Log in

Improving Sustainability Index of Grey Cast Iron Finish Cutting Through High-Speed Dry Turning and Cutting Parameters Optimization Using Taguchi-Based Bayesian Method

  • Regular Paper
  • Published:
International Journal of Precision Engineering and Manufacturing-Green Technology Aims and scope Submit manuscript

Abstract

Grey cast iron (GCI) is the most common metal casting product in the world. Therefore, achieving sustainable production for this particular material will provide a significant impact on the sustainability issue of metal industries in general. This paper attempts to enhance the sustainability of grey cast iron turning through a high speed, dry turning process. The effect of cutting parameters on three assessments of product sustainability index (PSI) called energy consumption (EC), tool cost (TC), and surface roughness (SR) was investigated using the Taguchi method. The analysis of the signal to noise (S/N) ratio shows that the minimum depth of cut (0.1 mm) gives the optimal performance for all three assessments. Meanwhile, the cutting speed and feed rate reveal a conflict in obtaining the best performance. To help with making a decision, a Taguchi-based Bayesian optimization method was proposed and the capability of the method on suppressing the number of samples to obtain the optimum cutting parameters was demonstrated. Furthermore, the reasons for the optimum cutting condition were also presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

Abbreviations

GCI:

Grey cast iron

S/N:

Signal to noise ratio

CBN:

Cubic boron nitride

BUL:

Built-up layer

PSI:

Product sustainability index

EE:

Environmental effect

OH:

Operator health

WC:

Workpiece cleaning

CRD:

Coolant recycling and disposal

CC:

Coolant cost

PE:

Processing efficiency

TC:

Tool cost

EC:

Energy consumption

SR:

Surface roughness

JIS:

Japanese industrial standards

CNC:

Computer numerical control

ANOVA:

Analysis of variance

MSD:

Mean square deviation

MRR:

Material removal rate

SEM:

Scanning electron microscope

EDX:

Energy dispersive X-ray spectroscopy

FEM:

Finite element method

References

  1. Lee, H., Song, J., Min, S., Lee, H., Song, K. Y., Chu, C. N., et al. (2019). Research trends in sustainable manufacturing: A review and future perspective based on research databases. International Journal of Precision Engineering and Manufacturing-Green Technology, 6(4), 809–819.

    Article  Google Scholar 

  2. Jayal, A. D., Badurdeen, F., Dillon, O. W., Jr., & Jawahir, I. S. (2010). Sustainable manufacturing: Modeling and optimization challenges at the product, process and system levels. CIRP Journal of Manufacturing Science and Technology, 2(3), 144–152.

    Article  Google Scholar 

  3. Ghosh, S., & Rao, P. V. (2015). Application of sustainable techniques in metal cutting for enhanced machinability: A review. Journal of Cleaner Production, 100, 17–34.

    Article  Google Scholar 

  4. Kim, D., Kim, T. J. Y., Wang, X., Kim, M., Quan, Y., Oh, J. W., et al. (2018). Smart machining process using machine learning: A review and perspective on machining industry. International Journal of Precision Engineering and Manufacturing-Green Technology, 5(4), 555–568.

    Article  Google Scholar 

  5. Abdalla, H. S., Baines, W., McIntyre, G., & Slade, C. (2007). Development of novel sustainable neat-oil metal working fluids for stainless steel and titanium alloy machining. Part 1. Formulation development. The International Journal of Advanced Manufacturing Technology, 34, 21–33.

    Article  Google Scholar 

  6. Hegab, H. A., Darras, B., & Kishawy, H. A. (2018). Towards sustainability assessment of machining processes. Journal of Cleaner Production, 170(1), 694–703.

    Article  Google Scholar 

  7. Goindi, G. S., & Sarkar, P. (2017). Dry machining: A step towards sustainable machining—Challenges and future directions. Journal of Cleaner Production, 165, 1557–1571.

    Article  Google Scholar 

  8. Krolczyk, G. M., Maruda, R. W., Krolczyk, J. B., Wojciechowski, S., Mia, M., Nieslony, P., & Budzik, G. (2019). Ecological trends in machining as a key factor in sustainable production—A review. Journal of Cleaner Production, 218, 601–615.

    Article  Google Scholar 

  9. Modern Casting—A publication of the American Foundry Society. (2019). Census of World Casting Production. https://www.moderncasting.com/index.php/issues/2019/12. Accessed 6 Feb 2020.

  10. Pereira, A. A., Boehs, L., & Guesser, W. L. (2006). Dry machining: The influence of sulfur on the machinability of gray cast iron FC25. Journal of Materials Processing Technology, 179, 165–171.

    Article  Google Scholar 

  11. Sarma, D. K., & Dixit, U. S. (2007). A comparison of dry and air-cooled turning of grey cast iron with mixed oxide ceramic tool. Journal of Materials Processing Technology, 190, 160–172.

    Article  Google Scholar 

  12. Tu, G., Wu, S., Liu, J., Long, Y., & Wang, B. (2016). Cutting performance and wear mechanisms of Sialon ceramic cutting tools at high speed dry turning of gray cast iron. International Journal of Refractory Metals and Hard Materials, 54, 330–334.

    Article  Google Scholar 

  13. Gastel, M., Konetschny, C., Reuter, U., Fasel, C., Schulz, H., Riedel, R., & Ortner, H. M. (2000). Investigation of the wear mechanism of cubic boron nitride tools used for the machining of compacted graphite iron and grey cast iron. International Journal of Refractory Metals and Hard Materials, 18, 287–296.

    Article  Google Scholar 

  14. Heck, M., Ortner, H. M., Flege, S., Reuter, U., & Ensinger, W. (2008). Analytical investigations concerning the wear behaviour of cutting tools used for the machining of compacted graphite iron and grey cast iron. International Journal of Refractory Metals and Hard Materials, 26, 197–206.

    Article  Google Scholar 

  15. Fiorini, P., & Byrne, G. (2016). The influence of built-up layer formation on cutting performance of GG25 grey cast iron. CIRP Annals-Manufacturing Technology, 65, 93–96.

    Article  Google Scholar 

  16. Liang, X., Liu, Z., Liu, W., & Li, X. (2019). Sustainability assessment of dry turning Ti-6Al-4V employing uncoated cemented carbide tools as clean manufacturing process. Journal of Cleaner Production, 214, 279–289.

    Article  Google Scholar 

  17. Shin, S. J., Suh, S. H., Stroud, I., & Yoon, S. C. (2017). Process-oriented life cycle assessment framework for environmentally conscious manufacturing. Journal of Intelligent Manufacturing, 28, 1481–1499.

    Article  Google Scholar 

  18. Sihag, N., & Sangwan, K. S. (2020). A systematic literature review on machine tool energy consumption. Journal of Cleaner Production, 275, 123125.

    Article  Google Scholar 

  19. Peng, T., & Xu, X. (2014). Energy-efficient machining systems: A critical review. The International Journal of Advanced Manufacturing Technology, 72, 1389–1406.

    Article  Google Scholar 

  20. Mert, G., Waltemode, S., & Aurich, J. C. (2015). How services influence the energy efficiency of machine tools: A case study of a machine tool manufacturer. Procedia CIRP, 29, 287–292.

    Article  Google Scholar 

  21. Zhao, G. Y., Liu, Z. Y., He, Y., Cao, H. J., & Guo, Y. B. (2017). Energy consumption in machining: Classification, prediction, and reduction strategy. Energy, 133, 142–157.

    Article  Google Scholar 

  22. Behrendt, T., Zein, A., & Min, S. (2012). Development of an energy consumption monitoring procedure for machine tools. CIRP Annals, 61(1), 43–46.

    Article  Google Scholar 

  23. Shin, S. J., Woo, J., Rachuri, S., & Seo, W. (2019). An energy-efficient process planning system using machine-monitoring data: A data analytics approach. Computer-Aided Design, 110, 92–109.

    Article  Google Scholar 

  24. Salonitis, K., & Ball, P. (2013). Energy efficient manufacturing from machine tools to manufacturing systems. Procedia CIRP, 7, 634–639.

    Article  Google Scholar 

  25. Aramcharoen, A., & Mativenga, P. T. (2014). Critical factors in energy demand modelling for CNC milling and impact of toolpath strategy. Journal of Cleaner Production, 78, 63–74.

    Article  Google Scholar 

  26. Shin, S. J., Woo, J., & Rachuri, S. (2017). Energy efficiency of milling machining: Component modeling and online optimization of cutting parameters. Journal of Cleaner Production, 161, 12–29.

    Article  Google Scholar 

  27. Rao, R. V. (2011). Modeling and optimization of machining processes. In V. R. Rao (Ed.), Advanced modeling and optimization of manufacturing processes (pp. 55–175). Springer London.

    Chapter  Google Scholar 

  28. Hu, L., Cai, W., Shu, L., Xu, K., Zheng, H., & Jia, S. (2020). Energy optimization for end face turning with variable material removal rate considering the spindle speed changes. International Journal of Precision Engineering and Manufacturing-Green Technology. https://doi.org/10.1007/s40684-020-00210-w

    Article  Google Scholar 

  29. Liu, N., Zhang, Y. F., & Lu, W. F. (2019). Improving energy efficiency in discrete parts manufacturing system using an ultra-flexible job shop scheduling algorithm. International Journal of Precision Engineering and Manufacturing-Green Technology, 6(2), 349–365.

    Article  Google Scholar 

  30. Camposeco-Negrete, C. (2013). Optimization of cutting parameters for minimizing energy consumption in turning of AISI 6061 T6 using Taguchi methodology and ANOVA. Journal of Cleaner Production, 53, 195–203.

    Article  Google Scholar 

  31. Camposeco-Negrete, C. (2015). Optimization of cutting parameters using response surface method for minimizing energy consumption and maximizing cutting quality in turning of AISI 6061 T6 aluminum. Journal of Cleaner Production, 91, 109–117.

    Article  Google Scholar 

  32. Deng, Z., Lv, L., Huang, W., & Shi, Y. (2019). A high efficiency and low carbon oriented machining process route optimization model and its application. International Journal of Precision Engineering and Manufacturing-Green Technology, 6(1), 23–41.

    Article  Google Scholar 

  33. Perdomo, I. L. F., Quiza, R., Haeseldonckx, D., & Rivas, M. (2019). Sustainability-focused multi-objective optimization of a turning process. International Journal of Precision Engineering and Manufacturing-Green Technology. https://doi.org/10.1007/s40684-019-00122-4

    Article  Google Scholar 

  34. Muhammad, I., Khatoon, T., Ullah, S. M. S., & Ko, T. J. (2018). Development of empirical model for biomachining to improve machinability and surface roughness of polycrystalline copper. International Journal of Precision Engineering and Manufacturing-Green Technology, 5, 201–209.

    Article  Google Scholar 

  35. Montgomery, D. C. (2013). Design and analysis of experiments (8th ed.). Wiley.

    Google Scholar 

  36. Roy, R. (2010). A primer on the Taguchi method (2nd ed.). Society of Manufacturing Engineers.

    Google Scholar 

  37. Parida, A. K., & Maity, K. (2019). Modeling of machining parameters affecting flank wear and surface roughness in hot turning of monel-400 using response surface methodology (RSM). Measurement, 137, 375–381.

    Article  Google Scholar 

  38. Herwan, J., Kano, S., Oleg, R., Sawada, H., Kasashima, N., & Misaka, T. (2020). Predicting surface roughness of dry cut grey cast iron based on cutting parameters and vibration signals from different sensor positions in CNC turning. International Journal of Automation Technology, 14, 217–228.

    Article  Google Scholar 

  39. Bhinge, R., Park, J., Law, K. H., Dornfeld, D. A., Helu, M., & Rachuri, S. (2017). Toward a generalized energy prediction model for machine tools. Journal of Manufacturing Science and Engineering, 139, 041013.

    Article  Google Scholar 

  40. Liu, M., Cheung, C., Feng, X., Ho, L., & Yang, S. (2019). Gaussian process machine learning- based surface extrapolation method for improvement of the edge effect in surface filtering. Measurement, 137, 214–224.

    Article  Google Scholar 

  41. Misaka, T., Herwan, J., Kano, S., Oleg, R., Sawada, H., Kasashima, N., & Furukawa, Y. (2020). Prediction of surface roughness in CNC turning by model-assisted response surface method. Precision Engineering, 62, 196–203.

    Article  Google Scholar 

  42. Jones, D. R., Schonlau, M., & Welch, W. J. (1998). Efficient global optimization of expensive black box functions. Journal of Global Optimization, 13, 455–492.

    Article  MathSciNet  MATH  Google Scholar 

  43. Forrester, A. I. J., Sóbester, A., & Keane, A. J. (2007). Multi-fidelity optimization via surrogate modelling. Proceedings of the Royal Society A, 463, 3251–3269.

    Article  MathSciNet  MATH  Google Scholar 

  44. Forrester, A. I. J., Sóbester, A., & Keane, A. J. (2008). Engineering design via surrogate modelling: A practical guide. Wiley.

    Book  Google Scholar 

  45. Voigt, R. C., Marwanga, P. H., & Cohen, P. H. (1999). Machinability of gray iron—mechanics of chip formation. International Journal of Cast Metals Research, 11, 567–572.

    Article  Google Scholar 

  46. Bilga, P. S., Singh, S., & Kumar, R. (2016). Optimization of energy consumption response parameters for turning operation using Taguchi method. Journal of Cleaner Production, 137, 1406–1417.

    Article  Google Scholar 

  47. Yang, W. H., & Tarng, Y. S. (1998). Design optimization of cutting parameters for turning operations based on the Taguchi method. Journal of Materials Processing Technology, 84, 122–129.

    Article  Google Scholar 

  48. Maier, M., Zwicker, R., Akbari, M., Rupenyan, A., & Wegener, K. (2019). Bayesian optimization for autonomous process set-up in turning. CIRP Journal of Manufacturing Science and Technology, 26, 81–87.

    Article  Google Scholar 

  49. Nguyen, D., Tooptong, S., Park, K. H., & Kwon, P. (2020). Formation mechanism of alumina layer in protecting cubic boron nitride inserts in turning cast irons. International Journal of Machine Tools & Manufacture, 153, 103539.

    Article  Google Scholar 

  50. Abukhshim, N. A., Mativenga, P. T., & Sheikh, M. A. (2006). Heat generation and temperature prediction in metal cutting: A review and implications for high speed machining. International Journal of Machine Tools & Manufacture, 46, 782–800.

    Article  Google Scholar 

  51. Tu, L., & Shi, W. (2020). Establish using FEM method of constitutive model for chip formation in the cutting process of gray cast iron. Metals, 10, 33.

    Article  Google Scholar 

  52. Angseryd, J., Coronel, E., Elfwing, M., Olsson, E., & Andrén, H. O. (2009). The microstructure of the affected zone of a worn PCBN cutting tool characterised with SEM and TEM. Wear, 267, 1031–1040.

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the Ministry of Economy, Trade, and Industry (METI) of Japan for providing the funds through the project entitled “Study on smart manufacturing system design and technology”. The authors would also like to acknowledge Dr. Naoko Sato and Dr. M. Shahien (AIST) for the support and guidance on using the SEM-EDX apparatus.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jonny Herwan.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix: Bayesian Optimization Procedure

Appendix: Bayesian Optimization Procedure

The prediction \(\widehat{y}\left({\varvec{x}}\right)\), which corresponds to the cost function for a vector variable \({\varvec{x}}={\left[{x}_{1},{x}_{2},\ldots ,{x}_{m}\right]}^{T}\) composed of operation conditions in turning is given as follows:

$$\widehat{y}\left({\varvec{x}}\right)=\mu +{{\varvec{\psi}}}^{T}{\Psi }^{-1}\left({\varvec{y}}-1\mu \right),$$
(10)

where \({\varvec{y}}={\left[{y}_{1},{y}_{2},\ldots ,{y}_{n}\right]}^{T}\) corresponds to a vector of the cost function that corresponds to \(n\) different experiments, and 1 represents a unit vector. The subscript \(m\) indicates the number of operational parameters considered for constructing the model. The covariance matrix is defined as:

$$\Psi =\left[\begin{array}{ccc}cor\left[Y\left({{\varvec{x}}}^{\left(1\right)}\right),Y\left({{\varvec{x}}}^{\left(1\right)}\right)\right]& \cdots & cor\left[Y\left({{\varvec{x}}}^{\left(1\right)}\right),Y\left({{\varvec{x}}}^{\left(n\right)}\right)\right]\\ \vdots & \ddots & \vdots \\ cor\left[Y\left({{\varvec{x}}}^{\left(n\right)}\right),Y\left({{\varvec{x}}}^{\left(1\right)}\right)\right]& \cdots & cor\left[Y\left({{\varvec{x}}}^{\left(n\right)}\right),Y\left({{\varvec{x}}}^{\left(n\right)}\right)\right]\end{array}\right],$$
(11)

where the correlation function is defined as follows:

$$cor\left[Y\left({{\varvec{x}}}^{\left(k\right)}\right),Y\left({{\varvec{x}}}^{\left(l\right)}\right)\right]=\mathrm{exp}\left[-\sum_{j=1}^{m}{\theta }_{j}{|{x}_{j}^{\left(k\right)}-{x}_{j}^{\left(l\right)}|}^{2}\right].$$
(12)

The vector \({\varvec{\psi}}\) in Eq. (10) is the correlation of the sampled parameter sets and a parameter set \({\varvec{x}}\) to be predicted as follows:

$${\varvec{\psi}}=\left[\begin{array}{c}cor[Y({{\varvec{x}}}^{(1)}),Y({\varvec{x}})]\\ \vdots \\ cor[Y({{\varvec{x}}}^{(n)}),Y({\varvec{x}})]\end{array}\right].$$
(13)

The average component \(\mu\) in Eq. (10) is defined as \(\mu ={(1}^{T}{\Psi }^{-1}{\varvec{y}})/({1}^{T}{\Psi }^{-1}1)\) and the variance \({\sigma }^{2}\) is defined as follows:

$${\sigma }^{2}=\frac{{\left({\varvec{y}}-1\mu \right)}^{T}{\Psi }^{-1}({\varvec{y}}-1\mu )}{n}.$$
(14)

The hyperparameter \({\varvec{\theta}}={\left[{\theta }_{1},{\theta }_{2},\ldots ,{\theta }_{m}\right]}^{T}\) used in Eq. (12) is obtained by maximizing a ln-likelihood function given as:

$$Ln\left({\varvec{\theta}}\right)\approx -\frac{n}{2}\mathrm{ln}\left({\sigma }^{2}\right)-\frac{n}{2}\mathrm{ln}\left|\Psi \right|.$$
(15)

The maximization of the ln-likelihood function is performed using a genetic algorithm to find the hyperparameter \({\varvec{\theta}}\) that best represents the sampled data sets.

Once the surrogate model of a cost function is constructed based on the above procedures, it is possible to minimize/maximize a function value as well as to evaluate indices for improving the surrogate model itself. Both purposes can be achieved simultaneously using expected improvement realizing so-called Bayesian optimization. The expected improvement can be calculated by:

$$EI\left({\varvec{x}}\right)=\left[{y}_{\mathrm{min}}-\widehat{y}\left({\varvec{x}}\right)\right]\left[\frac{1}{2}+\frac{1}{2}\mathrm{erf}\left[\frac{{y}_{\mathrm{min}}-\widehat{y}\left({\varvec{x}}\right)}{\sqrt{2}\widehat{s}}\right]\right]+\widehat{s}\frac{1}{\sqrt{2\pi }}\mathrm{exp}\left[\frac{-{\left[{y}_{\mathrm{min}}-\widehat{y}\left({\varvec{x}}\right)\right]}^{2}}{2{\widehat{s}}^{2}}\right],$$
(16)

where \(\mathrm{erf}\) indicates an error function,\({y}_{\mathrm{min}}\) is the current minimum while \(\widehat{s}\) is standard deviation obtained from the constructed surrogate model, which is obtained by:

$${\widehat{s}}^{2}={\sigma }^{2}\left[1-{{\varvec{\psi}}}^{T}{\Psi }^{-1}{\varvec{\psi}}+\frac{{\left[1-{1}^{T}{\Psi }^{-1}{\varvec{y}}\right]}^{2}}{{1}^{T}{\Psi }^{-1}1}\right].$$
(17)

All the quantities used in Eqs. (16) and (17) are obtained during the construction of the surrogate model. In the Bayesian optimization, \(EI\left({\varvec{x}}\right)\) is used to locate an additional sample point, i.e., a candidate of experimental conditions. The candidate of parameters \({\varvec{x}}\) is searched also by a genetic algorithm using \(EI\left({\varvec{x}}\right)\) as a cost function.

Constraints associated with monitored quantities such as surface roughness can be considered in the Bayesian optimization procedure by considering \(EI\left({\varvec{x}}\right)PF({\varvec{x}})\) with \(PF\left({\varvec{x}}\right)\) represented by:

$$PF({\varvec{x}})=\frac{1}{\widehat{s}\sqrt{2\pi }}{\int }_{0}^{\infty }\mathrm{exp}\left[\frac{-{\left[G\left(x\right)-{g}_{\mathrm{min}}-\widehat{g}\left({\varvec{x}}\right)\right]}^{2}}{2{\widehat{s}}^{2}}\right]dG,$$
(18)

where \(g\) is the constraint function, \({g}_{\mathrm{min}}\) is the constraint value, \(G\left(x\right)\) is a random variable. In the present case, surface roughness \(Ra\) is considered as a constraint.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Herwan, J., Misaka, T., Kano, S. et al. Improving Sustainability Index of Grey Cast Iron Finish Cutting Through High-Speed Dry Turning and Cutting Parameters Optimization Using Taguchi-Based Bayesian Method. Int. J. of Precis. Eng. and Manuf.-Green Tech. 10, 729–745 (2023). https://doi.org/10.1007/s40684-022-00457-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40684-022-00457-5

Keywords

Navigation