Log in

Generalized Permutahedra and Schubert Calculus

  • Research Contribution
  • Published:
Arnold Mathematical Journal Aims and scope Submit manuscript

Abstract

We connect generalized permutahedra with Schubert calculus. Thereby, we give sufficient vanishing criteria for Schubert intersection numbers of the flag variety. Our argument utilizes recent developments in the study of Schubitopes, which are Newton polytopes of Schubert polynomials. The resulting tableau test executes in polynomial time.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Adve, A., Robichaux, C., Yong, A.: Computational complexity, Newton polytopes, and Schubert polynomials. Sém. Lothar. Combin. 82B:Art. 52, 12 (2020)

  2. Aguiar, M., Ardilla, F.: Hopf monoids and generalized permutahedra (2017). ar**v:1709.07504 [math]

  3. Ardila, F., Benedetti, C., Doker, J.: Matroid polytopes and their volumes. Discrete Comput. Geom. 43(4), 841–854 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  4. Belkale, P., Kumar, S.: Eigenvalue problem and a new product in cohomology of flag varieties. Invent. Math. 166(1), 185–228 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  5. Billey, S.C.: Kostant polynomials and the cohomology ring for \(G/B\). Duke Math. J. 96(1), 205–224 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  6. De Loera, J., McAllister, T.: On the computation of Clebsch–Gordan coefficients and the dilation effect. Exp. Math. 15(1), 7–19 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  7. Fink, A., Mészáros, K., St. Dizier, A.: Schubert polynomials as integer point transforms of generalized permutahedra. Adv. Math. 332, 465–475 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  8. Fulton, W.: Young tableaux. With applications to representation theory and geometry. London Mathematical Society Student Texts, vol. 35, pp. x+260. Cambridge University Press, Cambridge (1997)

  9. Fulton, W..: Eigenvalues, invariant factors, highest weights, and Schubert calculus. Bull. Am. Math. Soc. (N.S.) 37(3), 209–249 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  10. Gillespie, M.: Variations on a theme of Schubert calculus. In: Barcelo, H., Karaali, G., Orellana, R. (eds.) Recent Trends in Algebraic Combinatorics. Association for Women in Mathematics Series, vol 16. Springer (2019)

  11. Kleiman, S.L., Laksov, D.: Schubert calculus. Am. Math. Mon. 79, 1061–1082 (1972)

    Article  MathSciNet  MATH  Google Scholar 

  12. Knutson, A.: Descent-cycling in Schubert calculus. Exp. Math. 10(3), 345–353 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  13. Knutson, A.: A Schubert calculus recurrence from the noncomplex \(W\)-action on \(G/B\) (2003). ar**v:math/0306404

  14. Knutson, A., Tao, T.: The honeycomb model of \({\rm GL}_n({\bf C})\) tensor products. I. Proof of the saturation conjecture. J. Am. Math. Soc. 12(4), 1055–1090 (1999)

  15. Manivel, L., Symmetric functions, Schubert polynomials and degeneracy loci. Translated from the 1998 French original by John R. Swallow. SMF/AMS Texts and Monographs. American Mathematical Society, Providence (2001)

  16. Monical, C., Tokcan, N., Yong, A.: Newton polytopes in algebraic combinatorics. Sel. Math. (N.S.) 25(5), 37, Paper No. 66 (2019)

  17. Mulmuley, K., Narayanan, H., Sohoni, M.: Geometric complexity theory III: on deciding nonvanishing of a Littlewood–Richardson coefficient. J. Algebraic Comb. 36(1), 103–110 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  18. Purbhoo, K.: Vanishing and nonvanishing criteria in Schubert calculus. Int. Math. Res. Not. Art. ID 24590, 38 (2006)

  19. Rado, R.: An inequality. J. Lond. Math. Soc. 27, 1–6 (1952)

    Article  MATH  Google Scholar 

  20. Reiner, V., Shimozono, M.: Key polynomials and a flagged Littlewood–Richardson rule. J. Comb. Theory Ser. A 70(1), 107–143 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  21. Schrijver, A.: Combinatorial optimization. Polyhedra and efficiency. Vol. B. Matroids, trees, stable sets. Chapters 39–69. Algorithms and Combinatorics, vol. 24, B, pp. i–xxxiv and 649–1217. Springer, Berlin (2003)

Download references

Acknowledgements

We would like to thank Husnain Raza for writing code, as part of the Illinois Combinatorics Lab for Undergraduate Experience (ICLUE) program, to help study Knutson’s descent cycling. We would also like to thank our collective authors Anshul Adve, Alex Fink, Karola Mészáros, Cara Monical, Neriman Tokcan, and Colleen Robichaux from [1, 7, 16] for their work upon which is paper is possible. AS was supported by an NSF postdoctoral fellowship. AY was partially supported by a Simons Collaboration Grant, an NSF RTG 1937241 in Combinatorics, and an appointment at the UIUC Center for Advanced Study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Avery St. Dizier.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dizier, A.S., Yong, A. Generalized Permutahedra and Schubert Calculus. Arnold Math J. 8, 517–533 (2022). https://doi.org/10.1007/s40598-022-00208-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40598-022-00208-z

Navigation