Log in

Optimal energy compensation for disturbed systems with time-varying delays

  • Published:
International Journal of Dynamics and Control Aims and scope Submit manuscript

Abstract

This paper focuses on the compensation of disturbances in linear dynamical systems with time-varying delays. The objective is to reduce the effect of any measured disturbances and restore the observations to their normal state by a final time T. The research paper presents a minimum energy problem describing the mathematical framework to obtain a convenient control ensuring the disturbance compensation. The presented application to the two-dimensional diffusion equation emphasizes the practical applicability and relevance of the proposed approach.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Data availibility

The availibility of data and material statement is not applicable.

References

  1. Emamirad H (2003) On the theory of remediability. Banach Center Publ 63(1):165–176

    Article  MathSciNet  Google Scholar 

  2. Afifi L, Chafiai A, Bel Fekih A (2002) Enlarged exact compensation in distributed systems. Int J Appl Math Comput Sci 12(4):467–477

    MathSciNet  Google Scholar 

  3. Afifi L, El Jai A (2015) Systèmes distribués perturbés. Collection Études. Presses Universitaires de Perpignan, Perpignan

    Google Scholar 

  4. Afifi L, Lasri K, Joundi M, Amimi N (2016) Feedback controls for exact remediability in disturbed dynamical systems. IMA J Math Control Inf 35(2):411–425. https://doi.org/10.1093/imamci/dnw054

    Article  MathSciNet  Google Scholar 

  5. Qaraai Y, Bernoussi A, El Jai A (2008) How to compensate a spreading disturbance for a class of nonlinear systems. Appl Math Comput Sci 18:171–187. https://doi.org/10.2478/v10006-008-0016-9

    Article  MathSciNet  Google Scholar 

  6. Delfour MC, Manitius A (2006) Control systems with delays: areas of applications and present status of the linear theory. In: New trends in systems analysis: international symposium, versailles, December 13–17 (1976) IRIA LABORIA Institut de Recherche d’Informatique et d’Automatique Rocquencourt-France. Springer, Berlin Heidelberg

  7. Volterra V (1928) Sur la théorie mathématique des phénomènes héréditaires. J Math Pures Appl 7:249–298

    Google Scholar 

  8. Souhaile S, Afifi L (2020) Cheap compensation in disturbed linear dynamical systems with multi-input delays. Int J Dyn Control 8:243–253. https://doi.org/10.1007/s40435-018-00505-6

    Article  MathSciNet  Google Scholar 

  9. Souhaile S, Afifi L (2020) Minimum energy compensation for discrete delayed systems with disturbances. Discrete Contin Dyn Syst- S. https://doi.org/10.3934/dcdss.2020119

    Article  Google Scholar 

  10. Batakài A, Piazzera S (2005) Semigroups for delay equations. A K Peters/CRC Press, Florida

    Book  Google Scholar 

  11. Batakài A, Piazzera S (2001) Semigroups and linear partial differential equations with delay. J Math Anal Appl 264(1):1–20

    Article  MathSciNet  Google Scholar 

  12. Hinrichsen D, Pritchard AJ (2005) Mathematical systems theory I: modelling. State space analysis, stability and robustness. Springer, New York

    Google Scholar 

  13. Zhong R, Yang Z (2006) Delay-dependent robust control of descriptor systems with time delay. Asian J Control 8:36–44. https://doi.org/10.3182/20080706-5-KR-1001.00822

  14. Curtain RF, Pritchard AJ (1978) Infinite dimensional linear systems theory. Lecture notes in control and information sciences. Springer-Verlag, New York

  15. Engel KJ, Nagel R, Brendle S (2000) One-parameter semigroups for linear evolution equations, vol 194. Springer, New York

    Google Scholar 

  16. Lions JL (1968) Contrôle optimal de systèmes gouvernés par des équations aux dérivées partielles. Dunod, Malakoff

    Google Scholar 

  17. Klamka J (1976) Controllability of linear systems with time-variable delays in control. Int J Control 24(6):869–878. https://doi.org/10.1080/00207177608932867

    Article  MathSciNet  Google Scholar 

  18. Liu Y, Zhao S (2012) Controllability analysis of linear time-varying systems with multiple time delays and impulsive effects. Nonlinear Anal Real World Appl 13(2):558–568. https://doi.org/10.1016/j.nonrwa.2011.07.038

    Article  MathSciNet  Google Scholar 

  19. Souhaile S, Afifi L (2021) Cheap controls for disturbances compensation in hyperbolic delayed systems. Int J Dyn Syst Differ Equ 10(6):511–536. https://doi.org/10.1504/IJDSDE.2020.112758

    Article  MathSciNet  Google Scholar 

  20. Rabah R, Michel M (1996) Structure at infinity revisited for delay systems. In: IEEE-SMC-IMACS multiconference, symposium on robotics and cybernetics (CESA’96). https://www.hal.science/hal-01466183/document

  21. Rabah R, Malabre M (2004) Weak structure at infinity and row-by-row decoupling for linear delay systems. Kybernetika 40(2):181–195

    MathSciNet  Google Scholar 

Download references

Funding

This research received no specific grant from any funding agency in the public, commercial, or not-for-profit sectors.

Author information

Authors and Affiliations

Authors

Contributions

LA conceived the idea presented and verified the analytical methods. SS developed the theory and performed the calculations. All the authors discussed the results and contributed to the final manuscript.

Corresponding author

Correspondence to Salma Souhaile.

Ethics declarations

Conflict of interest

All authors declare that they have no conflicts of interest.

Appendix A: Minimum energy compensation using LQR approach

Appendix A: Minimum energy compensation using LQR approach

For sake of diversity, we present hereafter a general approach also widely used, where this compensation problem is examined as a Linear Quadratic Regulator minimization. In practice, the comparison of methods is classically recommended for the implementation of any analytical method. The LQR method is practically and widely used in control theory.

We consider the following cost function defined for a finite time horizon T as follows:

$$\begin{aligned} \begin{aligned} J(u)&=\int _{0}^{T}\Big \langle CHu+C{\tilde{H}}f,Q\Big ( CHu+C{\tilde{H}}f\Big ) \Big \rangle _{\textrm{Y}}\;ds\\&\quad +\displaystyle \int _{0}^{T}\Big \langle u(s),Ru(s) \Big \rangle _{\textrm{U}}\;ds; \quad u\in L^2(0,T;\textrm{U}) \end{aligned} \end{aligned}$$
(A1)

where Q end R are self-adjoint operators assumed to be positive and coercive. The operators H and \({\tilde{H}}\) are defined, respectively, in (13) and (14).

We examine thereafter the existence of \(u^*\in L^2(0,T;\textrm{U})\) such that:

$$\begin{aligned} J(u^*)={\left\{ \begin{array}{ll} \textrm{min}\quad J(u)\\ u\in L^2(0,T;\textrm{U}) \end{array}\right. } \end{aligned}$$
(A2)

We have:

$$\begin{aligned} J(u)={} & {} \displaystyle \int _{0}^{T}\Big \langle CHu,QCHu\Big \rangle _{\textrm{Y}}+2\;\Big \langle CHu,QC{\tilde{H}}f\Big \rangle _{\textrm{Y}}\\{} & {} \quad +\Big \langle C{\tilde{H}}f,QC{\tilde{H}}f\Big \rangle _{\textrm{Y}}ds\\{} & {} \quad +\displaystyle \int _{0}^{T}\Big \langle u(s),Ru(s)\Big \rangle _{\textrm{U}}ds \end{aligned}$$

i.e.,

$$\begin{aligned} J(u)= \Pi (u,u)-2{\mathcal {L}}v+J(0) \end{aligned}$$

where

$$\begin{aligned}{} & {} \Pi : \textrm{U}\times \textrm{U}\rightarrow {\mathbb {R}} \\{} & {} \Pi (u,u) =\displaystyle \int _{0}^{T}\Big \langle CHu,QCHu\Big \rangle _{\textrm{Y}}+\Big \langle u(s),Ru(s)\Big \rangle _{\textrm{U}}ds\\ \end{aligned}$$

and

$$\begin{aligned}{} & {} {\mathcal {L}}: \textrm{U}\rightarrow {\mathbb {R}}\\{} & {} {\mathcal {L}}u=\displaystyle \int _{0}^{T}\Big \langle CHu,QC{\tilde{H}}f\Big \rangle _{\textrm{Y}}\;ds \end{aligned}$$

also

$$\begin{aligned} J(0)=\int _{0}^{T}\Big \langle C{\tilde{H}}f,QC{\tilde{H}}f\Big \rangle _{\textrm{Y}}ds \end{aligned}$$

According to Lax–Milgram theorem, J admits a unique minimum in \(u^*\) characterized by:

$$\begin{aligned} \Pi (u^*,u)={\mathcal {L}}u;\quad \quad \forall u\in L^2(0,T;\textrm{U}) \end{aligned}$$

or equivalently

$$\begin{aligned}{} & {} \displaystyle \int _{0}^{T}\Big [\Big \langle CHu^*,QCHu\Big \rangle +\Big \langle u^*(s),Ru(s)\Big \rangle \Big ] ds=\\{} & {} -\displaystyle \int _{0}^{T}\Big \langle CHu,QC {\tilde{H}}f\Big \rangle \;ds;\\{} & {} \forall u\in L^2(0,T;\textrm{U}) \end{aligned}$$

or also

$$\begin{aligned}{} & {} \displaystyle \int _{0}^{T}\Big \langle H^*C^*QC Hu^*,u(s)\Big \rangle \\{} & {} +\Big \langle Ru^*(s),u(s)\Big \rangle +\Big \langle H^*C^*QC{\tilde{H}}f,u(s)\Big \rangle ds=0;\\{} & {} \forall u\in L^2(0,T;\textrm{U}) \end{aligned}$$

i.e.,

$$\begin{aligned}{} & {} \displaystyle \int _{0}^{T}\Big \langle H^*C^*QC Hu^*+Ru^*+ H^*C^*QC {\tilde{H}},u(s)\Big \rangle ds=0; \\{} & {} \quad \forall u\in L^2(0,T;\textrm{U}) \end{aligned}$$

Then

$$\begin{aligned} \left( H^*C^*QCH+R\right) u^*=-H^*C^*QC{\tilde{H}}f \end{aligned}$$

Consequently, the corresponding optimal control is given by:

$$\begin{aligned} u^*=-\left( H^*C^*QC H+R\right) ^{-1} H^*C^*QC {\tilde{H}}f \end{aligned}$$

Let us remark that if \(Q=I\) and \(R=\alpha I\), we obtain:

$$\begin{aligned} u^*=-\left( H^*C^*C H+\alpha I\right) ^{-1} H^*C^*C {\tilde{H}}f \end{aligned}$$

and if \(\alpha<<1\) (i.e., \(\alpha \) is small), one obtain practically the same results established using the Hilbert Uniqueness Method (22). Therefore, the two methods are sufficiently consistent.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Souhaile, S., Afifi, L. Optimal energy compensation for disturbed systems with time-varying delays. Int. J. Dynam. Control 12, 1055–1062 (2024). https://doi.org/10.1007/s40435-023-01249-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40435-023-01249-8

Keywords

Navigation