Log in

Dynamical complexities with effect of additional food and harvesting in the time delay plankton-fish model

  • Published:
SeMA Journal Aims and scope Submit manuscript

Abstract

In the present work, we have developed a plankton-fish model consisting time delay using functional response Holling type-II and linear harvesting. Two different additional foods are supplied to both the species zooplankton and fish and study which one additional food more influences positively to the system than other. We derive some stipulations for existence of equilibria and its stability. Stipulations for local and global stability, positivity and boundedness of the system are investigated. Stability and instability analysis have been performed through the time series, phase space and bifurcation diagrams with respect to various ecological factors. In both cases, presence of delay and absence of delay, the main observation of the study indicates that the low additional food supply to zooplankton has an extinction risk for both the species fish and themselves, although the certain additional food is provided to the fish. It is beneficial not only for the zooplankton but also for the fish in both cases. It is also observed that enhancing the additional food supply of the zooplankton in presence of delay is more advantageable than in absence of delay, because of, delay enhances that quantity of additional food supply to a certain level without changing the stable nature of the system for which the system exhibits a stable dynamic in absence of delay. The complex behaviour (chaos) which is appeared due to conversion rate and small harvesting of zooplankton that can be completely controlled by the delay. Double Hopf bifurcation behaviour has been inspected due to delay. A small gestation delay has destabilizing effect, whereas a relatively large gestation delay has stabilizing effect.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

Data availability

No data set is generated to this article.

References

  1. Raw, S.N., Tiwari, B., Mishra, P.: Analysis of plankton fish model with external toxicity and non linear harvesting. Ricerche. Mat. 69, 653–681 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  2. Saha, T., Bandyopadhyay, M.: Dynamical analysis of toxin producing Phytoplankton-Zooplankton interactions. Nonlinear Anal. Real World Appl. 10(1), 314–332 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  3. Anderson, D.: Turning back the harmful red tide. Nature 388, 513–514 (1997)

    Article  Google Scholar 

  4. Du, Y., Hsu, S.: On a nonlocal reaction-diffusion problem arising from the modeling of phytoplankton growth. SIAM J. Math. Anal. 42(3), 1305–1333 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  5. Du, Y., Mei, L.: On a nonlocal reaction-diffusion-advection equation modelling phytoplankton dynamics. Nonlinearity 24, 319–349 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  6. Hsu, S., Lou, Y.: Single phytoplankton species growth with light and advection in a water column. SIAM J. Appl. Math. 70(8), 2942–2974 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  7. Rani, R., Gakkhar, S.: The impact of provision of additional food to predator in predator-prey model with combined harvesting in the presence of toxicity. J. Appl. Math. Comput. 60, 673–701 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  8. Pal, R., Basu, D., Banerjee, M.: Modelling of phytoplankton allelopathy with Monod-Haldane-type functional response—a mathematical study. Biosystem 95(3), 243–253 (2009)

    Article  Google Scholar 

  9. Hutchinson, G.E.: Circular causal systems in ecology. Ann. N. Y. Acad. Sci. 50(4), 221–246 (1948)

    Article  Google Scholar 

  10. Cushing, J.M.: Integro-Differential Equations and Delay Model in Population Dynamics. Springer, Heidelberg (1977)

    Book  Google Scholar 

  11. Kuang, Y.: Delay Differential Equations with Applications in Population Dynamics. Academic Press, New York (1993)

    MATH  Google Scholar 

  12. Gopalsamy, K.: Stability and Oscillations in Delay Differential Equations of Population Dynamics. Kluwer Academic, Dordrecht (1992)

    Book  MATH  Google Scholar 

  13. MacDonald, N.: Time Lags in Biological Models. Springer, Heidelberg (1978)

    Book  MATH  Google Scholar 

  14. Hastings, A.: Delays in recruitment at different trophic levels: effects on stability. J. Math. Biol. 21, 35–44 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  15. Gopalsamy, K.: Harmless delay in model systems. Bull. Math. Biol. 45, 295–309 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  16. May, R.M.: Time delay versus stability in population models with two and three trophic levels. Ecology 54(2), 315–325 (1973)

    Article  Google Scholar 

  17. Ruan, S.: Absolute stability, conditional stability and bifurcation in Kolmogorov-type predator-prey systems with discrete delays. Quart. Appl. Math. 59(1), 159–173 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  18. Freedman, H.I., Wolkowicz, G.S.K.: Predator-prey systems with group defense: the paradox of enrichment revisited. Bull. Math. Biol. 48(5–6), 493–508 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  19. Erbe, L.H., Freedman, H.I., Rao, S.H.R.: Three-species food-chain models with mutual interference and time delays. Math. Biosci. 80(1), 57–80 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  20. Freedman, H.I., Rao, S.H.R.: The trade-off between mutual interference and time lags in predator-prey systems. Bull. Math. Biol. 45(6), 991–1004 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  21. Hassell, M.P.: Mutual interference between searching insect parasites. J. Animat. Ecol. 40, 473–486 (1971)

    Article  Google Scholar 

  22. Rogers, D.J., Hassell, M.P.: General models for insect parasite and predator searching behavior: interference. J. Animat. Ecol. 43, 239–253 (1974)

    Article  Google Scholar 

  23. Rao, F., Chavez, C.C., Kang, Y.: Dynamics of a diffusion reaction prey-predator model with delay in prey: effects of delay and spatial components. J. Math. Anal. Appl. 461, 1177–1214 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  24. Scheffer, M.: Fish and nutrients interplay determines algal biomass: a minimal model. Oikos 62, 271–282 (1991)

    Article  Google Scholar 

  25. Freedman, H.I., Ruan, S.: Hopf bifurcation in three-species food chain models with group defense. Math. Biosci. 111(1), 73–87 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  26. Das, K., Ray, S.: Effect of delay on nutrient cycling in phytoplankton-zooplankton interactions in estuarine system. Ecol. Model. 215(1–3), 69–76 (2008)

    Article  Google Scholar 

  27. Ojha, A., Thakur, N.K.: Exploring the complexity and chaotic behavior in plankton-fish system with mutual interference and time delay. Biosystem 198, 104283 (2020)

    Article  Google Scholar 

  28. Srinivasu, P.D.N., Prasad, B.S.R.V., Venkatesulu, M.: Biological control through provision of additional food to predators: a theoretical study. Theor. Popul. Biol. 72(1), 111–120 (2001)

    Article  MATH  Google Scholar 

  29. van Baalen, M., Krivan, V., van Rijn, P.C., Sabelis, M.W.: Alternative food, switching predators, and the persistence of predator-prey systems. Am. Nat. 157(5), 512–24 (2001)

    Article  Google Scholar 

  30. Murdoch, W.W.: Switching in general predators: experiments on predator specificity and stability of prey populations. Ecol. Mono. 39(4), 335–354 (1969)

    Article  Google Scholar 

  31. Holt, R.D.: Predation, apparent competition, and the structure of prey communities. Theor. Popul. Biol. 12(2), 197–229 (1977)

    Article  MathSciNet  Google Scholar 

  32. Mondal, S., Maiti, A., Samanta, G.P.: Effects of fear and additional food in a delayed predator-prey model. Biophys. Rev. Lett. 13(4), 157–177 (2018)

    Article  Google Scholar 

  33. Srinivasu, P.D.N., Prasad, B.S.R.V.: Role of quantity of additional food to predators as a control in predator-prey systems with relevance to pest management and biological conservation. Bull. Math. Biol. 73, 2249–2276 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  34. Maiti, A., Pal, A.K., Samanta, G.P.: Effect of time-delay on a food chain model. Appl. Math. Comput. 200(1), 189–203 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  35. Sharma, A., Sharma, A.K., Agnihotri, K.: Complex dynamic of plankton-fish interaction with quadratic harvesting and time delay. Model. Earth. Syst. Environ. 2, 1–17 (2016)

    Article  Google Scholar 

  36. Sahoo, B., Poria, S.: Disease control in a food chain model supplying alternative food. Appl. Math. Model. 37(8), 5653–5663 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  37. Haque, M., Greenhalgh, D.: When a predator avoids infected prey: a model-based theoretical study. Math. Med. Biol. 27(1), 75–94 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  38. Hethcote, H.W., Wang, W., Han, L., Ma, Z.: A predator-prey model with infected prey. Theor. Popul. Biol. 66, 259–268 (2004)

    Article  Google Scholar 

  39. Pal, S., Chatterjee, A.: Dynamics of the interaction of plankton and planktivorous fish with delay. Cogent Math. 2(1), 1074337 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  40. Panja, P., Mondal, S.K., Jana, D.K.: Effects of toxicants on Phytoplankton-Zooplankton-Fish dynamics and harvesting. Chaos Solitons Fractals 104, 389–399 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  41. Jana, D., Agrawal, R., Upadhyay, R.K.: Top-predator interference and gestation delay as determinants of the dynamics of a realistic model food chain. Chaos Solitons Fractals 69, 50–63 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  42. Mondal, S., Samanta, G.P.: Dynamics of an additional food provided predator-prey system with prey refuge dependent on both species and constant harvest in predator. Phys. A 534, 122301 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  43. Clark, C.W.: Mathematical Bioeconomics: The Optimal Management of Renewable Resources. Wiley, New York (1976)

    MATH  Google Scholar 

  44. Clark, C.W.: Bioeconomic Modeling and Fisheries Management. Wiley, New York (1985)

    Google Scholar 

  45. Martin, A., Ruan, S.: Predator-prey models with delay and prey harvesting. J. Math. Biol. 43, 247–267 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  46. Beddington, J.R., May, R.M.: Maximum sustainable yields in systems subject to harvesting at more than one trophic level. Math. Biosci. 51(3–4), 261–281 (1980)

    Article  MathSciNet  MATH  Google Scholar 

  47. Adak, D., Bairagi, N., Hakl, R.: Chaos in delay-induced Leslie-Gower prey-predator-parasite model and its control through prey harvesting. Nonlinear Anal. Real World Appl. 51, 102998 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  48. Yang, R., Zhang, C.: Dynamics in a diffusive modified Leslie-Gower predator-prey model with time delay and prey harvesting. Nonlinear Dyn. 87, 863–878 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  49. Wang, Y., Jiang, W., Wang, H.: Stability and global Hopf bifurcation in toxic phytoplankton-zooplankton model with delay and selective harvesting. Nonlinear Dyn. 73, 881–896 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  50. Wang, B., Wang, A.L., Liu, Y.J., Liu, Z.H.: Analysis of a spatial predator-prey model with delay. Nonlinear Dyn. 62, 601–608 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  51. Gupta, R.P., Chandra, P.: Bifurcation analysis of modified Leslie-Gower predator-prey model with Michaelis-Menten type prey harvesting. J. Math. Anal. Appl. 398, 278–295 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  52. Zhang, Z., Yang, H., Fu, M.: Hopf bifurcation in a predator-prey system with Holling type III functional response and time delays. J. Appl. Math. Comput. 44, 337–356 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  53. Song, Y., **ao, W., Qi, X.: Stability and Hopf bifurcation of a predator-prey model with stage structure and time delay for the prey. Nonlinear Dyn. 83, 1409–1418 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  54. Sharma, A., Sharma, A.K., Agnihotri, K.: Analysis of a toxin producing phytoplankton-zooplankton interaction with Holling IV type scheme and time delay. Nonlinear Dyn. 81, 13–25 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  55. Thakur, N.K., Ojha, A., Jana, D., Upadhyay, R.K.: Modeling the plankton-fish dynamics with top predator interference and multiple gestation delays. Nonlinear Dyn. 100, 4003–4029 (2020)

    Article  MATH  Google Scholar 

  56. Ruan, S.: Persistence and coexistence in zooplankton-phytoplankton-nutrient models with instantaneous nutrient recycling. J. Math. Biol. 31, 633–654 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  57. Fan, A., Han, P., Wang, K.: Global dynamics of a nutrientplankton system in the water ecosystem. Appl. Math. Comput. 219(15), 8269–8276 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  58. Zhao, J., Wei, J.: Stability and bifurcation in a two harmful phytoplankton-zooplankton system. Chaos Solitons Fractals 39(3), 1395–1409 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  59. Edwards, A.M., Brindley, J.: Zooplankton mortality and the dynamical behaviour of plankton population models. Bull. Math. Biol. 61(2), 303–339 (1999)

    Article  MATH  Google Scholar 

  60. Gakkhar, S., Singh, A.: Complex dynamics in a prey predator system with multiple delays. Commun. Nonlinear Sci. Numer. Simulat. 17(2), 914–929 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  61. Hassard, B.D., Kazarinoff, N.D., Wan, W.H.: Theory and Applications of Hopf Bifurcation. Cambridge University Press, Cambridge (1981)

    MATH  Google Scholar 

  62. Yang, X., Chen, L., Chen, J.: Permanence and positive periodic solution for the single species nonautonomus delay diffusive model. Comput. Math. Appl. 32, 109–116 (1996)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The work is supported by MATRICS project (File No.: MTR/2021/000472) SERB-DST New Delhi, India to the corresponding author S. N. Raw and is also supported by UGC New Delhi, India to the co-author S. R. Sahu under Junior Research Fellowship (JRF) Award. The authors are thankful to Dr. Pau Martin, Associate Editor and the reviewers for their valuable suggestions and remarks in sha** the manuscript into its current form.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. N. Raw.

Ethics declarations

Conflict of interest

No conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Raw, S.N., Sahu, S.R. Dynamical complexities with effect of additional food and harvesting in the time delay plankton-fish model. SeMA (2023). https://doi.org/10.1007/s40324-023-00339-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s40324-023-00339-z

Keywords

Mathematics Subject Classification

Navigation