Log in

Positron emission tomography/magnetic resonance in musculoskeletal disorders: proper sequences and workflow optimization

  • Expert Review
  • Published:
Clinical and Translational Imaging Aims and scope Submit manuscript

Abstract

Magnetic resonance imaging (MRI) represents a gold standard imaging for detection of oncologic and non-oncologic musculoskeletal disorders (MSK), owing to its high soft tissue contrast. Positron Emission Tomography (PET) was proven to be clinically useful in MSK, owing to its early detection of metabolic disfunction and its high accuracy for monitoring therapy response. With hybrid PET/MRI system, simultaneous availability of both morphologic and metabolic features could potentially enhance the diagnostic accuracy in MSK. Some technical issue should be overcome for best imaging quality: specific MR sequences for accurate visualization of cortical bone and bone marrow involvement, such as zero-time echo (ZTE) or µ time echo (µTE) sequences, that were shown to provide valuable attenuation coefficients for the bone, which leads to accurate quantitative analysis of bone and extra-bone tissues; implementation of novel attenuation map, owing to the presence of flexible coils in the field of view, additional sequences to reduce artifacts derived from metal implants. Workflow consideration should be addressed to the choice of proper sequences able to answer the clinical demand or the research purpose. Redundant information provided by useless sequences, which could prolong the whole scan time and increase the discomfort of the patient, should be avoided.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1
Fig. 2

Adopted from Sonni et al. [26]

Fig. 3

Adopted from MacKay et al.

Similar content being viewed by others

References

  1. Judenhofer MS, Wehrl HF, Newport DF, Catana C, Siegel SB, Becker M et al (2008) Simultaneous PET-MRI: a new approach for functional and morphological imaging. Nat Med 14(4):459–465

    Article  CAS  PubMed  Google Scholar 

  2. Chaudhry AA, Gul M, Gould E, Teng M, Baker K, Matthews R (2016) Utility of positron emission tomography-magnetic resonance imaging in musculoskeletal imaging. World J Radiol 8(3):268–274

    Article  PubMed  PubMed Central  Google Scholar 

  3. Mehranian A, Arabi H, Zaidi H (2016) Vision 20/20: Magnetic resonance imaging-guided attenuation correction in PET/MRI: Challenges, solutions, and opportunities. Med Phys 43(3):1130–1155

    Article  PubMed  Google Scholar 

  4. Samarin A, Burger C, Wollenweber SD, Crook DW, Burger IA, Schmid DT et al (2012) PET/MR imaging of bone lesions–implications for PET quantification from imperfect attenuation correction. Eur J Nucl Med Mol Imaging 39(7):1154–1160

    Article  PubMed  Google Scholar 

  5. Leynes AP, Yang J, Shanbhag DD, Kaushik SS, Seo Y, Hope TA et al (2017) Hybrid ZTE/Dixon MR-based attenuation correction for quantitative uptake estimation of pelvic lesions in PET/MRI. Med Phys 44(3):902–913

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Eldib M, Bini J, Calcagno C, Robson PM, Mani V, Fayad ZA (2014) Attenuation correction for flexible magnetic resonance coils in combined magnetic resonance/positron emission tomography imaging. Invest Radiol 49(2):63–69

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Frohwein LJ, Heß M, Schlicher D, Bolwin K, Büther F, Jiang X et al (2018) PET attenuation correction for flexible MRI surface coils in hybrid PET/MRI using a 3D depth camera. Phys Med Biol 63(2):025033

    Article  PubMed  Google Scholar 

  8. Eldib M, Bini J, Robson PM, Calcagno C, Faul DD, Tsoumpas C et al (2015) Markerless attenuation correction for carotid MRI surface receiver coils in combined PET/MR imaging. Phys Med Biol 60(12):4705–4717

    Article  PubMed  PubMed Central  Google Scholar 

  9. Burger IA, Wurnig MC, Becker AS, Kenkel D, Delso G, Veit-Haibach P et al (2015) Hybrid PET/MR imaging: an algorithm to reduce metal artifacts from dental implants in Dixon-based attenuation map generation using a multiacquisition variable-resonance image combination sequence. J Nucl Med 56(1):93–97

    Article  PubMed  Google Scholar 

  10. Gunzinger JM, Delso G, Boss A, Porto M, Davison H, von Schulthess GK et al (2014) Metal artifact reduction in patients with dental implants using multispectral three-dimensional data acquisition for hybrid PET/MRI. EJNMMI Phys 1(1):102

    Article  PubMed  PubMed Central  Google Scholar 

  11. Upadhyay M, Samal J, Kandpal M, Singh OV, Vivekanandan P (2013) The Warburg effect: insights from the past decade. Pharmacol Ther 137(3):318–330

    Article  CAS  PubMed  Google Scholar 

  12. Brewer S, McPherson M, Fujiwara D, Turovskaya O, Ziring D, Chen L et al (2008) Molecular imaging of murine intestinal inflammation with 2-deoxy-2-[18F]fluoro-D-glucose and positron emission tomography. Gastroenterology 135(3):744–755

    Article  PubMed  Google Scholar 

  13. Hong YH, Kong EJ (2013) (18F)Fluoro-deoxy-D-glucose uptake of knee joints in the aspect of age-related osteoarthritis: a case-control study. BMC Musculoskelet Disord 14:141

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Kubota R, Yamada S, Kubota K, Ishiwata K, Tamahashi N, Ido T (1992) Intratumoral distribution of fluorine-18-fluorodeoxyglucose in vivo: high accumulation in macrophages and granulation tissues studied by microautoradiography. J Nucl Med 33(11):1972–1980

    CAS  PubMed  Google Scholar 

  15. Blau M, Nagler W, Bender MA (1962) Fluorine-18: a new isotope for bone scanning. J Nucl Med 3:332–334

    CAS  PubMed  Google Scholar 

  16. Kobayashi N, Inaba Y, Tateishi U, Yukizawa Y, Ike H, Inoue T et al (2013) New application of 18F-fluoride PET for the detection of bone remodeling in early-stage osteoarthritis of the hip. Clin Nucl Med 38(10):e379–e383

    Article  PubMed  Google Scholar 

  17. Bouter C, Meller B, Sahlmann CO, Staab W, Wester HJ, Kropf S et al (2018) (68)Ga-Pentixafor PET/CT imaging of chemokine receptor CXCR4 in chronic infection of the bone: first insights. J Nucl Med 59(2):320–326

    Article  CAS  PubMed  Google Scholar 

  18. Zhu Z, Yin Y, Zheng K, Li F, Chen X, Zhang F et al (2014) Evaluation of synovial angiogenesis in patients with rheumatoid arthritis using 68Ga-PRGD2 PET/CT: a prospective proof-of-concept cohort study. Ann Rheum Dis 73(6):1269–1272

    Article  CAS  PubMed  Google Scholar 

  19. Papanikolaou N, Matos C, Koh DM (2020) How to develop a meaningful radiomic signature for clinical use in oncologic patients. Cancer Imaging 20(1):33

    Article  PubMed  PubMed Central  Google Scholar 

  20. Yin P, Mao N, Wang S, Sun C, Hong N (2019) Clinical-radiomics nomograms for pre-operative differentiation of sacral chordoma and sacral giant cell tumor based on 3D computed tomography and multiparametric magnetic resonance imaging. Br J Radiol 92(1101):20190155

    Article  PubMed  PubMed Central  Google Scholar 

  21. Gitto S, Cuocolo R, Albano D, Chianca V, Messina C, Gambino A et al (2020) MRI radiomics-based machine-learning classification of bone chondrosarcoma. Eur J Radiol 128:109043

    Article  PubMed  Google Scholar 

  22. Klontzas ME, Manikis GC, Nikiforaki K, Vassalou EE, Spanakis K, Stathis I et al (2021) Radiomics and machine learning can differentiate transient osteoporosis from avascular necrosis of the hip. Diagnostics (Basel) 11(9):1686

    Article  PubMed  Google Scholar 

  23. Sachpekidis C, Hillengass J, Goldschmidt H, Mosebach J, Pan L, Schlemmer HP et al (2015) Comparison of (18)F-FDG PET/CT and PET/MRI in patients with multiple myeloma. Am J Nucl Med Mol Imaging 5(5):469–478

    PubMed  PubMed Central  Google Scholar 

  24. Vij R, Fowler KJ, Shokeen M (2016) New approaches to molecular imaging of multiple myeloma. J Nucl Med 57(1):1–4

    Article  CAS  PubMed  Google Scholar 

  25. Zambello R, Crimì F, Lico A, Barilà G, Branca A, Guolo A et al (2019) Whole-body low-dose CT recognizes two distinct patterns of lytic lesions in multiple myeloma patients with different disease metabolism at PET/MRI. Ann Hematol 98(3):679–689

    Article  CAS  PubMed  Google Scholar 

  26. Sonni I, Minamimoto R, Baratto L, Gambhir SS, Loening AM, Vasanawala SS et al (2020) Simultaneous PET/MRI in the Evaluation of Breast and Prostate Cancer Using Combined Na[(18)F] F and [(18)F]FDG: a Focus on Skeletal Lesions. Mol Imaging Biol 22(2):397–406

    Article  CAS  PubMed  Google Scholar 

  27. Chodyla M, Demircioglu A, Schaarschmidt BM, Bertram S, Morawitz J, Bauer S et al (2021) Evaluation of the predictive potential of 18F-FDG PET and DWI data sets for relevant prognostic parameters of primary soft-tissue sarcomas. Cancers (Basel). https://doi.org/10.3390/cancers13112753

    Article  PubMed  Google Scholar 

  28. van der Heijde D, Sieper J, Maksymowych WP, Dougados M, Burgos-Vargas R, Landewé R et al (2011) 2010 Update of the international ASAS recommendations for the use of anti-TNF agents in patients with axial spondyloarthritis. Ann Rheum Dis 70(6):905–908

    Article  PubMed  Google Scholar 

  29. Bruijnen ST, van der Weijden MA, Klein JP, Hoekstra OS, Boellaard R, van Denderen JC et al (2012) Bone formation rather than inflammation reflects ankylosing spondylitis activity on PET-CT: a pilot study. Arthritis Res Ther 14(2):R71

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Fischer DR, Pfirrmann CW, Zubler V, Stumpe KD, Seifert B, Strobel K et al (2012) High bone turnover assessed by 18F-fluoride PET/CT in the spine and sacroiliac joints of patients with ankylosing spondylitis: comparison with inflammatory lesions detected by whole body MRI. EJNMMI Res 2(1):38

    Article  PubMed  PubMed Central  Google Scholar 

  31. Buchbender C, Ostendorf B, Ruhlmann V, Heusch P, Miese F, Beiderwellen K et al (2015) Hybrid 18F-labeled fluoride positron emission tomography/magnetic resonance (mr) imaging of the sacroiliac joints and the spine in patients with axial spondyloarthritis: a pilot study exploring the link of MR bone pathologies and increased osteoblastic activity. J Rheumatol 42(9):1631–1637

    Article  CAS  PubMed  Google Scholar 

  32. MacKay JW, Watkins L, Gold G, Kogan F (2021) [(18)F]NaF PET-MRI provides direct in-vivo evidence of the association between bone metabolic activity and adjacent synovitis in knee osteoarthritis: a cross-sectional study. Osteoarthritis Cartilage 29(8):1155–1162

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Miese F, Scherer A, Ostendorf B, Heinzel A, Lanzman RS, Kröpil P et al (2011) Hybrid 18F-FDG PET-MRI of the hand in rheumatoid arthritis: initial results. Clin Rheumatol 30(9):1247–1250

    Article  PubMed  Google Scholar 

  34. Cipriano PW, Yoon D, Gandhi H, Holley D, Thakur D, Hargreaves BA et al (2018) (18)F-FDG PET/MRI in chronic sciatica: early results revealing spinal and nonspinal abnormalities. J Nucl Med 59(6):967–972

    Article  PubMed  Google Scholar 

  35. Fahnert J, Purz S, Jarvers JS, Heyde CE, Barthel H, Stumpp P et al (2016) Use of simultaneous 18F-FDG PET/MRI for the Detection of Spondylodiskitis. J Nucl Med 57(9):1396–1401

    Article  CAS  PubMed  Google Scholar 

  36. Crönlein M, Rauscher I, Beer AJ, Schwaiger M, Schäffeler C, Beirer M et al (2015) Visualization of stress fractures of the foot using PET-MRI: a feasibility study. Eur J Med Res 20:99

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Funding

The authors report no involvement in the research by the sponsor that could have influenced the outcome of this work.

Author information

Authors and Affiliations

Authors

Contributions

DAP and S have given substantial contributions to the conception or the design of the manuscript, LC, IDeM, MLDeM, MDeS to acquisition, analysis and interpretation of the data. All authors have participated to drafting the manuscript, DAP revised it critically. All authors read and approved the final version of the manuscript. All authors contributed equally to the manuscript and read and approved the final version of the manuscript.

Corresponding author

Correspondence to Daniele Antonio Pizzuto.

Ethics declarations

Conflicts of interest

The authors certify that there is no conflict of interest with any financial organization regarding the material discussed in the manuscript.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 171 KB)

Supplementary file2 (PDF 96 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pizzuto, D.A., Calandriello, L., De Martino, I. et al. Positron emission tomography/magnetic resonance in musculoskeletal disorders: proper sequences and workflow optimization. Clin Transl Imaging 12, 253–261 (2024). https://doi.org/10.1007/s40336-023-00611-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40336-023-00611-2

Keywords

Navigation