T (2018) Microbial fuel cell hybrid systems for wastewater treatment and bioenergy. Renew Sustain Energy Rev

  • Zhou M, He H, ** T, Wang H (2012) Power generation enhancement in novel microbial carbon capture cells with immobilized Chlorella vulgaris. J Power Sources 214:216–219

    Article  CAS  Google Scholar 

  • Zhuang L, Zheng Y, Zhou SG, Yuan Y, Yuan HR, Chen Y (2012) Scalable microbial fuel cell (MFC) stack for continuous real wastewater treatment. Bioresour Technol 106:82–88

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (NO. 91545126, 21773129, 21806081, 21811530274 and 51178225), the International Cooperation Projects of Ministry of Science and Technology (42-8), 111 program, the Ministry of Education of China (T2017002), and the Fundamental Research Funds for the Central Universities.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Minghua Zhou.

Additional information

Responsible editor: Philippe Garrigues

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, Y., Zhao, Y. & Zhou, M. A photosynthetic algal microbial fuel cell for treating swine wastewater. Environ Sci Pollut Res 26, 6182–6190 (2019). https://doi.org/10.1007/s11356-018-3960-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-018-3960-4

Keywords

Navigation