Log in

Composition and structure of tree species in two forest fragments in southern amazon region

  • Ecology & Biogeography - Original Article
  • Published:
Brazilian Journal of Botany Aims and scope Submit manuscript

Abstract

The level of human-induced disturbance and forest fragment size affect the distribution and composition of tree species in Amazonian forest fragments. The severity of disturbance can be better understood by analyzing floristic and phytosociological parameters of tree communities in forest fragments. We seek to find what are the differences between floristic, distribution and the successional stages of the trees in two forest fragments at the Amazonian Arc of deforestation. Two forest fragments were selected, one altered (area I) and one preserved (area II), where the number of individuals and of species, diversity index, similarity, importance value index, mean diameter and successional stage of trees were evaluated. The number of individuals and number of species and the diversity index were higher in the preserved fragment than in the altered one, due to the lower alterations such as clearings in the first. In area I, a total of 106 species were found, and in area II 126, with 69 species common to both ones. Fabaceae had the highest number of species, and the Protium altissimum (Aubl.) Marchand the highest importance value in both areas. The total number of late secondary species in the areas I and II was 26 and 34, respectively. One threatened species was found in the preserved area. The diversity index, number of species, the number of individuals and the number of secondary species of the tree communities were higher in the area II.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Data availability

The first author, Aline Gonçalves Spletozer, of the article entitled “Composition and structure of tree species in two forest fragments in southern Amazon region” authorize the availability of the data.

References

  • Alvares CA, Stape JL, Sentelhas PC et al (2013) Köppen’s climate classification map for Brazil. Metz 22:711–728

    Article  Google Scholar 

  • Amaral D, Vieira I, Almeida S et al (2009) Checklist da flora arbórea de remanescentes florestais da região metropolitana de Belém e valor histórico dos fragmentos, Pará, Brasil. Bol. Mus. Para. Emílio Goeldi. Sér Ciências Naturais 4:231–289

    Google Scholar 

  • Amaral IL, Magnusson WE, Matos FD, Albernaz AL, FeitosaGuillaumet YOJL et al (2017) Disentangling structural patterns of natural forest fragments in a savanna matrix in the eastern Brazilian Amazon. Acta Amaz 47:111–122

    Article  Google Scholar 

  • Asner GP (2005) Selective logging in the Brazilian Amazon. Science 310:480–482

    Article  CAS  PubMed  Google Scholar 

  • Barbosa SG, Spletozer AG, Roque MPB et al (2018) Geotechnology in the analysis of forest fragments in northern Mato Grosso, Brazil. Sci Rep 8:e3959. https://doi.org/10.1038/s41598-018-22311-y

    Article  CAS  Google Scholar 

  • Bass MS, Finer M, Jenkins CN et al (2010) Global conservation significance of Ecuador’s Yasuní national park. PLoS ONE 5:e8767. https://doi.org/10.1371/journal.pone.0008767

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Benelli AP, Soares-Lopes CRA (2015) A new species of Catasetum (Cymbidieae, Epidendroideae, Orchidaceae) from the Southern region of the Brazilian Amazon. Phytotaxa 204:75–79

    Article  Google Scholar 

  • Benitez-Malvido J, Martinez-Ramos M (2003) Impact of forest fragmentation on understory plant species richness in Amazonia. Conserv Biol 17:389–400

    Article  Google Scholar 

  • Burn MJ, Mayle FE (2008) Palynological differentiation between genera of the Moraceae family and implications for Amazonian palaeoecology. Rev Palaeobot Palynol 149:187–201

    Article  Google Scholar 

  • Castilla AR, Pope N, Jaffé R, Jha S (2016) Elevation, not deforestation, promotes genetic differentiation in a pioneer tropical tree. PLoS ONE 11:e0156694. https://doi.org/10.1371/journal.pone.0156694

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cayuela L, Golicher DJ, Benayas JMR et al (2006) Fragmentation, disturbance and tree diversity conservation in tropical montane forests: fragmentation, disturbance and tree diversity. J Appl Ecol 43:1172–1181

    Article  Google Scholar 

  • CIENTEC (2016) Software Mata Nativa-Sistema para análise fitossociológica e elaboração de planos de manejo de florestas nativas. Version 4. Viçosa, MG

  • Condé TM, Tonini H (2013) Fitossociologia de uma floresta ombrófila densa na Amazônia Setentrional, Roraima, Brasil. Acta Amaz 43:247–259

    Article  Google Scholar 

  • Corrêa VV, Gama JRV, da SilvaRibeiro RB et al (2015) Estrutura e uso potencial de espécies arbóreas em floresta manejada, Pa Moju, Santarém-Pará. Cerne 21:293–300

    Article  Google Scholar 

  • da Silva ED, de Tozzi AMG, Meireles LD (2016) Leguminosae in an altitudinal gradient in the Atlantic forest of Serra do Mar State Park, São Paulo Brazil. Biota Neotrop 16:0130. https://doi.org/10.1590/1676-0611-BN-2014-0130

    Article  Google Scholar 

  • da RibeiroSilva RB, Gama JRV, Martins SV et al (2013) Estrutura florestal em projeto de assentamento, comunidade São Mateus, município de Placas, Pará, Brasil. Rev Ceres 60:610–620

    Article  Google Scholar 

  • Damasceno-Junior GA, Semir J, AntonioMaës Dos Santos F, de Freitas Leitão-Filho H (2005) Structure, distribution of species and inundation in a riparian forest of Rio Paraguai, Pantanal, Brazil. Flora 200:119–135

    Article  Google Scholar 

  • de Matos VPV, de Matos TPV, Cetra M et al (2018) Forest fragmentation and impacts on the bird community. Rev Árvore 42:e420309. https://doi.org/10.1590/1806-90882018000300009

    Article  Google Scholar 

  • Dantas de Paula M, Groeneveld J, Huth A (2015) Tropical forest degradation and recovery in fragmented landscapes—Simulating changes in tree community, forest hydrology and carbon balance. Glob Ecol Biogeogr 3:664–677

    Google Scholar 

  • de Almeida LS, Gama JRV, de Oliveira F et al (2012) Fitossociologia e uso múltiplo de espécies arbóreas em floresta manejada, comunidade Santo Antônio, município de Santarém, estado do Pará. Acta Amaz 42:185–194

    Article  Google Scholar 

  • de Oliveira AN, do Amaral IL (2004) Florística e fitossociologia de uma floresta de vertente na Amazônia Central, Amazonas, Brasil. Acta Amaz 34:21–34

    Article  Google Scholar 

  • de Oliveira AN, do Amaral IL, Ramos MBP et al (2008) Composição e diversidade florístico-estrutural de um hectare de floresta densa de terra firme na Amazônia Central, Amazonas, Brasil. Acta Amaz 38:627–641

    Article  Google Scholar 

  • de Souza DR, de Souza AL, Gama JRV, Leite HG (2003) Emprego de análise multivariada para estratificação vertical de florestas ineqüiâneas. Rev Árvore 27:59–63

    Article  Google Scholar 

  • de Souza DR, de Souza AL, Leite HG, Yared JAG (2006) Análise estrutural em floresta ombrófila densa de terra firme não explorada, Amazônia Oriental. Rev Árvore 30:75–87

    Article  Google Scholar 

  • Dias P, Udulutsch RG, Pirani JR (2015) Molecular phylogeny and biogeography of the South American genus Metrodorea (Rutaceae). Turk J Botany 39:825–834

    Article  CAS  Google Scholar 

  • Dubs B (1998) Prodromus florae matogrossensis. Part I. Checklist of Angiosperms. Part II. Types from Mato Grosso. The Botany of Mato Grosso. Betrona-Verlag, Küsnacht

  • Engels ME, Rocha LCF, Hall CF, Koch AK (2018) Primeiro registro de Aganisia fimbriata (Orchidaceae: Zygopetalinae) para a região Centro-Oeste do Brasil. Hoehnea 45:348–351

    Article  Google Scholar 

  • Espírito-Santo FDB, Gloor M, Keller M et al (2014) Size and frequency of natural forest disturbances and the Amazon forest carbon balance. Nat Commun 5:3434. https://doi.org/10.1038/ncomms4434

    Article  CAS  PubMed  Google Scholar 

  • Feeley K (2015) Are we filling the data void? An assessment of the amount and extent of plant collection records and census data available for tropical South America. PLoS ONE 10:e0125629. https://doi.org/10.1371/journal.pone.0125629

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Felfili JM, Venturoli F (2000) Tópicos em análise de vegetação, 2nd edn. Universidade de Brasília, Departamento de Engenharia florestal, Comunicações Técnicas Florestais

    Google Scholar 

  • Fernandes JM, Soares-Lopes C, Ribeiro RS, Silva DRS (2015) Leguminosae no acervo do Herbário da Amazônia Meridional, Alta Floresta, Mato Grosso. Enciclopédia Biosfera 11:2272–2293

    Google Scholar 

  • Flora do Brasil (2019) 2020 em construção. https://floradobrasil.jbrj. gov.br/. Accessed 9 Aug 2019

  • Franceschinelli EV, do MendesCarmo R, DeMeloeSilvaNeto C et al (2015) Reproductive success of Cabralea canjerana (Meliaceae) in Atlantic forest fragments, Brazil. RBT 63:515–524

    Article  Google Scholar 

  • Gandolfi S, Leitão-Filho H, Bezerra C (1995) Levantamento florístico e caráter sucessional das espécies arbustivo arbóreas de uma floresta mesófila semidecídua no município de Guarulhos, SP. Rev Bras Biol 55:753–767

    Google Scholar 

  • GBIF (2019) Global biodiversity information facility. https://www.gbif.org/. Accessed 9 Aug 2019

  • Gonçalves FG, dos Santos JR (2008) Composição florística e estrutura de uma unidade de manejo florestal sustentável na Floresta Nacional do Tapajós, Pará. Acta Amaz 38:229–244

    Article  Google Scholar 

  • Haddad NM, Brudvig LA, Clobert J et al (2015) Habitat fragmentation and its lasting impact on Earth’s ecosystems. Sci Adv 1:e1500052. https://doi.org/10.1126/sciadv.1500052

    Article  PubMed  PubMed Central  Google Scholar 

  • Hanski I (2015) Habitat fragmentation and species richness. J Biogeogr 42:989–993

    Article  Google Scholar 

  • Ibáñez I, Katz DSW, Peltier D et al (2014) Assessing the integrated effects of landscape fragmentation on plants and plant communities: the challenge of multiprocess-multiresponse dynamics. J Ecol 102:882–895

    Article  Google Scholar 

  • [IBGE] Instituto Brasileiro de Geografia e Estatística (2009) Estado de Mato Grosso Pedologia: Mapa Exploratório de Solos.

  • [IBGE] Instituto Brasileiro de Geografia e Estatística (2012) Manual técnico da vegetação brasileira. Rio de Janeiro

  • Ifo SA, Moutsambote J-M, Koubouana F et al (2016) Tree species diversity, richness, and similarity in intact and degraded forest in the tropical rainforest of the Congo Basin: case of the Forest of Likouala in the Republic of Congo. Int J for Res 16:1–12

    Google Scholar 

  • [IPNI] International plant names index (2019) International plant names index. https://www.ipni.org

  • [IUCN] International union for conservation of nature (2018) red list of threatened species. A global species assessmen. https://www.iucnredlist.org. Accessed 20 Aug 2018

  • Jacobsen RHF, Sccoti MSV, Fagundes STS et al (2020) Impacts on vegetation after selective cutting in forest concession area in the Southwestern Brazilian Amazon. Floresta 50:1778. https://doi.org/10.5380/rf.v50i4.65680

    Article  Google Scholar 

  • Kosugi R, Shibuya M, Ishibashi S (2016) Sixty-year post-windthrow study of stand dynamics in two natural forests differing in pre-disturbance composition. Ecosphere 7:e01571. https://doi.org/10.1002/ecs2.1571

    Article  Google Scholar 

  • Lambers H, Shane MW, Cramer MD et al (2006) Root structure and functioning for efficient acquisition of phosphorus: matching morphological and physiological traits. Ann Bot 98:693–713

    Article  PubMed  PubMed Central  Google Scholar 

  • Laurance WF, Nascimento HEM, Laurance SG et al (2006) Rapid decay of tree-community composition in Amazonian forest fragments. Proc Natl Acad Sci 103:19010–19014

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Legendre P, Legendre L (2012) Numerical ecology, 3rd edn. Elsevier, Amsterdam

    Google Scholar 

  • Lindgren JP, Cousins SAO (2017) Island biogeography theory outweighs habitat amount hypothesis in predicting plant species richness in small grassland remnants. Landscape Ecol 32:1895–1906. https://doi.org/10.1007/s10980-017-0544-5

    Article  Google Scholar 

  • Liu J, Coomes DA, Hu G et al (2019) Larger fragments have more late-successional species of woody plants than smaller fragments after 50 years of secondary succession. J Ecol 107:582–594. https://doi.org/10.1111/1365-2745.13071

    Article  Google Scholar 

  • Lõhmus K, Paal T, Liira J (2014) Long-term colonization ecology of forest-dwelling species in a fragmented rural landscape - dispersal versus establishment. Ecol Evol 4:3113–3126

    Article  PubMed  PubMed Central  Google Scholar 

  • Machado ELM, de Oliveira-Filho AT (2010) Spatial patterns of tree community dynamics are detectable in a small (4 ha) and disturbed fragment of the Brazilian Atlantic forest. Acta Bot Bras 24:250–261

    Article  Google Scholar 

  • Magurran A (2004) Measuring biological diversity. Blackwell Pub, Malden, Ma

  • Malheiros AF, Higuchi N, dos Santos J (2009) Análise estrutural da floresta tropical úmida do município de Alta Floresta, Mato Grosso, Brasil. Acta Amaz 39:539–548

    Article  Google Scholar 

  • Martinelli G, Moraes MA (2013) Livro vermelho da flora do Brasil, 1st edn. Instituto de Pesquisas Jardim Botânico do Rio de Janeiro, Rio de Janeiro

    Google Scholar 

  • Martins ACM, Willig MR, Presley SJ, Marinho-Filho J (2017) Effects of forest height and vertical complexity on abundance and biodiversity of bats in Amazonia. For Ecol Manag 391:427–435

    Article  Google Scholar 

  • Memiaghe HR, Lutz JA, Korte L et al (2016) Ecological importance of small-diameter trees to the structure, diversity and biomass of a Tropical Evergreen Forest at Rabi Gabon. PLoS ONE 11:e0154988. https://doi.org/10.1371/journal.pone.0154988

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Michalski F, Peres CA (2005) Anthropogenic determinants of primate and carnivore local extinctions in a fragmented forest landscape of southern Amazonia. Biol Conserv 124:383–396

    Article  Google Scholar 

  • Morton DC, DeFries RS, Shimabukuro YE et al (2006) Cropland expansion changes deforestation dynamics in the southern Brazilian Amazon. Proc Natl Acad Sci 103:14637–14641

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Naidu MT, Kumar OA (2016) Tree diversity, stand structure, and community composition of tropical forests in Eastern Ghats of Andhra Pradesh, India. J Asia Pac Biodivers 9:328–334

    Article  Google Scholar 

  • Parrotta JA, Francis JK, Knowles OH (2002) Harvesting intensity affects forest structure and composition in an upland Amazonian forest. For Ecol Manag 169:243–255

    Article  Google Scholar 

  • R Core Team (2020) R: A language and environment for statistical computing. Version 4.0.2. R Foundation for Statistical Computing, Vienna, Austria. URL http://www.R-project.org

  • Rambaldi DM, Oliveira DAS (2003) Fragmentação de ecossistemas: causas, efeitos sobre a biodiversidade e recomendações de políticas públicas. Ministério do Meio Ambiente, Secretaria de Biodiversidade e Florestas, Brasília, DF

  • REFLORA (2019) Plantas do Brasil. reflora.jbrj.gov.br/. Accessed 9 Aug 2019

  • Rocha GPE, Vieira DLM, Simon MF (2016) Fast natural regeneration in abandoned pastures in southern Amazonia. For Ecol Manag 370:93–101

    Article  Google Scholar 

  • Rosa IMD, Gabriel C, Carreiras JMB (2017) Spatial and temporal dimensions of landscape fragmentation across the Brazilian Amazon. Reg Environ Change 17:1687–1699

    Article  PubMed  PubMed Central  Google Scholar 

  • Rutten G, Ensslin A, Hemp A, Fischer M (2015) Vertical and horizontal vegetation structure across natural and modified habitat types at Mount Kilimanjaro. PLoS ONE 10:e0138822. https://doi.org/10.1371/journal.pone.0138822

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sabino FGDA, Cunha MDCL, Santana GM (2016) Estrutura da vegetação em dois fragmentos de Caatinga antropizada na Paraíba. Floresta Ambient 23:487–497. https://doi.org/10.1590/2179-8087.017315

    Article  Google Scholar 

  • Sanches MC, Marzinek J, Bragiola NG, Terra Nascimento AR (2017) Morpho-physiological responses in Cedrela fissilis Vell. submitted to changes in natural light conditions: implications for biomass accumulation. Trees 31:215–227

    Article  CAS  Google Scholar 

  • Santo-Silva EE, Almeida WR, Tabarelli M, Peres CA (2016) Habitat fragmentation and the future structure of tree assemblages in a fragmented Atlantic forest landscape. Plant Ecol 217:1129–1140

    Article  Google Scholar 

  • Schwartz G, Falkowski V, Peña-Claros M (2017) Natural regeneration of tree species in the Eastern Amazon: Short-term responses after reduced-impact logging. For Ecol Manag 385:97–103

    Article  Google Scholar 

  • Selaya NG, Zuidema PA, Baraloto C et al (2017) Economically important species dominate aboveground carbon storage in forests of southwestern Amazonia. E&S 22:1–21

    Article  Google Scholar 

  • [SEPLAN] - Secretaria de Estado de Planejamento (2014) Perfil do Município. http://www.seplan.mt.gov.br/. Accessed 4 Mar 2014

  • SiBBr (2019) SiBBr-Sistema de Informação sobre a Biodiversidade Brasileira. https://www.sibbr.gov.br/. Accessed 9 Aug 2019

  • Soares-Lopes CRA, Ribeiro RS, Rodrigues L et al (2014) Checklist de angiospermas da região de influência da UHE Sinop, médio Teles Pires, Mato Grosso. Enciclop Biosfera 10:2036–2048

    Google Scholar 

  • Sorensen T (1948) A method of establishing groups of equal amplitude in plant sociology based on similarity of species content and its application to analyses of the vegetation on Danish commons. K Danske Videnske Selsk 5:1–34

    Google Scholar 

  • Souza CM, Roberts DA, Cochrane MA (2005) Combining spectral and spatial information to map canopy damage from selective logging and forest fires. Remote Sens Environ 98:329–343

    Article  Google Scholar 

  • Sturges HA (1926) The choice of a class interval. J Am Stat Assoc 21:65–66

    Article  Google Scholar 

  • The Angiosperm Phylogeny Group (2016) An update of the Angiosperm Phylogeny Group classification for the orders and families of flowering plants: APG IV. Bot J Linn Soc 181:1–20

    Article  Google Scholar 

  • The Plant List (2010) The plant list-Version 1. http://www.theplantlist.org/cite/. Accessed 9 Aug 2019

  • Turland N, Wiersema J, Barrie F et al (eds) (2018) International code of nomenclature for algae, fungi, and plants. Koeltz Botanical Books, Glashütten

    Google Scholar 

  • Zappi DC, Sasaki D, Milliken W et al (2011) Plantas vasculares da região do Parque Estadual Cristalino, norte de Mato Grosso, Brasil. Acta Amaz 41:29–38

    Article  Google Scholar 

  • Zappi DC, Milliken W, Lopes CRAS et al (2016) **ngu state park vascular plant survey: filling the gaps. Braz J Bot 39:751–778

    Article  Google Scholar 

  • Zar JH (1998) Biostatistical analysis. Prentice Hall, Upper Saddle River, N.J.

    Google Scholar 

Download references

Acknowledgements

To the “Universidade do Estado de Mato Grosso” (1538/2013; 1904/2014) and “Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)” (126972/2016-8) for the scholarship to the first author. CRASL thanks UNEMAT, PORTARIA 1713/2015; to the parataxonomist José Hipólito Piva and the taxonomist Dennis Rodrigues for identifying some specimens; Adriana Mateus Sorato helped with the statists tests. In addition, we thanks to Jesulino Rocha Filho, Lucas Gomes, Ricardo Da Silva Ribeiro, Anderson Alex Sandro de Almeida and Fabiana Ferreira Cabral, who helped with data collection and species identification; to the owners of the fragments (Célia Castro, Simone Vendrame and Luiz Vendrame) for the availability of the study area. David Michael Miller, a professional editor and proofreader and native English speaking, has reviewed and edited this article.

Author information

Authors and Affiliations

Authors

Contributions

This paper has multiple authors and our individual contributions were AGS, LR and CRASL designed the research; AGS, LR, CRASL, AKK and CRS performed the experiments, acquisition of data and analysis and interpretation of data; AGS, JCZ, CRASL and AKK wrote the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Aline Gonçalves Spletozer.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 98 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Spletozer, A.G., Rodrigues, L., dos Santos, C.R. et al. Composition and structure of tree species in two forest fragments in southern amazon region. Braz. J. Bot 46, 189–203 (2023). https://doi.org/10.1007/s40415-022-00863-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40415-022-00863-8

Keywords

Navigation