Log in

Unraveling the ability of wheat to endure drought stress by analyzing physio-biochemical, stomatal and root architectural traits

  • Original Article
  • Published:
Plant Physiology Reports Aims and scope Submit manuscript

Abstract

Projected changes in the occurrence and severity of climatic events will negatively affect the wheat yield. Therefore, high-yielding and abiotic stress tolerant cultivars are crucial to establish tolerance through wheat breeding program. The current study is a move towards discovering the genetic materials that have the ability to tolerate drought stress. A set of twenty-seven diverse Indian wheat genotypes consisting mutant lines, genetic stocks, released varieties including checks was assessed under controlled environmental conditions at ICAR-IIWBR, Karnal for the study. Initially, the genotypes were screened based on the morpho-physiological traits followed by biochemical analysis to determine their antioxidant activity. The water stress significantly affected morphological, physiological and biochemical machinery of the plants. The root architectural traits were also studied for the selected genotypes. Simultaneously, the stomatal traits were recorded as supplementary characteristic to comprehend its genetic control for investigating the tolerance. Based on recorded traits and matrix scoring genotypes were categorised as tolerant, moderately tolerant, moderately susceptible and susceptible. The correlation study represented positive association of plant height with spike length, spike weight, number of grains per spike, grain weight per spike, harvest index, grain filling duration and days to anthesis. The identified genotype could be further employed in wheat breeding program. So, the experimental findings encompass the ability of the identified wheat genotypes to withstand drought.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data and materials availability

This article consist of entire data which was produced and analysed during this study.

Abbreviations

DS:

Drought stress

ROS:

Reactive oxygen species

PH:

Plant height

CCI:

Chlorophyll content index

CFL:

Chlorophyll fluorescence

CT:

Canopy temperature

NDVI:

Normalized difference vegetation index

EC:

Electrical conductivity

MSI:

Membrane stability index

CAT:

Catalase

APX:

Ascorbate peroxidase

SOD:

Superoxide dismutase

DH:

Days to heading

DA:

Days to anthesis

DM:

Days to maturity

BM:

Biomass

SL:

Spike length

GWPS:

Grain weight per spike

NGPS:

Number of grains per spike

HI:

Harvest index

RL:

Root length

RD:

Root diameter

RV:

Root volume

SA:

Root surface area

LS:

Length of stomata

WS:

Width of stomata

SF:

Frequency of stomata

References

  • Abdoli, M., & Saeidi, M. (2013). Evaluation of water deficiency and source limitation during grain filling on grain yield formation, some morphological and phonological traits and gas exchange of bread wheat cultivar. Albanian Journal of Agricultural Sciences, 12(2), 255.

    Google Scholar 

  • Abid, M., Tian, Z., Ata-Ul-Karim, S. T., Cui, Y., Liu, Y., Zahoor, R., Jiang, D., & Dai, T. (2016). Nitrogen nutrition improves the potential of wheat (Triticum aestivum L.) to alleviate the effects of drought stress during vegetative growth periods. Frontiers in Plant Science, 7, 981. https://doi.org/10.3389/fpls.2016.00981

    Article  PubMed  PubMed Central  Google Scholar 

  • Aebi, H., & Lester, P. (1984). Catalase in vitro. Methods in Enzymology, 105, 121–126. https://doi.org/10.1016/S0076-6879(84)05016-3

    Article  CAS  PubMed  Google Scholar 

  • Ahmad, A., Aslam, Z., Javed, T., Hussain, S., Raza, A., Shabbir, R., Mora-Poblete, F., Saeed, T., Zulfiqar, F., Ali, M. M., Nawaz, M., Rafiq, M., Osman, H. S., Albaqami, M., Ahmed, M., & Tauseef, M. (2022). Screening of wheat (Triticum aestivum L.) genotypes for drought tolerance through agronomic and physiological response. Agronomy, 12(2), 287. https://doi.org/10.3390/agronomy12020287

    Article  CAS  Google Scholar 

  • Ahmadian, K., Jalilian, J., & Pirzad, A. (2021). Nano-fertilizers improved drought tolerance in wheat under deficit irrigation. Agricultural Water Management, 244, 106544. https://doi.org/10.1016/j.agwat.2020.106544

    Article  Google Scholar 

  • Ali, E., Iqbal, A., Hussain, S., Munawar Shah, J., Said, F., Imtiaz, M., Jalal, F., & Ali Khan, M. (2019). Selection criteria to assess drought stress tolerance in wheat genotypes using physiological and biochemical parameters. Bioscience Biotechnology Research Asia, 16, 751–762. https://doi.org/10.13005/bbra/2791

    Article  Google Scholar 

  • Allahverdiyev, T. I., Talai, J. M., Huseynova, I. M., & Aliyev, J. A. (2015). Effect of drought stress on some physiological parameters, yield, yield components of durum (Triticum durum desf.) and bread (Triticum aestivum L.) wheat genotypes. Ekin Journal of Crop Breeding and Genetics, 1(1), 50–62.

    Google Scholar 

  • Anjum, S. A., Wang, L. C., Farooq, M., Hussain, M., Xue, L. L., & Zou, C. M. (2011). Brassinolide application improves the drought tolerance in maize through modulation of enzymatic antioxidants and leaf gas exchange. Journal of Agronomy and Crop Science, 197(3), 177–185. https://doi.org/10.1111/J.1439-037X.2010.00459.X

    Article  CAS  Google Scholar 

  • Ata, A., Yousaf, B., Khan, A. S., Subhani, G. M., Asadullah, H. M., Yousaf, A. (2014). Correlation and path coefficient analysis for important plant attributes of spring wheat under normal and drought stress conditions. World4(8).

  • Ayadi, M., Brini, F., & Masmoudi, K. (2019). Overexpression of a wheat aquaporin gene, Td PIP2;1, enhances salt and drought tolerance in transgenic durum wheat cv Maali. International Journal of Molecular Science, 20, 2389.

    Article  Google Scholar 

  • Aylor, D. E., Parlange, J. Y., & Krikorian, A. D. (1973). Stomatal mechanics. American Journal of Botany, 60(2), 163–171. https://doi.org/10.1002/j.1537-2197.1973.tb10213.x

    Article  Google Scholar 

  • Azmat, A., Yasmin, H., Hassan, M. N., Nosheen, A., Naz, R., Sajjad, M., Ilyas, N., & Akhtar, M. N. (2020). Co-application of bio-fertilizer and salicylic acid improves growth, photosynthetic pigments and stress tolerance in wheat under drought stress. PeerJ, 8, e9960. https://doi.org/10.7717/peerj.9960

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Batyrbek, M., Akhtar, M., Memon, S. A., Saleem, M., Larik, R., Abdelghany, A. E., & Anwar, M. (2023). Influence of drought stress on grain yield, yield components of wheat cultivars under controlled condition. Journal of Biotechnology, Fieldcrops and Molecular Sciences, 1(1), 44–52.

    Google Scholar 

  • Bertolino, L. T., Caine, R. S., & Gray, J. E. (2019). Impact of stomatal density and morphology on water-use efficiency in a changing world. Frontiers in Plant Science, 10, 427588. https://doi.org/10.3389/fpls.2019.00225

    Article  Google Scholar 

  • Beyer, W. F., Jr., & Fridovich, I. (1987). Assaying for superoxide dismutase activity: Some large consequences of minor changes in conditions. Analytical Biochemistry, 161(2), 559–566. https://doi.org/10.1016/0003-2697(87)90489-1

    Article  CAS  PubMed  Google Scholar 

  • Bilal, M., Rashid, R. M., Rehman, S. U., Iqbal, F., Ahmed, J., Abid, M. A., Ahmed, Z., & Hayat, A. (2015). Evaluation of wheat genotypes for drought tolerance. Journal of Green Physiology, Genetics and Genomics, 1, 11–21.

    Google Scholar 

  • Biswas, D., Gjetvaj, B., & LuceLiuAsgedom, M. S. K. H. (2023). Effects of soil water and nitrogen on drought resilience, growth, yield, and grain quality of a spring wheat. Canadian Journal of Plant Science. https://doi.org/10.1139/cjps-2022-0210

    Article  Google Scholar 

  • Blum, A., & Ebercon, A. (1981). Cell membrane stability as a measure of drought and heat tolerance in wheat 1. Crop Science, 21(1), 43–47. https://doi.org/10.2135/cropsci1981.0011183X002100010013x

    Article  Google Scholar 

  • Caine, R. S., Harrison, E. L., Sloan, J., Flis, P. M., Fischer, S., Khan, M. S., et al. (2023). The influences of stomatal size and density on rice abiotic stress resilience. New Phytologist, 237(6), 2180–2195. https://doi.org/10.1111/nph.18704

    Article  CAS  PubMed  Google Scholar 

  • Cattivelli, L., Rizza, F., Badeck, F. W., Mazzucotelli, E., Mastrangelo, A. M., Francia, E., Mare, C., Tondelli, A., & Stanca, A. M. (2008). Drought tolerance improvement in crop plants: An integrated view from breeding to genomics. Field Crops Research, 105(1–2), 1–14. https://doi.org/10.1016/j.fcr.2007.07.004

    Article  Google Scholar 

  • Chakraborty, U., & Pradhan, B. (2012). Oxidative stress in fve wheat varieties (Triticum aestivum L.) exposed to water stress and study of their antioxidant enzyme defense system, water stress responsive metabolites and H2O2 accumulation. Brazilian Journal of Plant Physiology, 24(2), 117–130.

    Article  CAS  Google Scholar 

  • Chaouachi, L., Marín-Sanz, M., Kthiri, Z., Boukef, S., Harbaoui, K., Barro, F., & Karmous, C. (2023). The opportunity of using durum wheat landraces to tolerate drought stress: Screening morpho-physiological components. AoB Plants, 15(3), plad022. https://doi.org/10.1093/aobpla/plad022

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chaudhary, D., Swati, J. P. J., Kumar, A., Joshi, S., Kandwal, N., & Bhatt, B. (2023). Field screening for morpho-physiological traits in bread wheat (Triticum aestivum L. em. Thell) genotypes under moisture stress. Biological Forum—an International Journal, 15(2), 758.

    Google Scholar 

  • Chavan, S. G., Duursma, R. A., Tausz, M., & Ghannoum, O. (2019). Elevated CO2 alleviates the negative impact of heat stress on wheat physiology but not on grain yield. Journal of Experimental Botany, 70(21), 6447–6459. https://doi.org/10.1093/jxb/erz386

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen, Z., Tao, X., Khan, A., Tan, D. K., & Luo, H. (2018). Biomass accumulation, photosynthetic traits and root development of cotton as affected by irrigation and nitrogen-fertilization. Frontiers in Plant Science, 9, 173. https://doi.org/10.3389/fpls.2018.00173

    Article  PubMed  PubMed Central  Google Scholar 

  • Chowdhury, M. K., Hasan, M. A., Bahadur, M. M., Islam, M. R., Hakim, M. A., Iqbal, M. A., Javed, T., Raza, A., Shabbir, R., Sorour, S., Elsanafawy, N. E. M., Anwar, S., Alamri, S., Sabagh, E. L., & Islam, M. S. (2021). Evaluation of drought tolerance of some wheat (Triticum aestivum L.) genotypes through phenology, growth, and physiological indices. Agronomy, 11(9), 1792. https://doi.org/10.3390/agronomy11091792

    Article  CAS  Google Scholar 

  • Cook, B., et al. (2020). Twenty-first century drought projections in the CMIP6 forcing scenarios. Earth’s Future, 8(6), e2019EF001461. https://doi.org/10.1029/2019EF001461

    Article  Google Scholar 

  • Danakumara, T., Kumari, J., Singh, A. K., Sinha, S. K., Pradhan, A. K., Sharma, S., Jha, S. K., Bansal, R., Kumar, S., Jha, G. K., Yadav, M., & Prasad, P. V. (2021). Genetic dissection of seedling root system architectural traits in a diverse panel of hexaploid wheat through multi-locus genome-wide association map** for improving drought tolerance. International Journal of Molecular Sciences, 22(13), 7188. https://doi.org/10.3390/ijms22137188

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Devi, R., Kaur, N., & Gupta, A. K. (2012). Potential of antioxidant enzymes in depicting drought tolerance of wheat (Triticum aestivum L.). Indian Journal of Biochemical and Biophysics, 49, 257–265.

    CAS  Google Scholar 

  • Dong, B., Zheng, X., Liu, H., Able, J. A., Yang, H., Zhao, H., Zhang, M., Qiao, Y., Wang, Y., & Liu, M. (2017). Effects of drought stress on pollen sterility, grain yield, abscisic acid and protective enzymes in two winter wheat cultivars. Frontiers in Plant Science, 8, 1008. https://doi.org/10.3389/fpls.2017.01008

    Article  PubMed  PubMed Central  Google Scholar 

  • Drake, P. L., Froend, R. H., & Franks, P. J. (2013). Smaller, faster stomata: scaling of stomatal size, rate of response, and stomatal conductance. Journal of experimental botany, 64(2), 495–505. https://doi.org/10.1093/jxb/ers347

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dreisigacker, S., Burgueño, J., Pacheco, A., Molero, G., Sukumaran, S., Rivera-Amado, C., Reynolds, M., & Griffiths, S. (2021). Effect of flowering time-related genes on biomass, harvest index, and grain yield in CIMMYT elite spring bread wheat. Biology, 10(9), 855. https://doi.org/10.3390/biology10090855

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Durand, M., Brendel, O., Buré, C., & Le Thiec, D. (2019). Altered stomatal dynamics induced by changes in irradiance and vapour-pressure deficit under drought: impacts on the whole-plant transpiration efficiency of poplar genotypes. New Phytologist, 222(4), 1789–1802. https://doi.org/10.1111/nph.15710

    Article  CAS  PubMed  Google Scholar 

  • Dwivedi, S. K., Kumar, S., Mishra, J. S., Haris, A. A., Singh, S. K., Srivastava, A. K., & Bhatt, B. P. (2019). Effect of moisture regimes and sowing dates on wheat physiological process and yield attributes under rain-fed ecosystem in Eastern Indo Gangetic Plain. Plant Physiology Reports, 24(1), 46–53. https://doi.org/10.1007/s40502-018-0406-4

    Article  CAS  Google Scholar 

  • Esau, K. (1977). Anatomy of seed plants (2nd ed., p. 448). New York: John Wiley and Sons.

    Google Scholar 

  • FAO Cereal Supply and Demand Brief (2024). Larger coarse grain outputs push up supply and trade prospects.

  • Farooqi, Z. U. R., Ayub, M. A., & urRehman, M. Z., Sohail, M. I., Usman, M., Khalid, H., & Naz, K. (2020). Regulation of drought stress in plants. In Plant life under changing environment (pp. 77–104). Academic Press

    Chapter  Google Scholar 

  • Franks, P. J., & Farquhar, G. D. (2007). The mechanical diversity of stomata and its significance in gas-exchange control. Plant physiology, 143(1), 78–87

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Frantová, N., Rábek, M., Elzner, P., Středa, T., Jovanović, I., Holková, L., Martinek, P., Smutná, P., & Prášil, I. T. (2022a). Different drought tolerance strategy of wheat varieties in spike architecture. Agronomy, 12(10), 2328. https://doi.org/10.3390/agronomy12102328

    Article  CAS  Google Scholar 

  • Frantová, N., Rábek, M., Elzner, P., Středa, T., Jovanović, I., Holková, L., Martinek, P., Smutna, P., & Prášil, I. T. (2022b). Different drought tolerance strategy of wheat varieties in spike architecture. Agronomy, 12(10), 2328. https://doi.org/10.3390/agronomy12102328

    Article  CAS  Google Scholar 

  • Gao, Y., Zhang, M., Yao, C., Liu, Y., Wang, Z., & Zhang, Y. (2021). Increasing seeding density under limited irrigation improves crop yield and water productivity of winter wheat by constructing a reasonable population architecture. Agricultural Water Management, 253, 106951. https://doi.org/10.1016/j.agwat.2021.106951

    Article  Google Scholar 

  • Ghaffar, A., Hussain, N., Ajaj, R., Shahin, S. M., Bano, H., Javed, M., Khalid, A., Yasmin, M., Shah, K. H., Zaheer, M., Iqbal, M., Zafar, Z. U., & Athar, H. U. R. (2023). Photosynthetic activity and metabolic profiling of bread wheat cultivars contrasting in drought tolerance. Frontiers in Plant Science, 14, 1123080. https://doi.org/10.3389/fpls.2023.1123080

    Article  PubMed  PubMed Central  Google Scholar 

  • Giunta, F., Motzo, R., & Deidda, M. (1993). Effect of drought on yield and yield components of durum wheat and triticale in a Mediterranean environment. Field Crops Research, 33(4), 399–409. https://doi.org/10.1016/0378-4290(93)90161-F

    Article  Google Scholar 

  • Gontia-Mishra, I., Sapre, S., Sharma, A., & Tiwari, S. (2016). Amelioration of drought tolerance in wheat by the interaction of plant growth-promoting rhizobacteria. Plant Biology, 18(6), 992–1000. https://doi.org/10.1111/plb.12505

    Article  CAS  PubMed  Google Scholar 

  • Gray, A., Liu, L., & Facette, M. (2020). Flanking support: how subsidiary cells contribute to stomatal form and function. Frontiers in Plant Science, 11, 522286. https://doi.org/10.3389/fpls.2020.00881

    Article  Google Scholar 

  • Gurumurthy, S., Arora, A., Sarkar, B., Singh, V. P., Meena, S. K., Kumar, P., & Singh, P. K. (2018). Individual heat and combined heat drought stresses in wheat: Variation in NDVI and canopy temperature. https://doi.org/10.20546/ijcmas.2018.710.311.

  • Harikrishna, Singh, G. P., Jain, N., Singh, P. K., Sai Prasad, S. V., Ambati, D., & Prabhu, K. V. (2016). Physiological characterization and grain yield stability analysis of RILs under different moisture stress conditions in wheat (Triticum aestivum L.). Indian Journal of Plant Physiology, 21, 576–582. https://doi.org/10.1007/s40502-016-0257-9

    Article  Google Scholar 

  • Hasan, U. W., Roy, C., Chattopadhyay, T., Ranjan, D., & De, N. (2021). Effects of heat and drought stress on yield and physiological traits in wheat (Triticum aestivum L.). Journal Crop Weed, 17(1), 203–210. https://doi.org/10.22271/09746315.2021.v17.i1.1425

    Article  Google Scholar 

  • Hasanuzzaman, M., Bhuyan, M. B., Zulfiqar, F., Raza, A., Mohsin, S. M., Mahmud, J. A., Fujita, M., & Fotopoulos, V. (2020). Reactive oxygen species and antioxidant defense in plants under abiotic stress: Revisiting the crucial role of a universal defense regulator. Antioxidants, 9(8), 681. https://doi.org/10.3390/antiox9080681

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hay, R. K. M. (1995). Harvest index: A review of its use in plant breeding and crop physiology. Annals of Applied Biology, 126(1), 197–216. https://doi.org/10.1111/j.1744-7348.1995.tb05015.x

    Article  Google Scholar 

  • Hosseinzadeh, S. R., Amiri, H., & Ismaili, A. (2018). Evaluation of photosynthesis, physiological, and biochemical responses of chickpea (Cicer arietinum L. cv. Pirouz) under water deficit stress and use of vermicompost fertilizer. Journal of Integrative Agriculture, 17(11), 2426–2437. https://doi.org/10.1016/S2095-3119(17)61874-4

    Article  CAS  Google Scholar 

  • ICAR-IIWBR 2023. Director’s report of AICRP on wheat and barley 2022–23. In G. Singh (ed.), ICAR-Indian Instiute of Wheat and Barley Research, Karnal, Haryana, India (p. 90)

  • Ilyas, N., Mumtaz, K., Akhtar, N., Yasmin, H., Sayyed, R. Z., Khan, W., El Enshasy, H. A., Dailin, D., Elsayed, E. A., & Ali, Z. (2020). Exopolysaccharides producing bacteria for the amelioration of drought stress in wheat. Sustainability, 12(21), 8876. https://doi.org/10.3390/su12218876

    Article  CAS  Google Scholar 

  • IPCC AR6. (2022). 4.4.5 Projected changes in drought. Intergovernmental panel on climate change impacts, adaptation and vulnerability.

  • Islam, M. A., De, R. K., Hossain, M. A., Haque, M. S., Uddin, M. N., Fakir, M. S. A., Kader, M. A., Dessoky, E. S., Attia, A. O., El-Hallous, I. E., & Hossain, A. (2021). Evaluation of the tolerance ability of wheat genotypes to drought stress: Dissection through culm-reserves contribution and grain filling physiology. Agronomy, 11(6), 1252. https://doi.org/10.3390/agronomy11061252

    Article  CAS  Google Scholar 

  • Ji, X., Shiran, B., Wan, J., Lewis, D. C., Jenkins, C. L., Condon, A. G., Richards, R. A., & Dolferus, R. (2010). Importance of pre-anthesis anther sink strength for maintenance of grain number during reproductive stage water stress in wheat. Plant, Cell & Environment, 33(6), 926–942. https://doi.org/10.1111/j.1365-3040.2010.02130.x

    Article  CAS  Google Scholar 

  • Kaur, V., Sharma, K., & Kumar, A. (2019). Identification of promising sources for drought tolerance in cultivated and wild species germplasm of barley based on root architecture. Journal of Environmental Biology, 40(3), 309–315. https://doi.org/10.22438/jeb/40/3/MRN-995

    Article  Google Scholar 

  • Khadka, K., Earl, H. J., Raizada, M. N., & Navabi, A. (2020). A physio-morphological trait-based approach for breeding drought tolerant wheat. Frontiers in Plant Science, 11, 715. https://doi.org/10.3389/fpls.2020.00715

    Article  PubMed  PubMed Central  Google Scholar 

  • Khalvandi, M., Siosemardeh, A., Roohi, E., & Keramati, S. (2021). Salicylic acid alleviated the effect of drought stress on photosynthetic characteristics and leaf protein pattern in winter wheat. Heliyon. https://doi.org/10.1016/j.heliyon.2021.e05908

    Article  PubMed  PubMed Central  Google Scholar 

  • Khatiwada, A., Neupane, I., Sharma, B., Bhetwal, N., & Pandey, B. (2020). Effects of drought stress on yield and yield attributing characters of wheat: A review. Agriways, 8(2), 115–121. https://doi.org/10.38112/agw.2020.v08i02.009

    Article  CAS  Google Scholar 

  • Khyber, J. A., Soomro, F., Sipio, W. D., Wahid, A., Baloch, J. K. S., Soothar, M. K., & Ali, Z. (2019). Evaluation of bread wheat (Triticumaestivum L.) genotypes for drought tolerance through selection indices. Journal of Horticulture and Plant Research, 7, 41. https://doi.org/10.18052/www.scipress.com/JHPR.7.40

    Article  Google Scholar 

  • Kirova, E., Pecheva, D., & Simova-Stoilova, L. (2021). Drought response in winter wheat: Protection from oxidative stress and mutagenesis effect. Acta Physiologiae Plantarum, 43, 1–11. https://doi.org/10.1007/s11738-020-03182-1

    Article  CAS  Google Scholar 

  • Kumar, R., Kaur, A., Mamrutha, H. M., & Grewal, A. (2017). Synergistic effect of cefotaxime and timent in to suppress the Agrobacterium overgrowth in wheat (Triticum aestivum L.) transformation. Asian Journal of Microbiological Biotechnology and Environment Science, 19(4), 961–967.

    Google Scholar 

  • Kumar, R., Masthigowda, M. H., Kaur, A., Bhusal, N., Pandey, A., Kumar, S., Mishra, C., Singh, G., & Singh, G. P. (2020). Identification and characterization of multiple abiotic stress tolerance genes in wheat. Molecular Biology Reports, 47(11), 8629–8643. https://doi.org/10.1007/s11033-020-05906-5

    Article  CAS  PubMed  Google Scholar 

  • Larger coarse grain outputs push up supply and trade prospects (2024). FAO Cereal Supply and Demand Brief. Food and Agriculture Organization of the United States.

  • Larson, K., Eastin, J., & Sullivan, C. (1971). Techniques for measuring plant drought stress. Drought Injury and Resistance in Crops, 2, 1–18. https://doi.org/10.2135/cssaspecpub2.c1

    Article  Google Scholar 

  • Lavkush, A. K., Singh, S. S., Verma, N. P., Tiwari, D., Yadav, R. K., Mishra, S. R., & Singh, A. K. (2022). Evaluation of biochemical changes in wheat varieties as influenced by terminal heat stress under varying environments. Journal of Cereal Research, 14(3), 291–298. https://doi.org/10.25174/2582-2675/2022/131256

    Article  Google Scholar 

  • Lee, S. J., Kim, N., & Lee, Y. (2021). Development of integrated crop drought index by combining rainfall, land surface temperature, evapotranspiration, soil moisture, and vegetation index for agricultural drought monitoring. Remote Sensing, 13(9), 1778. https://doi.org/10.3390/rs13091778

    Article  Google Scholar 

  • Lemoine, R., Camera, S. L., Atanassova, R., Dédaldéchamp, F., Allario, T., Pourtau, N., Bonnemain, J. L., Laloi, M., Coutos-Thevenot, P., Maurousset, L., Faucher, M., Girousse, C., Lemonnier, P., Parrilla, J., & Durand, M. (2013). Source-to-sink transport of sugar and regulation by environmental factors. Frontiers in Plant Science, 4, 272. https://doi.org/10.3389/fpls.2013.00272

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li, S. (2023). Novel insight into functions of ascorbate peroxidase in higher plants: More than a simple antioxidant enzyme. Redox Biology. https://doi.org/10.1016/j.redox.2023.102789

    Article  PubMed  PubMed Central  Google Scholar 

  • Li, Y., Li, H., Li, Y., & Zhang, S. (2017). Improving water-use efficiency by decreasing stomatal conductance and transpiration rate to maintain higher ear photosynthetic rate in drought-resistant wheat. The Crop Journal, 5(3), 231–239. https://doi.org/10.1016/j.cj.2017.01.001

    Article  Google Scholar 

  • Liu, R. X., Wu, F. K., **n, Y. I., Yu, L. I. N., Wang, Z. Q., Liu, S. H., Deng, M., Ma, J., Wei, Y. M., Zheng, Y. L., & Liu, Y. X. (2020). Quantitative trait loci analysis for root traits in synthetic hexaploid wheat under drought stress conditions. Journal of Integrative Agriculture, 19(8), 1947–1960. https://doi.org/10.1016/S2095-3119(19)62825-X

    Article  CAS  Google Scholar 

  • Liyanage, D. K., Chathuranga, I., Mori, B. A., & Thilakarathna, M. S. (2022). A simple, semi-automated, gravimetric method to simulate drought stress on plants. Agronomy, 12(2), 349. https://doi.org/10.3390/agronomy12020349

    Article  Google Scholar 

  • Malhi, G. S., Kaur, M., & Kaushik, P. (2021). Impact of climate change on agriculture and its mitigation strategies: A review. Sustainability, 13(3), 1318.

    Article  CAS  Google Scholar 

  • Marcotuli, I., Colasuonno, P., Hsieh, Y. S., Fincher, G. B., & Gadaleta, A. (2020). Non-starch polysaccharides in durum wheat: a review. International Journal of Molecular Sciences, 21(8), 2933. https://doi.org/10.3390/ijms21082933

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Martin, U., Pallardy, S., & Bahari, Z. (2006). Dehydration tolerance of leaf tissues of 6 woody angiosperm species. Physiologia Plantarum, 69, 182–186. https://doi.org/10.1111/j.1399-3054.1987.tb01964.x

    Article  Google Scholar 

  • Masood, S. A., Ahmad, S., Kashif, M., & Ali, Q. (2014). Correlation analysis for grain and its contributing traits in wheat (Triticum aestivum L.). Natural Science, 12(11), 168–176.

    Google Scholar 

  • Mathew, I., Shimelis, H., Mwadzingeni, L., Zengeni, R., Mutema, M., & Chaplot, V. (2018). Variance components and heritability of traits related to root: Shoot biomass allocation and drought tolerance in wheat. Euphytica, 214, 1–12.

    Article  CAS  Google Scholar 

  • McAusland, L., Vialet-Chabrand, S., Davey, P., Baker, N. R., Brendel, O., & Lawson, T. (2016). Effects of kinetics of light-induced stomatal responses on photosynthesis and water-use efficiency. New Phytologist, 211(4), 1209–1220. https://doi.org/10.1111/nph.14000

    Article  PubMed  Google Scholar 

  • Medrano, H., Escalona, J. M., Bota, J., Gulías, J., & Flexas, J. (2002). Regulation of photosynthesis of C3 plants in response to progressive drought: Stomatal conductance as a reference parameter. Annals of Botany, 89(7), 895–905. https://doi.org/10.1093/aob/mcf079

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mehraban, A., & Miri, M. (2017). Effect of drought stress on cell membrane stability, relative water content and some characteristics of crop pants. Chemistry Research Journal, 2(3), 85–90.

    CAS  Google Scholar 

  • Mehraban, A., Tobe, A., Gholipouri, A., Amiri, E., Ghafari, A., & Rostaii, M. (2019). The effects of drought stress on yield, yield components, and yield stability at different growth stages in bread wheat cultivar (Triticum aestivum L.). Polish Journal of Environmental Studies. https://doi.org/10.15244/pjoes/85350

    Article  Google Scholar 

  • Mehri, N., Fotovat, R., Saba, J., & Jabbari, F. (2009). Variation of stomata dimensions and densities in tolerant and susceptible wheat cultivars under drought stress. Journal of Food Agriculture and Environment, 7(1), 167–170.

    Google Scholar 

  • Mekliche, A., Hanifi-Mekliche, L., Aidaoui, A., Gate, P., Bouthier, A., & Monneveux, P. H. (2015). Grain yield and its components study and their association with normalized difference vegetation index (NDVI) under terminal water deficit and well-irrigated conditions in wheat (Triticum durum Desf. and Triticumaestivum L.). African Journal of Biotechnology, 14(26), 2142–2148. https://doi.org/10.5897/AJB2015.14535

    Article  Google Scholar 

  • Messmer, R., Fracheboud, Y., Bänziger, M., Vargas, M., Stamp, P., & Ribaut, J. M. (2009). Drought stress and tropical maize: QTL-by-environment interactions and stability of QTLs across environments for yield components and secondary traits. Theoretical and Applied Genetics, 119, 913–930. https://doi.org/10.1007/s00122-009-1099

    Article  PubMed  Google Scholar 

  • Meyari, S., Nouri, F., Sasani, S., Najafian, G., & Aghayari, F. (2013). Correlation and path analysis of grain yield and its components of some bread wheat (Triticum aestivem L.) under normal and source restriction conditions. International Journal of Farming and Allied Sciences, 2(23), 1065–1069.

    Google Scholar 

  • Mia, M. S. (2019). Characterization of drought tolerance in bread wheat (Triticum aestivum L.) using genetic and transcriptomic tools (Doctoral dissertation, PhD thesis, The University of Western Australia).

  • Moayedi, A. A., Boyce, A. N., & Barakbah, S. S. (2010). The performance of durum and bread wheat genotypes associated with yield and yield component under different water deficit conditions. Australian Journal of Basic and Applied Sciences, 4(1), 106–113.

    CAS  Google Scholar 

  • Nakano, Y., & Asada, K. (1981). Hydrogen peroxide is scavenged by ascorbate-specific peroxidase in spinach chloroplasts. Plant and Cell Physiology, 22(5), 867–880. https://doi.org/10.1093/oxfordjournals.pcp.a076232

    Article  CAS  Google Scholar 

  • Nasirzadeh, L., Sorkhilaleloo, B., MajidiHervan, E., & Fatehi, F. (2021). Changes in antioxidant enzyme activities and gene expression profiles under drought stress in tolerant, intermediate, and susceptible wheat genotypes. Cereal Research Communications, 49, 83–89. https://doi.org/10.1007/s42976-020-00085-2

    Article  CAS  Google Scholar 

  • O’Toole, J. C., & Real, J. (1984). Canopy target dimensions for infrared thermometry 1. Agronomy Journal, 76(5), 863–865. https://doi.org/10.2134/agronj1984.00021962007600050035x

    Article  Google Scholar 

  • Pandey, A., Khobra, R., Mamrutha, H. M., Wadhwa, Z., Krishnappa, G., Singh, G., & Singh, G. P. (2022). Elucidating the drought responsiveness in wheat genotypes. Sustainability, 14(7), 3957. https://doi.org/10.3390/su14073957

    Article  CAS  Google Scholar 

  • Pandey, A., Masthigowda, M. H., Kumar, R., Mishra, S., Khobra, R., Pandey, G. C., Singh, G., & Singh, G. P. (2023). Explicating drought tolerance of wheat (Triticumaestivum L.) through stress tolerance matrix. Plant Physiology Reports, 28(1), 63–77. https://doi.org/10.1007/s40502-022-00707-3

    Article  CAS  Google Scholar 

  • Patil, P., Gupta, A. K., Bains, N. S., & Kaur, K. (2021). Variability in enzymatic and non enzymatic antioxidants in wheat (Triticum aestivum L.) genotypes. Plant Physiology Reports, 26(3), 428–442.

    Article  CAS  Google Scholar 

  • Poudel, M. R., Ghimire, S., Pandey, M. P., Dhakal, K. H., Thapa, D. B., & Poudel, H. K. (2020). Evaluation of wheat genotypes under irrigated, heat stress and drought conditions. J Biol Today’s World, 9(1), 1–12.

    Google Scholar 

  • Pour-Aboughadareh, A., Mohammadi, R., Etminan, A., Shooshtari, L., Maleki-Tabrizi, N., & Poczai, P. (2020). Effects of drought stress on some agronomic and morpho-physiological traits in durum wheat genotypes. Sustainability, 12(14), 5610. https://doi.org/10.3390/su12145610

    Article  CAS  Google Scholar 

  • Qaseem, M. F., Qureshi, R., & Shaheen, H. (2019). Effects of pre-anthesis drought, heat and their combination on the growth, yield and physiology of diverse wheat (Triticumaestivum L.) genotypes varying in sensitivity to heat and drought stress. Scientific Reports, 9(1), 6955. https://doi.org/10.1038/s41598-019-43477-z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Qayyum, A., Al Ayoubi, S., Sher, A., Bibi, Y., Ahmad, S., Shen, Z., & Jenks, M. A. (2021). Improvement in drought tolerance in bread wheat is related to an improvement in osmolyte production, antioxidant enzyme activities, and gaseous exchange. Saudi Journal of Biological Sciences, 28(9), 5238–5249. https://doi.org/10.1016/j.sjbs.2021.05.040

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Qiu, X. Q., Gao, Y., Huang, L., Li, X. Q., Sun, J. S., & Duan, A. W. (2013). Temporal and spatial distribution of root morphology of winter wheat. Scientia Agricultura Sinica, 46, 2211–2219. https://doi.org/10.3864/j.issn.0578-1752.2013.11.004

    Article  Google Scholar 

  • Quagliata, G., Abdirad, S., Celletti, S., Sestili, F., & Astolfi, S. (2023). Screening of Triticum turgidum genotypes for tolerance to drought stress. Plant Physiology and Biochemistry, 194, 271–280. https://doi.org/10.1016/j.plaphy.2022.11.025

    Article  CAS  PubMed  Google Scholar 

  • Raissig, M. T., Matos, J. L., Anleu Gil, M. X., Kornfeld, A., Bettadapur, A., Abrash, E., et al. (2017). Mobile MUTE specifies subsidiary cells to build physiologically improved grass stomata. Science, 355(6330), 1215–1218

    Article  CAS  PubMed  Google Scholar 

  • Rajala, A., Hakala, K., Mäkelä, P., & Peltonen-Sainio, P. (2011). Drought effect on grain number and grain weight at spike and spikelet level in six-row spring barley. Journal of Agronomy and Crop Science, 197(2), 103–112

    Article  Google Scholar 

  • Ramadas, S., Kumar, T. K., & Singh, G. P. (2019). Wheat production in India: Trends and prospects. In recent advances in grain crops research. London, UK: IntechOpen.

    Google Scholar 

  • Rathod, G. R., Pandey, R., Chinnusamy, V., Paul, V., Jain, N., Singh, M. P., & Mandal, P. K. (2022). Deeper root system architecture confers better stability to photosynthesis and yield compared to shallow system under terminal drought stress in wheat (Triticum aestivum L.). Plant Physiology Reports, 27(2), 250–259. https://doi.org/10.1007/s40502-022-00652-1

    Article  CAS  Google Scholar 

  • Rawtiya, A. K., & Kazaly, G. (2021). Drought stress and wheat (Triticum aestivum L.) yield: A review. The Pharma Innovation Journal, 10(5), 1007–1012.

    CAS  Google Scholar 

  • Raza, M. A. S., Zulfiqar, B., Iqbal, R., Muzamil, M. N., Aslam, M. U., Muhammad, F., Amin, J., Aslam, H. M. U., Ibrahim, M. A., & Habib-ur-Rahman, M. (2023). Morpho-physiological and biochemical response of wheat to various treatments of silicon nano-particles under drought stress conditions. Scientific Reports, 13(1), 2700. https://doi.org/10.1038/s41598-023-29784-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Razia, R. (2003). Genetic Analysis for yield and yield components in spring wheat under drought conditions (Doctoral dissertation, University Of Agriculture/).

  • Rijal, B., Baduwal, P., Chaudhary, M., Chapagain, S., Khanal, S., Khanal, S., & Poudel, P. B. (2021). Drought stress impacts on wheat and its resistance mechanisms. Malaysian Journal of Sustainable Agriculture, 5, 67–76. https://doi.org/10.26480/mjsa.02.2021.67.76

    Article  Google Scholar 

  • Ru, C., Hu, X., Chen, D., Wang, W., & Zhen, J. (2023). Photosynthetic, antioxidant activities, and osmoregulatory responses in winter wheat differ during the stress and recovery periods under heat, drought, and combined and combined stress. Plant Science, 327, 111557. https://doi.org/10.1016/j.plantsci.2022.111557

    Article  CAS  PubMed  Google Scholar 

  • Sallam, A., Alqudah, A. M., Dawood, M. F., Baenziger, P. S., & Börner, A. (2019). Drought stress tolerance in wheat and barley: advances in physiology, breeding and genetics research. International Journal of Molecular Sciences, 20(13), 3137

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sattar, A., Sher, A., Ijaz, M., Ul-Allah, S., Rizwan, M. S., Hussain, M., Jabran, K., & Cheema, M. A. (2020). Terminal drought and heat stress alter physiological and biochemical attributes in flag leaf of bread wheat. PLoS ONE, 15(5), e0232974. https://doi.org/10.1371/journal.pone.0232974

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sehgal, A., Sita, K., Siddique, K. H., Kumar, R., Bhogireddy, S., Varshney, R. K., Rao, B. H., Nair, R. M., Varaprasad, P. V., & Nayyar, H. (2018). Drought or/and heat-stress effects on seed filling in food crops: impacts on functional biochemistry, seed yields, and nutritional quality. Frontiers in Plant Science, 9, 1705. https://doi.org/10.3389/fpls.2018.01705

    Article  PubMed  PubMed Central  Google Scholar 

  • Seleiman, M. F., Al-Suhaibani, N., Ali, N., Akmal, M., Alotaibi, M., Refay, Y., Dindaroglu, T., Abdul-Wajid, H. H., & Battaglia, M. L. (2021). Drought stress impacts on plants and different approaches to alleviate its adverse effects. Plants, 10(2), 259. https://doi.org/10.3390/plants10020259

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Senapati, N., Stratonovitch, P., Paul, M. J., & Semenov, M. A. (2019). Drought tolerance during reproductive development is important for increasing wheat yield potential under climate change in Europe. Journal of Experimental Botany, 70(9), 2549–2560. https://doi.org/10.1093/jxb/ery226

    Article  CAS  PubMed  Google Scholar 

  • Shah, S. M. D. M., Shabbir, G., Malik, S. I., Raja, N. I., Shah, Z. H., Rauf, M., Zahrani, Y. A., Alghabari, F., Alsamadany, H., Shahzad, K., & Yang, S. H. (2022). Delineation of physiological, agronomic and genetic responses of different wheat genotypes under drought condition. Agronomy, 12(5), 1056. https://doi.org/10.3390/agronomy12051056

    Article  CAS  Google Scholar 

  • Shahinnia, F., Le Roy, J., Laborde, B., et al. (2016b). Genetic association of stomatal traits and yield in wheat grown in low rainfall environments. BMC Plant Biology, 16, 150. https://doi.org/10.1186/s12870-016-0838-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shahinnia, F., Le Roy, J., Laborde, B., Sznajder, B., Kalambettu, P., Mahjourimajd, S., Tilbrook, J., & Fleury, D. (2016a). Genetic association of stomatal traits and yield in wheat grown in low rainfall environments. BMC Plant Biology, 16(1), 1–14. https://doi.org/10.1186/s12870-016-0838-9

    Article  CAS  Google Scholar 

  • Sharma, D., Mamrutha, H. M., Gupta, V. K., Tiwari, R., & Singh, R. (2015). Association of SSCP variants of HSP genes with physiological and yield traits under heat stress in wheat. Research on Crops, 16(1), 139–146. https://doi.org/10.5958/2348-75.2015.00020.0

    Article  Google Scholar 

  • Shavrukov, Y., Kurishbayev, A., Jatayev, S., Shvidchenko, V., Zotova, L., Koekemoer, F., De groot, S., Soole, K., & Langridge, P. (2017). Early flowering as a drought escape mechanism in plants: How can it aid wheat production? Frontiers in Plant Science, 8, 1950. https://doi.org/10.3389/fpls.2017.01950

    Article  PubMed  PubMed Central  Google Scholar 

  • Siddique, K. H. M., Tennant, D., Perry, M. W., & Belford, R. K. (1990). Water use and water use efficiency of old and modern wheat cultivars in a Mediterranean-type environment. Australian Journal of Agricultural Research, 41(3), 431–447. https://doi.org/10.1071/AR9900431

    Article  Google Scholar 

  • Singh, R., Tiwari, R., Sharma, D., Tiwari, V., & Sharma, I. (2014). Mutagenesis for wheat improvement in the genomics era. J Wheat Res, 6(2), 120–125

    Google Scholar 

  • Sokoto, M. B., Abubakar, I. U., Singh, A., & Broga, J. (2015). Effect of water stress and variety on phenologyof bread wheat (Triticumaestivum L.) in Sokoto, Sudan Savannah. Nigeria. J. Dryland Agric, 1, 33–43.

    Google Scholar 

  • Subhani, G. M., & Chowdhry, M. A. (2000). Correlation and path coefficient analysis inbread wheat under drought stress and normal conditions. Pakistan Journal of Biological Sciences, 3(1), 72–77. https://doi.org/10.3923/pjbs.2000.72.77

    Article  Google Scholar 

  • Sudhakara Rao, D., Raghavendra, M., Gill, P., Madan, S., & Munjal, R. (2022). Effect of drought stress on phenological and yield attributes in Wheat (Triticum aestivum L.). Journal of Eco-Friendly Agriculture, 17(1), 65–71. https://doi.org/10.5958/2582-2683.2022.00014.4

    Article  Google Scholar 

  • Taheri, S., Saba, J., Shekari, F., & Abdullah, T. L. (2011). Effects of drought stress condition on the yield of spring wheat (Triticumaestivum) lines. African Journal of Biotechnology, 10(80), 18339–18348. https://doi.org/10.5897/AJB11.352

    Article  Google Scholar 

  • Taiwo, A. F., Daramola, O., Sow, M., & Semwal, V. K. (2020). Ecophysiology and responses of plants under drought. Plant Ecophysiology and Adaptation under Climate Change Mechanisms and Perspectives I General Consequences and Plant Responses. https://doi.org/10.1007/978-981-15-2156-0_8

    Article  Google Scholar 

  • Thapa, R. S., Sharma, P. K., Pratap, D., Singh, T., & Kumar, A. (2019). Assessment of genetic variability, heritability and genetic advance in wheat (Triticumaestivum L.) genotypes under normal and heat stress environment. Indian Journal of Agricultural Research, 53(1), 51–56. https://doi.org/10.18805/IJARe.A-5095

    Article  Google Scholar 

  • Ibrahim Thiaw (2022). Drought in numbers 2022- restoration for readiness and resilience. United Nations conventions to combat desertification.

  • Valifard, M., Moradshahi, A., & Kholdebarin, B. (2012). Biochemical and physiological responses of two wheat (Triticumaestivum L.) cultivars to drought stress applied at seedling stage. Journal of Agriculture Science and Technology, 14, 1567–1578.

    CAS  Google Scholar 

  • Wang, Y., Branicky, R., Noë, A., & Hekimi, S. (2018). Superoxide dismutases: Dual roles in controlling ROS damage and regulating ROS signaling. Journal of Cell Biology, 217(6), 1915–1928. https://doi.org/10.1083/jcb.201708007

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wasaya, A., Manzoor, S., Yasir, T. A., Sarwar, N., Mubeen, K., Ismail, I. A., Raza, A., Rehman, A., Hossain, A., & Sabagh, A. E. (2021). Evaluation of fourteen bread wheat (Triticum aestivum L) genotypes by observing gas exchange parameters, relative water and chlorophyll content, and yield attributes under drought stress. Sustainability, 13(9), 4799. https://doi.org/10.3390/su13094799

    Article  CAS  Google Scholar 

  • Wiesmeier, M., Hübner, R., Dechow, R., Maier, H., Spörlein, P., Geuß, U., Hangen, E., Reischl, A., Schilling, B., Lutzow, M. V., & Kögel-Knabner, I. (2014). Estimation of past and recent carbon input by crops into agricultural soils of southeast Germany. European Journal of Agronomy, 61, 10–23. https://doi.org/10.1016/j.eja.2014.08.001

    Article  Google Scholar 

  • Wright, H., DeLong, J., Lada, R., & Prange, R. (2009). The relationship between water status and chlorophyll a fluorescence in grapes (Vitis spp.). Postharvest Biology and Technology, 51(2), 193–199. https://doi.org/10.1016/j.postharvbio.2008.07.004

    Article  CAS  Google Scholar 

  • Xu, Z., Lai, X., Ren, Y., Yang, H., Wang, H., Wang, C., **a, J., Wang, Z., Yang, Z., Geng, H., et al. (2023). Impact of drought stress on yield-related agronomic traits of different genotypes in spring wheat. Agronomy, 13, 2968. https://doi.org/10.3390/agronomy13122968

    Article  CAS  Google Scholar 

  • Yang, Q., Li, P., Zhang, D., Lin, W., Hao, X., & Zong, Y. (2023). Effects of elevated CO2 on the photosynthesis, chlorophyll fluorescence and yield of two wheat cultivars (Triticum aestivum L.) under persistent drought stress. Sustainability, 15(2), 1593. https://doi.org/10.3390/su15021593

    Article  CAS  Google Scholar 

  • Yashavanthakumar, K. J., Baviskar, V. S., Navathe, S., Patil, R. M., Bagwan, J. H., Bankar, D. N., & Singh, G. P. (2021). Impact of heat and drought stress on phenological development and yield in bread wheat. Plant Physiology Reports, 26(2), 357–367. https://doi.org/10.1007/s40502-021-00586-0

    Article  CAS  Google Scholar 

  • Yu, M., Liu, Z. H., Yang, B., Chen, H., Zhang, H., & Hou, D. B. (2020). The contribution of photosynthesis traits and plant height components to plant height in wheat at the individual quantitative trait locus level. Scientific Reports, 10(1), 12261.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yu, S. M., Lo, S. F., & Ho, T. H. D. (2015). Source–sink communication: Regulated by hormone, nutrient, and stress cross-signaling. Trends in Plant Science, 20(12), 844–857. https://doi.org/10.1016/j.tplants.2015.10.009

    Article  CAS  PubMed  Google Scholar 

  • Zadoks, J. C., Chang, T. T., & Konzak, C. F. (1974a). A decimal code for the growth stages of cereals. Weed Research, 14(6), 415–421. https://doi.org/10.1111/j.1365-3180.1974.tb01084.x

    Article  Google Scholar 

  • Zadoks, J. C., Chang, T. T., & Konzak, C. K. (1974b). A decimal code for growth stage of cereals. Weed Research, 14, 415–421.

    Article  Google Scholar 

  • Zafar, S., Akhtar, M., Perveen, S., Hasnain, Z., & Khalil, A. (2020). Attenuating the adverse aspects of water stress on wheat genotypes by foliar spray of melatonin and indole-3-acetic acid. Physiology and Molecular Biology of Plants, 26, 1751–1762. https://doi.org/10.1007/s12298-020-00855-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zandi, P., & Schnug, E. (2022). Reactive oxygen species, antioxidant responses and implications from a microbial modulation perspective. Biology, 11(2), 155. https://doi.org/10.3390/biology11020155

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhao, C., Craig, J. C., Petzold, H. E., Dickerman, A. W., & Beers, E. P. (2005). The xylem and phloem transcriptomes from secondary tissues of the Arabidopsis root-hypocotyl. Plant Physiology, 138(2), 803–818. https://doi.org/10.1104/pp.105.060202

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhao, W., Liu, L., Shen, Q., Yang, J., Han, X., Tian, F., & Wu, J. (2020). Effects of water stress on photosynthesis, yield, and water use efficiency in winter wheat. Water, 12(8), 2127. https://doi.org/10.3390/w12082127

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Authors thank Director, ICAR-Indian Institute of Wheat and Barley Research, Karnal for constant encouragements and support.

Author information

Authors and Affiliations

Authors

Contributions

The research study was planned by RK and MHM with SL. Experiment was performed by SL with RK and data was collected by SL, ZW, PR and YK. Manuscript was written by SL, RK, VPS, ZW and PR. Manuscript editing was done by RK, MHM, OPA and GS. The manuscript was perused and approved by all authors for publication.

Corresponding author

Correspondence to Rinki Khobra.

Ethics declarations

Conflict of interest

No conflicting interests are disclosed by the authors.

Ethical approval

The present research study does not involve any human participants, their data, or biological material.

Consent to participate

Not applicable.

Consent to publication

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 402 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lakde, S., Khobra, R., Sahi, V.P. et al. Unraveling the ability of wheat to endure drought stress by analyzing physio-biochemical, stomatal and root architectural traits. Plant Physiol. Rep. (2024). https://doi.org/10.1007/s40502-024-00799-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s40502-024-00799-z

Keywords

Navigation